
Défi en compilation et langages: du parallélisme oui, mais du

parallélisme efficace et sûr!

Laure Gonnord∗, Ludovic Henrio∗

Décembre 2019

Signataires Gabriel Radanne (Inria Paris), Emmanuel Chailloux (LIP6, Sorbonne Université),
Julien Tesson and Mathias Bourgoin (Nomadic Labs), Christophe Alias and Matthieu Moy (Univ
Lyon, ENS de Lyon, UCBL, CNRS, Inria, LIP), Sid Touati (Université Côte d’Azur), Erven Rohou
(Inria Rennes), Emmanuelle Saillard (Inria Bordeaux), Kevin Martin (Université Bretagne Sud).

1 Context
The advent of parallelism in supercomputers and in more classical end-user computers increases the
need for high-level code optimization, advanced programming languages, and improved compilers.
New architectures such as multi-core processors, Graphics Processing Units (GPUs), many-core and
FPGA accelerators are introduced, resulting into complex heterogeneous platforms. In particular,
FPGAs are now a credible solution for energy-efficient HPC. An FPGA chip can deliver the same
computing power as a GPU for an energy budget 10 times smaller.

Parallelism and concurrency There might be several reasons to introduce parallelism when
executing a program. First, the problem to solve can be by nature parallel, for example because it
needs to be performed by several distinct computing units. A typical example of such a scenario is
the gathering of information originating different geographical locations.

However, in many cases, and especially in high-performance computing, parallelism is not a
desired feature but the only way to achieve the desired performance by spreading a computational
task over multiple cores/machines/servers . . . At a smaller scale, to be responsive, a program often
needs to implement local parallelism, in order for example to take into account incoming information
while performing a long computation.

The tasks that run in parallel might have conflicting effects, this is why some parallel languages
are rather called “concurrent languages”: the concurrency between the different tasks running in
parallel might have an effect or not.

Research statement We propose to study and enhance the handling of parallelism in programs,
from languages to runtimes. We believe that the two following challenges are equally important:
1 - understanding the different forms of parallelism and 2 - benefiting from the different ways to
execute programs while ensuring strong properties about them.

Programming without errors is a difficult task because of the complexity of the algorithms, and
because of the complexity due to the interaction between program entities; this problem is at the
center of many research directions inside the GdR GPL group. However in case of parallel programs
the task is even more difficult because the interaction between two program entities can occur at

∗Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP

1



any moment. The programmer has to take into account additionally the concurrency between the
different tasks of the program which makes the verification of the program correctness much more
difficult. Race condition is the notion related to such concurrency: it describes a situation where
two tasks try to perform a conflicting action, and depending on the task that acts first the result
of the computation can be different.

In particular, parallel programs can raise two categories of bugs that are difficult to find and
very annoying: deadlocks (several tasks blocked because each of them needs an action of another
task to progress) and data-races (two tasks trying to access the same data in a conflicting manner).
Data-races are a special case of race condition where the race concerns the access and modification
to some data, this is the lower level race condition and the most undesirable. The design of
programming languages for parallelism should find ways to reduce the risk of having such bugs
while allowing the programmer to write complex and efficient programs.

When a program is deterministic, it has no race condition at all, and it either systematically
deadlocks or never deadlocks but limiting parallel programming to deterministic languages is a bit
too restrictive in terms of expressiveness in general.

2 Research agenda: parallelism everywhere

In this section we propose to make a tour of different approaches to achieve the goal of safe yet
efficient parallel programs. In particular we identify challenging questions for the GDR GPL groups.

2.1 Language-based approaches for parallelism

The goal of language-based approach is two-fold: enable the use of modern software development
techniques such as modular programming, and improve the safety of programs by preventing some
errors by providing programming abstractions that forbid undesired behaviours. As stated above,
in many cases non-determinism is an undesired behaviour, and consequently several languages
provide abstractions restricting or forbidding non-deterministic behaviours. We can distinguish
three approaches:

• Introduce new programming constructs which, by construction, will never exhibit bad proper-
ties regardless how they are used. Such constructs must be supported by appropriate runtime
ensuring that the semantics never exhibit any non-determinism, regardless of how programs
are composed. This is the case, for instance, of Kahn process networks [Kah74], or of Ac-
tors [Agh86] that by nature ensure determinism and consequently the absence of any kind
of race-condition. But Kahn process networks are a bit restrictive in terms of allowed paral-
lelism; many programming models allow more parallelism while allowing the programmer to
easily control race-conditions, and often preventing data-races [BSH+17].

• Augment an existing language which rich typing systems (and type check or type inference)
to statically prevent bad behavior such as data races. This is the case of Rust, which does
not require any runtime support and support very low level access to the system, but uses a
rich type system to rule out several forms of data races. More generally linear and ownership
types is one solution frequently used to prevent data-races from the type system point of
view [BCC+15], while keeping a rich, efficient and expressive programming language. More
generally, it is crucial to design static analysis and type systems that complement adequately

2



the languages designed above, guaranteeing the correct behaviour of programs that adopt the
programming model specified in the previous approach.

• Design analyses on top of existing languages in order to a-posteriori prove the absence of
deadlock or race conditions. These analyses can be performed on any type of language, from
general purpose languages with explicit threads and mutexes to languages that already enable
to express coarse grain construction like premises. It is thus necessary to design scalable
analysers that can analyse parallel code, in the spirit of AstreeA [Min15].

Naturally, in practice these approaches form a continuum, however, in the current structuration of
the GDR they are addressed by different subgroups: Compilation, LAMHA, and LTP.

In the “language approach” we also classify all the approaches that are more attached to the
study or a programming model, i.e. a way to program parallelism, without being tied to a given
programming language.

Here are the challenges we identify in this approach:

1. Design programming models that are convenient to program, can lead to efficient execution of
programs, and help the programmer to write programs without bugs, deadlocks, or data-races.

2. Design static abstractions, e.g. type systems, that increase the reliability of the programs
while keeping the programming language expressive enough.

3. Design proper abstractions to get precise analysis ; and analyses that benefit from high level
constructions (or guarantee by construction) of the language.

2.2 Compilation approaches

The goal of compilation-based approach is two-fold: let the user declare the optimisation potentiality
for her program while still remaining readable and independant from the final usage (architecture,
level of parallelism, . . . ). We can distinguish two approaches:

• Many variants of C have been proposed, the most famous is OpenMP (https://www.openmp.
org/ that enables the programmer to declare independant tasks through pragmas. It is up
to the compiler to parallelise these tasks effectively (and generate communications).The ex-
pected behavior parallelisation pragmas, such as the ones of OpenMP, is generally unformally
described in the norm, and some of them are only user declarations.

• Express the computation itself and let the compiler generate and optimise code. For instance
in the polyhedral model framework [FL11], DSLs such as Alpha [RGK11] are used to express
and then are aggressively compiled into equivalent tiled/pipelined sequential code or parallel
code (with explicit communications).

These compilation approaches are currently studied in the Compilation subgroup of the GDR.
Scientific research questions:

1. How to formally specify the behaviour of parallelisation pragmas? How to ensure that the
compiler does not introduce bugs? How to ensure statically or at runtime that the asumptions
made by the developer are made explicit ?

2. Polyhedral aggressive compilation and loop rescheduling often produce complex code with a
non trivial structure: how to be sure that these transformations are safe? This is a non trivial
application for certified compilation.

3



2.3 Runtime approaches

As for runtime the objective is to guarantee that the execution of the parallel programs will follow
the properties proven. This is generally ensured by checking that the runtime allows exactly the
executions specified by the language semantics. This part can be ensured more or less formally:

• Ideally, there would be a complete formal proof of the runtime platforms according to the
parallel language semantics. However the the complexity of the runtime platform and of the
parallel languages make the complete formal proof of correctness often not realisable. We
believe that static properties could still be verified by allowing coarse grain abstractions.

• By runtime verification [BFFR18, AHO19]: instrumenting the generated code to at least
warn during executions if one of the semantics assumptions or properties are not required or
statically proven.

It is necessary that the developers of the runtime environment, the person that specifies the
behaviour of the language, and the developers of the static analyses for the parallel languages
agree on the semantics of the program, at least in an informal way, and make sure that all the
developments respect this semantics. In the GDR GPL, some of these questions are studied by the
LAMHA group. Scientific research questions:

1. How to design runtimes and prove that they execute the semantics of the code they are
given? Even in the simpliest case where runtimes make no decision choices for scheduling it
is not trivial to guarantee a correct instruction scheduling at runtime (and thus propagate
the properties proven on the program, like e.g. absence of race conditions).

2. Correct proofs of complex runtimes, such as for example StarPU [ATNW11], seems to be
untractable for formal proofs with provers, however some of its parts such as the task sheduler
is by itself interesting in order to understand relationships between operational semantics and
its execution support. This challenge implies to make collaborations with other groups that
currently do not belong to the GDR GPL.

2.4 Complementary approaches

Of course, parallel programs have also other characteristics that deserve to be studied:

• These programs need to be designed in productive ecosystems: from specification to runtime,
verification and experimental evaluation, all software engineering techniques in general have
to be rethought, notably in terms of user-friendliness, scale, and heterogeneity of code. These
activities are also part of the GDR topics (MFDL, RIMEL, GLACE).

• The intrinsic sequential part of parallel programs should also be studied. Code experts are
able to invoque clever sequence of compiler optimisations, none of them being used by default.
We also advocate in favor of designing expert benchmarks that demonstrate state-of-the art
optimisation potential.

• Parallel programs execute themselves on physical machines, and runtimes are usually designed
to fit these particular machines, that also contain increasing hardware-based solutions: branch
prediction, vectorisation. A proper study of safe concurrency should also not forget to take
these architecture into account, the main challenge being to properly describe their (complex)
behavior. This is part of the activity of the Compilation Group in the SOC2 GDR.

4



References
[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press, 1986.

[AHO19] Wolfgang Ahrendt, Ludovic Henrio, and Wytse Oortwijn. Who is to blame? runtime verification of distributed
objects with active monitors. Electronic Proceedings in Theoretical Computer Science, 302:32–46, Aug 2019. Post-
proceedings of VORTEX 2018.

[ATNW11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU: a unified platform for
task scheduling on heterogeneous multicore architectures. Concurrency and Computation: Practice and Experience,
23(2):187–198, 2011.

[BCC+15] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen, Ka I. Pun,
S. Lizeth Tapia Tarifa, Tobias Wrigstad, and Albert Mingkun Yang. Parallel objects for multicores: A glimpse at
the parallel language Encore. In Marco Bernardo and Einar Broch Johnsen, editors, Formal Methods for Multicore
Programming, volume 9104 of Lecture Notes in Computer Science, pages 1–56. 2015.

[BFFR18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to Runtime Verification. In
Lectures on Runtime Verification. Introductory and Advanced Topics, volume 10457 of Lecture Notes in Computer
Science, pages 1–33. Springer, February 2018.

[BSH+17] Frank De Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crystal Chang Din, Einar
Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-Reyes, and Albert Mingkun Yang. A survey
of active object languages. ACM Comput. Surv., 50(5):76:1–76:39, October 2017.

[FL11] Paul Feautrier and Christian Lengauer. Polyhedron model. In Encyclopedia of Parallel Computing, pages 1581–
1592. 2011.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In Information processing. North-Holland,
1974.

[Min15] Antoine Miné. AstréeA: A Static Analyzer for Large Embedded Multi-Task Software. In 16th International
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’15), volume 8931 of Lecture
Notes in Computer Science, page 3, Mumbai, India, January 2015. Springer.

[RGK11] Sanjay Rajopadhye, Samik Gupta, and Dae-Gon Kim. Alphabets: An extended polyhedral equational language.
2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, 0:656–664,
2011.

5


