
Challenges in Software Evolution

Tom Mens

Service de Génie Logiciel

Université de Mons-Hainaut

Belgium

Michel Wermelinger

Computing Department

The Open University

United Kingdom

Stéphane Ducasse

Université de Savoie

France

Serge Demeyer

Lab on Reengineering

University of Antwerp

Belgium

Robert Hirschfeld

Future Networking Lab

DoCoMo Euro-Labs

Germany

Mehdi Jazayeri

Faculty of Informatics

University of Lugano

Switzerland

Abstract

Today’s information technology society increas-

ingly relies on software at all levels. Nevertheless,

software quality generally continues to fall short of

expectations, and software systems continue to suffer

from symptoms of aging as they are adapted to chang-

ing requirements and environments. The only way to

overcome or avoid the negative effects of software ag-

ing is by placing change and evolution in the center of

the software development process. In this article we

describe what we believe to be some of the most im-

portant research challenges in software evolution. The

goal of this document is to provide novel research di-

rections in the software evolution domain.

1 Introduction

Today’s information technology society increas-

ingly relies on software at all levels. This dependence

on software takes place in all sectors of society, includ-

ing government, industry, transportation, commerce,

manufacturing and the private sector. Productivity of

software organisations and software quality generally

continue to fall short of expectations, and software sys-

tems continue to suffer from symptoms of aging as

they are adapted to changing requirements. One major

reason for this problem is that software maintenance

and adaptation is still undervalued in traditional soft-

ware development processes.

The only way to overcome or avoid the negative

effects of software aging is by placing change in the

center of the software development process. Without

explicit and immediate support for change and evolu-

tion, software systems become unnecessarily complex

and unreliable. The negative influence of this situation

is rapidly increasing due to technological and business

innovations, changes in legislation and continuing in-

ternationalisation. One must therefore advance beyond

a restricted focus on software development, and pro-

vide better and more support for software adaptation

and evolution.

Such support must be addressed at multiple levels

of research and development. It requires: (i) basic re-

search on formalisms and theories to analyse, under-

stand, manage and control software change; (ii) the de-

velopment of models, languages, tools, methods, tech-

niques and heuristics to provide explicit support for

software change; (iii) more real-world validation and

case studies on large, long-lived, and highly complex

industrial software systems.

2 Classification of challenges

In April 2005, a workshop on Challenges on Soft-

ware Evolution (ChaSE 2005) was jointly organised by

the ESF Research Network RELEASE (Research Links

to Explore and Advance Software Evolution) and the

ERCIM Working Group on Software Evolution. The

workshop attracted 37 participants originating from 10

different European countries and Canada. Its goal was

1



to identify the most important challenges on software

evolution, and to come up with a list of important fu-

ture research topics in the domain of software evolu-

tion. This paper lists and explains the most important

challenges in software evolution that were identified

during the workshop.1

To increase the readability of this paper, the chal-

lenges are classified according to a number of more

or less orthogonal dimensions2. Table 1 gives a com-

prehensive overview of all these challenges using this

classification. A letter of the alphabet is used to iden-

tify each challenge.

Time horizon. Is a short, medium or long-term effort

required in order to achieve results?

Research target. Is the challenge related to the man-

agement, control, support, understanding or

analysis of software evolution?

Stakeholders. Who is interested in, involved in, or

affected by the challenge? Given the diversity

of challenges, many different people can be in-

volved: managers, developers, designers, end-

users, teachers, students, researchers, and so on.

Type of artifact under study. Which type of arti-

fact(s) does the challenge address? Artifacts

should be interpreted in the broad sense here

since they can refer to formalisms, tools, tech-

niques, models, metamodels, languages, pro-

grams, processes, systems, and many more.

Type of support needed. Which type of support is

needed in order to address the challenge? Al-

though this question is completely different from

the previous one, the list of possible answers is

the same. One can provide formal support, tool

support, language support, process support and

so on in order to address software evolution.

1Because the ChaSE 2005 participants and the RELEASE net-

work members only reflect a subset of the entire research commu-

nity on software evolution, we may have missed some important

challenges.
2This classification works well for the purpose of this paper,

but other classifications may be used instead to structure the list of

challenges.

3 Enumeration of challenges

A. Preserving and improving software quality

The phenomenon of software aging, coined by

Dave Parnas [28], and the laws of software evolution

postulated by Manny Lehman [22] agree that, with-

out active countermeasures, the quality of a software

system gradually degrades as the system evolves. In

practice, the reason for this gradual decrease of qual-

ity (such as reliability, availability and performance of

software systems) is for a large part caused by external

factors such as economic pressure.3 The negative ef-

fects of software aging can and will have a significant

economic and social impact in all sectors of industry.

Therefore it is crucial to develop tools and techniques

to reverse or avoid the intrinsic problems of software

aging. Hence, the challenge is to provide tools and

techniques that preserve or even improve the quality

characteristics of a software system, whatever its size

and complexity.

B. A common software evolution platform

A major difficulty when trying to address the previ-

ous challenge, has to do with scalability. The need is

to develop solutions that are applicable to long-lived,

industrial-size software systems. Many of the tools

that must be built to manage the complexity intrin-

sic to software evolution are too complex to be built

by single research groups or individuals. Therefore, a

closely related challenge, raised by Michele Lanza, is

to develop and support a common application frame-

work for doing joint software evolution research. This

challenge raises issues such as tool integration and

interoperability, common exchange formats and stan-

dards, and so on. As an example of such a shared

framework that served as a common software evolu-

tion research vehicle within the RELEASE network is

the Moose reverse engineering environment [8]. A

concrete goal could be to try and extend this frame-

work with tools to analyse, manage and control soft-

ware evolution activities.

Another candidate that may serve as a common plat-

form is Eclipse. It has the advantage of visibility and

3Identifying these pressures, and determing measures to eval-

uate, respond to and control them represents, in itself, a major

challenge.

2



industrial acceptance and also permits reuse of certain

components (e.g., Java parsing). An important disad-

vantage is its lack of control over releases. One re-

searcher mentioned that he had to keep several ver-

sions of the platform because not all plug-ins work on

all versions. There is also the issue of exploratory pro-

totyping, which is better supported by environments

like Smalltalk. Both options should probably co-exist,

although this of course implies duplication of effort.

C. Supporting model evolution

Although support for software evolution in develop-

ment tools can still be advanced in many ways, there

are already a number of success stories. One of them

is program refactoring, introduced by John Opdyke in

the early 1990s as a way to improve the structure of

object-oriented programs without affecting their de-

sired external behaviour [27]. Since the publication

of Martin Fowler’s book on refactoring [9], this pro-

gram transformation technique has gained widespread

attention [26]. Today, refactoring support has been in-

tegrated in many of the popular software development

environments.

Unfortunately, it is observed that almost all exist-

ing tool support for software evolution is primarily

targeted to programs (i.e., source code). Design and

modelling phases (supported by UML CASE tools,

for example) typically provide much less support for

software evolution. Taking the example of refactor-

ing, we didn’t find any modelling tool providing ade-

quate means for refactoring design models. Research

in model refactoring is just starting to emerge [31, 35].

This can be generalised into the following chal-

lenge: Software evolution techniques should be raised

to a higher level of abstraction, in order to accomo-

date not only evolution of programs, but also evolution

of higher-level artifacts such as analysis and design

models, software architectures, requirement specifica-

tions, and so on.

Since the advent of model-driven software en-

gineering [24], this challenge becomes increasingly

more relevant, and techniques and tools for dealing

with model evolution are urgently needed.

D. Supporting co­evolution

A challenge that is related to the previous one is

the necessity to achieve co-evolution between different

types of software artifacts or different representations

of them. Modification in one representation should al-

ways be reflected by corresponding changes in other

related ones to ensure consistency of all involved soft-

ware artifacts.

To give but a few examples, support for co-

evolution is needed between:

• programs (source code) and design models [6, 34]

or software architectures

• structural and behavioural design models. This

is for example the case with UML, where dif-

ferent models are used to express structure (e.g.,

class diagrams) and behaviour (e.g., sequence di-

agrams and state-transition diagrams)

• software (at whatever level of abstraction) and the

languages in which it is developed. Whenever

a new version of the programming, modeling or

specification language is provided, it is quite pos-

sible that programs that worked perfectly in a pre-

vious version of the language fail to function in

the new version.

• software and its business, organisational, opera-

tional and development environment. Changes in

each of these environments will impact the soft-

ware and conversely. This feedback loop is well-

known in software evolution research [20, 32].

• software and its developer or end-user documen-

tation

To provide better support for co-evolution, it is

worthwhile to take a look at other domains of science

that can hopefully provide better insights in the mat-

ter. Linguistic theory and the history of natural lan-

guage evolution may increase understanding in how

software languages evolve. In order to better under-

stand software co-evolution, it could be interesting to

look at co-evolution in biology. In fact, the term co-

evolution originated in biology, and is borrowed by

computer scientists to describe a similar situation in

software development.

3



E. Formal support for evolution

According to Wordsworth [33], “a formal method of

software development is a process for developing soft-

ware that exploits the power of mathematical notation

and mathematical proofs.” For several decades, formal

methods have been advocated as a means to improve

software development, with an emphasis on software

specification, verification and validation. Neverthe-

less, as Robert Glass observes in his Practical Pro-

grammer column [11]: “Formal methods have not,

during that extended period of time (well over 30 years

by now), had any significant impact on the practice of

software engineering.” He points out a major cause

of this problem: “What in fact most practicioners tell

me about specifications is that the needs of the cus-

tomers evolve over time, as the customer comes to

learn more about solution possibilities, and that what

is really needed is not a rigorous/rigid specification,

but one that encompasses the problem evolution that

inevitably occurs.”

Unfortunately, existing formal methods provide

very poor support (or even none at all) for evolv-

ing specifications. Let us take the example of formal

verification, which aims to prove mathematically that

the implementation of a software system satisfies its

specification. Specialists that were consulted in rela-

tion to this question agreed that even today there are

no truly incremental verification approaches available.

With current verification tools, even if small localised

changes are made to the specification of a program, the

entire program needs to be verified again. This makes

the cost of verification proportional to the size of the

system. What is desired is that it is proportional to the

size of the units of change.

This leads to the next challenge in software evolu-

tion: In order to become accepted as practical tools for

software developers, formal methods need to embrace

change and evolution as an essential fact of life.

Besides the need for existing formal methods to

provide more explicit support for software evolution,

there is also a clear need for new formalisms to sup-

port activities specific to software evolution. As an il-

lustrative example, reconsider the activity of software

refactoring. Formal techniques are clearly needed in

order to ensure one of the basic properties of refac-

torings, namely that they preserve certain behavioural

properties of the software [25].

F. Evolution as a language construct

As a very interesting research direction, program-

ming (or even modelling) languages should provide

more direct and explicit support for software evolu-

tion. The idea would be to treat the notion of change

as a first-class entity in the language. This is likely to

cause a programming paradigm shift similar to the one

that was encountered with the introduction of object-

oriented programming. Indeed, to continue the anal-

ogy, one of the reasons why object-oriented program-

ming became so popular is because it integrated the

notion of reuse in programming languages as a first-

class entity. The mechanisms of inheritance, late bind-

ing and polymorphism allow a subclass to reuse and

refine parts of its parent classes.

During the workshop it was pointed out that explicit

support for software evolution is considerably easier

to integrate into dynamically typed languages that of-

fer full reflective capabilities [13]. Classboxes [2]

are also a new module system that controls the scope

of changes in an application. Changes can be intro-

duced in a system without impacting existing clients,

changes are only visible to new clients desiring to see

the changes.

G. Support for multi­language systems

Mohammad El-Ramly pointed out that another cru-

cial, and largely neglected, aspect of software evolu-

tion research is the need to deal with multiple lan-

guages. Indeed, in large industrial software sys-

tems it is often the case that multiple programming

languages are used. More than three languages is

the rule rather than the exception. Therefore, soft-

ware evolution techniques must provide more and bet-

ter support for multi-language systems. One way

to tackle this problem is to provide techniques that

are as language-parametric (or language-generic, or

language-independent) as possible [15, 30].

Note that this challenge is becoming increasingly

more relevant as the number of languages needed

or used in software systems is increasing. Pro-

gramming languages, modelling languages, specifi-

cation languages, XML-based languages for data in-

4



terchange, domain-specific languages, business mod-

elling languages, and many more are becoming ever

more widely used.

H. Integrating change in the software life­cycle

It is important to investigate how the notion of

software change can be integrated into the conven-

tional software development process models. A typ-

ical way to include support for change into a more

traditional software process models is by resorting

to an iterative and incremental software development

process. So-called agile software processes (includ-

ing the well-known extreme programming method) al-

ready acknowledge and embrace change as an essen-

tial fact of life [1]. Other processes, such as the staged

life-cycle model, have been proposed as an alternative

that provides explicit support for software change and

software evolution [29].

I. Increasing managerial awareness

Besides better understanding of, and better support

for, evolutionary process models, there is also a need

to increase awareness of executives and project man-

agers of the importance and inevitability of software

evolution. Training is needed to convince them of the

importance of these issues, and to teach them to plan,

organise, implement and control software projects in

order to better cope with software changes.

We suggest to explain the importance of software

evolution through the SimCity metaphor. This com-

puter game simulates a city and is a typical example of

a highly complex dynamic system where continuous

corrective actions of the “manager” are needed in or-

der to avoid deteriorating the “quality” of the city and,

ultimately, its destruction or desertion.

J. Need for better versioning systems

Although support for software evolution in software

development tools can still be improved in many ways,

there are already a number of success stories. One of

them is version management. Version control is a cru-

cial aspect in software evolution, especially in a col-

laborative and distributed setting, where different soft-

ware developers can (and will) modify the program,

unaware of other changes that are being made in par-

allel. A wealth of version control tools is available,

commercial as well as freeware. The most popular one

is probably CVS (www.cvs.org).

Nevertheless, for the purpose of analysing the evo-

lution of software systems, these version repositories

clearly fall short because they do not store enough in-

formation about the evolution. Therefore, the chal-

lenge is to develop new ways of recording the evolu-

tion of software that overcome the shortcomings of the

current state-of-the-art tools.

When addressing this challenge, it is necessary to

communicate and coordinate with the research com-

munity on Software Configuration Management, that

is trying to address very related issues.

K. Integrating data from various sources

One promising approach to reason about the evo-

lution history of software systems, is the integration

of data from a wide variety of sources: bug reports,

change requests, source code, configuration informa-

tion, versioning repositories, execution traces, error

logs, documentation, and so on. Besides all of the

above information, it is equally important to take into

account information about the software process dur-

ing the analysis of change histories: the software team

(size, stability, experience, ...), individual developers

(age, experience, ...), the project structure (hierarchi-

cal, surgical, flat, ...), the process model (waterfall, spi-

ral, agile, ...), the type of project (e.g., open source),

and so on. Indeed, Conway’s law [4] postulates that

the architecture of a software system mirrors the struc-

ture of the team that developed it (and, more generally,

the structure of a system tends to mirror the structure

of the group producing it).

The main challenge here is to find out how these dif-

ferent kinds of data can be integrated, and how support

for this integration can be provided.

Having a flexible and open-meta model as the one of

the Moose reengineering environment supporting en-

tity annotations [8] and version selection should be re-

garded as a first step in that direction [7, 10].

L. Analysing huge amounts of data

Given the sheer amount of data that needs to be pro-

cessed during the above analysis, new techniques and

5



tools are needed to facilitate manipulation of large

quantities of data in a timely manner. In order to

achieve this, one can probably borrow from related ar-

eas of computer science that deal with similar prob-

lems. For example, one may consider using data min-

ing techniques as used by the database community, or

techniques related to DNA sequence analysis as used

in bio-informatics.

These techniques could be implemented as an ex-

tension of current tools such as CodeCrawler [16, 17]

that already supports the management of large data

sets via polymetric views (i.e., views enriched with se-

mantical information). Another attempt that has been

made to address this challenge is a technique that sug-

gests to the developer changes to be performed based

on the co-occurrence of past changes [36].

M. Empirical research

In the context of software evolution there is a need

for more empirical research [14]. Among others, com-

parative studies are urgently needed to measure the im-

pact of

• process models: in an industrial setting, which

software process is most appropriate for which

type of evolution activity?

• tools: to which extent does the use of a tool facil-

itate the execution of a particular evolution activ-

ity compared to the manual execution of the same

activity; how does one compare the performance

of different tools to carry out the same evolution

activity?

• languages: what is the impact of the program-

ming language on the ease with which certain

evolution activities can be performed? For exam-

ple, dynamically typed languages with reflective

capabilities seem to be more suited that other lan-

guages to support the task of runtime evolution.

• people: to which extent does the experience,

background and training of a software developer

contribute to his ability to carry out certain soft-

ware evolution activities?

In order to facilitate such comparative studies, an

initial taxonomy for software evolution has been pro-

posed in [3], but further validation and elaboration of

this taxonomy is needed.

In order to obtain statistically significant results,

a sufficiently large set of representative examples is

needed. This is not always easy in an industrial setting,

since it is very difficult to obtain data on the evolution

of industrial software systems over a long time span

(several years).

N. Need for improved predictive models

Predictive models are crucial for managers in order

to assess the software evolution process. These mod-

els are needed for predicting a variety of things: where

the software evolves, how it will evolve, the effort and

time that is required to make a change, and so on. Un-

fortunately, existing predictive models, typically based

on software metrics, are far from adequate.

To counter this problem, Miguel Lopez suggested

to look at metrology research [23], the science of mea-

surement, which explicitly takes into account the no-

tion of uncertainty that is also inherent in software evo-

lution [19]. Girba’s “Yesterday’s Weather” measure-

ment [10] is another step in the same direction. This

measurement characterizes the climate of changes in a

system and helps assessing the trust that may be placed

in the continuity of changes (based on the assump-

tion that assets that have changed in the recent past

are more likely to change in the near future).

O. Evolution benchmark

In order to adequately test, validate, and compare

the formalisms, techniques, methods, and tools to be

developed for the other challenges, it is useful to come

up with, and reach a consensus on, a common set

of evolution benchmarks and case studies which, to-

gether, are representative for the kinds of problems

needing to be studied. Given the amount of long-lived,

industrial-size, open-source projects available today, it

should be feasible to come up with such a benchmark

[5].

P. Teaching software evolution

One of the best ways to place change and evolu-

tion in the center of the development process is to

6



educate the future generations of software engineers.

However, classroom programming exercises usually

are well specified, have a single release, and are small

in size. Capstone projects are more amenable to con-

vey the need for dealing with software evolution, but

on the one hand they are often supervised in a rather

loose mode, and on the other hand it is preferable to

prepare students in earlier courses with the concepts

and tools they need to handle changes in their project.

Therefore, a big challenge for everyone involved in

teaching concerns how to integrate the ideas, formal-

ism, techniques and tools for software evolution into

our computer science curriculum in a meaningful way.

As a community, we need to decide upon what we

want to teach, how we want to teach it, and provide

the necessary course material for it.

Q. A theory of software evolution

It seems that often researchers either do empirical

investigations into the evolution of a given system over

its life-time, or propose tools and techniques to facili-

tate evolution. But it is not always clear what one gets

from all the collected data nor if the tools actually are

informed by typical evolution patterns. One needs to

study and compare evolution activities before and after

the installation of some tool supporting such activities.

To undertake such studies, it is necessary to develop

new theories and mathematical models to increase un-

derstanding of software evolution, and to invest in re-

search that tries to bridge the gap between the what

(i.e., understanding) of software evolution and the how

(i.e., control and support) of software evolution. This

seems to be a logical continuation of the research that

was initiated by Lehman and Ramil in [18], and their

theory of software evolution that was proposed in [21].

Nevertheless, this theory still remains to be formalised

and enriched. For example, Lehman suggested that

many software failures are due to changes that impact

on the initial (often implicit) assumptions, and there-

fore a theory of software evolution must take assump-

tions into account.

R. Post­deployment runtime evolution

Maintenance and evolution of continuously running

systems have become a major topic in many areas, in-

cluding embedded systems, mobile devices, and ser-

vice infrastructures. There is an urgent need for proper

support of runtime adaptations of systems while they

are running, without the need to pause them, or even

to shut them down. For that, further steps are needed

to make the deployment, application, and exploration

of dynamic adaptations more comprehensible.

Dynamic Service Adaptation (DSA) is a promis-

ing approach trying to address these issues by provid-

ing appropriate means to introspect and navigate basic

computational structures and to adjust them accord-

ingly [12, 13].

While evolution support at runtime via dynamic

adaptation addresses many of the requirements stated

above, it does not address program or system compre-

hension. On the contrary, systems that are changed

dynamically are harder to understand using contem-

porary approaches. Proper tool support is needed for

the exploration and manipulation of both basic and en-

hanced runtime structures as well as change events and

their history.

4 Final remarks

This paper proposed, classified and explained 18 es-

sential challenges in the software evolution that need

to be addressed in the future. The challenges are

not unrelated, and some activities can address more

than one challenge simultaneously, making it easier

to achieve the goal of proper understanding and sup-

port for software evolution. For example, language-

independent techniques may help overcome chal-

lenges C and G, and studies on evolution-supporting

tools contribute to challenges M and Q.

The proposed list of challenges is not the opinion

of a single person, but the result of a concentrated ef-

fort by the RELEASE research network (counting over

20 European researchers active in software evolution)

to come up with a list of future research avenues in

software evolution. As the output of the ChaSE 2005

workshop, these challenges provide an informed sum-

mary of the principle current challenges that face the

software engineering community in general and the

software evolution community in particular. The sug-

gested list of challenges provides a framework for fu-

ture work in software evolution research.

7



Acknowledgements

This research was financially supported by the Eu-

ropean Science Foundation through the Research Net-

work RELEASE, and by the European Research Con-

sortium on Informatics and Mathematics through the

Working Group on Software Evolution. We express

our sincere gratitude to everyone who actively partici-

pated in the joint ESF-ERCIM ChaSE 2005 workshop,

for contributing so many ideas that were integrated in

this paper.

References

[1] K. Beck. Extreme Programming Explained: Em-

brace Change. Addison Wesley, 2000.

[2] A. Bergel, S. Ducasse, O. Nierstrasz, and

R. Wuyts. Classboxes: Controlling visibility of

class extensions. Computer Languages, Systems

and Structures, 2005. To appear.

[3] J. Buckley, T. Mens, M. Zenger, A. Rashid, and

Günter Kniesel. Towards a taxonomy of software

change. Journal on Software Maintenance and

Evolution, 2005. To appear.

[4] M. Conway. How do committees invent? Data-

mation Journal, pages 28–31, April 1968.

[5] S. Demeyer, T. Mens, and M. Wermelinger. To-

wards a software evolution benchmark. In Proc.

Int’l Workshop on Principles of Software Evolu-

tion, September 2001.

[6] T. D’Hondt, K. De Volder, K. Mens, and

R. Wuyts. Co-evolution of object-oriented design

and implementation. In Proc. Int’l Symp. Soft-

ware Architectures and Component Technology.

Kluwer Academic Publishers, January 2000.

[7] S. Ducasse, T. Gı̂rba, and J.-M. Favre. Modeling

software evolution by treating history as a first

class entity. In Workshop on Software Evolution

Through Transformation (SETra 2004), pages

71–82, 2004.

[8] S. Ducasse, T. Gı̂rba, M. Lanza, and S. De-

meyer. Moose: a Collaborative and Extensible

Reengineering Environment. In Tools for Soft-

ware Maintenance and Reengineering, RCOST

/ Software Technology Series, pages 55 – 71.

Franco Angeli, 2005.

[9] M. Fowler. Refactoring: Improving the Design

of Existing Code. Addison-Wesley, 1999.

[10] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s

weather: Guiding early reverse engineering ef-

forts by summarizing the evolution of changes.

In Proc. Int’l Conf. Software Maintenance, pages

40–49. IEEE Computer Society Press, 2004.

[11] R. L. Glass. The mystery of formal methods dis-

use. Communications of the ACM, 47(8):15–17,

2004.

[12] R. Hirschfeld and K. Kawamura. Dynamic ser-

vice adaptation. In Proc. Workshop on Dis-

tributed Auto-adaptive and Reconfigurable Sys-

tems (DARES), pages 290–297. IEEE Press,

2004.

[13] R. Hirschfeld, K. Kawamura, and H. Berndt. Dy-

namic service adaptation for runtime system ex-

tensions. In Lecture Notes in Computer Science,

volume 2928, pages 225–238. Springer, 2004.

[14] C. Kemerer and S. Slaughter. An empirical ap-

proach to studying software evolution. IEEE

Trans. Software Engineering, 25(4):493–509,

July/August 1999.

[15] R. Lämmel and W. Lohmann. Format Evolution.

In Proc. Int’l Conf. Reverse Engineering for In-

formation Systems, volume 155, pages 113–134.

OCG, 2001.

[16] M. Lanza and S. Ducasse. Polymetric views —

a lightweight visual approach to reverse engi-

neering. Transactions on Software Engineering,

29(9):782–795, Sept. 2003.

[17] M. Lanza and S. Ducasse. Codecrawler - an

extensible and language independent 2d and 3d

software visualization tool. In Tools for Software

Maintenance and Reengineering, RCOST / Soft-

ware Technology Series, pages 74 – 94. Franco

Angeli, 2005.

8



[18] M. Lehman, J. F. Ramil, and G. Kahen. Evolu-

tion as a noun and evolution as a verb. In Proc.

SOCE 2000 Workshop on Software and Organi-

sation Co-evolution, July 2000.

[19] M. M. Lehman. Uncertainty in computer ap-

plication and its control through the engineering

of software. Journal of Software Maintenance,

1(1):3–27, September 1989.

[20] M. M. Lehman, D. E. Perry, and J. F. Ramil. On

evidence supporting the feast hypothesis and the

laws of software evolution. In Proc. Int’l Symp.

Software Metrics. IEEE Computer Society Press,

1998.

[21] M. M. Lehman and J. F. Ramil. An approach to

a theory of software evolution. In Proc. 4th Int’l

Workshop on Principles of Software Evolution,

pages 70–74. ACM Press, 2001.

[22] M. M. Lehman, J. F. Ramil, P. Wernick, D. E.

Perry, and W. M. Turski. Metrics and laws of

software evolution - the nineties view. In Proc.

Int’l Symp. Software Metrics, pages 20–32. IEEE

Computer Society Press, 1997.

[23] M. Lopez, S. Alexandre, V. Paulus, and

G. Seront. On the application of some

metrology concepts to internal software mea-

surement. In Workshop on Quantitative Ap-

proaches in Object-Oriented Software Engineer-

ing (QAOOSE 2004), 2004.

[24] S. J. Mellor, A. N. Clark, and T. Futagami.

Model-driven development: Guest editor’s in-

troduction. IEEE Software, 20(5), Septem-

ber/October 2003.

[25] T. Mens, S. Demeyer, and D. Janssens. Formal-

ising behaviour preserving program transforma-

tions. In Proc. Int’l Conf. Graph Transformation,

volume 2505 of Lecture Notes in Computer Sci-

ence, pages 286–301. Springer-Verlag, 2002.

[26] T. Mens and T. Tourwe. A survey of software

refactoring. IEEE Transactions on Software En-

gineering, 30(2):126–162, February 2004.

[27] W. F. Opdyke. Refactoring: A Program Restruc-

turing Aid in Designing Object-Oriented Appli-

cation Frameworks. PhD thesis, University of

Illinois at Urbana-Champaign, 1992.

[28] D. L. Parnas. Software aging. In Proc. Int’l

Conf. Software Engineering, pages 279–287.

IEEE Computer Society Press, 1994.

[29] V. T. Rajlich and K. H. Bennett. A staged model

for the software lifecycle. IEEE Computer, pages

66–71, July 2000.

[30] S. Tichelaar, Stéphane Ducasse, S. Demeyer,

and O. Nierstrasz. A meta-model for language-

independent refactoring. In Proc. Int’l Symp.

Principles of Software Evolution, pages 157–

169. IEEE Computer Society Press, 2000.

[31] R. Van Der Straeten, V. Jonckers, and T. Mens.

Supporting model refactorings through be-

haviour inheritance consistencies. In Proc. Int’l

Conf. UML 2004, volume 3273 of Lecture Notes

in Computer Science, pages 305–319. Springer-

Verlag, October 2004.

[32] L. Williams and A. Cockburn. Agile software

development: It’s about feedback and change.

IEEE Computer, 36(6):39–43, June 2003.

[33] J. B. Wordsworth. Getting the best from formal

methods. Information and Software Technology,

41(14):1027–1032, November 1999.

[34] R. Wuyts. A Logic Meta-Programming Approach

to Support the Co-Evolution of Object-Oriented

Design and Implementation. PhD thesis, Vrije

Universiteit Brussel, January 2001.

[35] J. Zhang, Y. Lin, and J. Gray. Generic and

domain-specific model refactoring using a model

transformation engine. In Model-driven Software

Development - Research and Practice in Soft-

ware Engineering. Springer Verlag, 2005.

[36] T. Zimmermann, P. Weisgerber, S. Diehl, and

A. Zeller. Mining version histories to guide soft-

ware changes. In Proc. Int’ Conf. Software En-

gineering, pages 563–572. IEEE Computer Soci-

ety, 2004.

9



Research target Time horizon Studied artifact Support type Stakeholder

A preserving

and improving

quality

long software system tools, techniques, for-

malisms

developer, project

manager, end user

B analysing,

managing,

controlling

medium programs common appl. frame-

work, exchange for-

mats, interoperability

standards

researcher

C controlling,

supporting

short models tools, techniques, for-

malisms

software engineer

D controlling,

supporting

medium any pair of related arti-

facts

tools software engineer

E all types of re-

search

medium-long formalisms formalisms researcher

F controlling,

supporting

short-

medium

languages languages, programs language designer,

tool builder, re-

searcher

G controlling,

supporting

medium-long languages, software

systems

tools, standards tool builder

H managing, con-

trolling

medium software process mod-

els

software process mod-

els

manager, software

engineer

I motivating short managers metaphors executives, man-

agers

J analysing short version control tools tools tool builder

K analysing medium all information useful to

get insight in a software

system’s evolution

statistical models, em-

pirical studies

researcher

L analysing medium-long release histories of

long-lived, large, com-

plex industrial software

systems

techniques, tools researcher

M analysing long every kind of evolving

artifact of a software

system

empirical studies researcher

N analysing, pre-

dicting

short-

medium

software systems predictive models,

measures, metrics

researcher

O understanding,

comparing

medium evolving software sys-

tems

benchmarks, exem-

plars

researcher

P teaching short formalisms, techniques,

tools, theories

course material teachers, students

Q understanding,

supporting

medium-long everything everything researcher

R controlling,

supporting

short-

medium

languages, execution

platforms

languages, execution

platforms, programs

tool builder, end

user

Table 1. Classification of software evolution challenges

10


