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ABSTRACT 

Open source software is often considered to be secure. One factor 

in this confidence in the security of open source software lies in 

leveraging large developer communities to find vulnerabilities in 

the code. Eric Raymond declares Linus’ Law “Given enough 

eyeballs, all bugs are shallow.” Does Linus’ Law hold up ad 

infinitum?  Or, can the multitude of developers become “too many 

cooks in the kitchen”, causing the system’s security to suffer as a 

result? In this study, we examine the security of an open source 

project in the context of developer collaboration. By analyzing 

version control logs, we quantified notions of Linus’ Law as well 

as the “too many cooks in the kitchen” viewpoint into developer 

activity metrics. We performed an empirical case study by 

examining correlations between the known security vulnerabilities 

in the open source Red Hat Enterprise Linux 4 kernel and 

developer activity metrics. Files developed by otherwise-

independent developer groups were more likely to have a 

vulnerability, supporting Linus’ Law. However, files with changes 

from nine or more developers were 16 times more likely to have a 

vulnerability than files changed by fewer than nine developers, 

indicating that many developers changing code may have a 

detrimental effect on the system’s security.  

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics – process metrics, 

product metrics.  

General Terms 

Measurement, Security, Human Factors 

Keywords 

Linus’ Law, developer network, contribution network, 

vulnerability, metric  

1. INTRODUCTION 
Open source software is often considered to be secure [7, 23]. 

One factor in this confidence in the security of open source 

software lies in leveraging large developer communities to find 

vulnerabilities in the code. In his essay, The Cathedral and the 

Bazaar [19], Eric Raymond declares Linus’ Law1 as 

“Given a large enough beta-tester and co-developer base, 

almost every problem will be characterized quickly and the 

fix obvious to someone.” [19] 

Raymond states more colloquially, “Given enough eyeballs, all 

bugs are shallow”. According to Raymond’s reasoning, diversity 

of developer perspectives ought to be embraced, not avoided. 

Therefore, more developers mean more vulnerabilities found and 

fixed, or even prevented.  

But does Linus’ Law hold up ad infinitum? Can a project have too 

many developers, resulting in insecure software? 

One opposing force to Linus’ Law might be the notion of “too 

many cooks in the kitchen”, or what has been called an unfocused 

contribution [17] in developer collaboration. Consider having 

many people make a meal: without enough coordination and 

communication, ingredients get skipped, added twice, or 

significant steps of the recipe are left out. The meal can suffer as a 

result of too many people. Likewise, perhaps the security of a 

software project can suffer as a result of unfocused contributions 

by too many developers.  

An analysis of the structure of open source developer 

collaboration can help the community understand how this 

structure impacts the prevention or the injection of security 

vulnerabilities. Our research objective, then, is to reduce security 

vulnerabilities by providing actionable insight into the structural 

nature of developer collaboration in open source software.  

We performed an empirical analysis by quantifying developer 

collaboration and unfocused contributions into developer activity 

metrics. We examine the statistical correlation between the known 

security vulnerabilities of the open source Red Hat Enterprise 

Linux 4 kernel and developer activity metrics. We used version 

control change logs to calculate four developer activity metrics. 

Forming social networks based on who worked on which file, we 

use network analysis to form metrics of developer groups and 

unfocused contributions. 

The rest of this paper is organized as follows. Section 2 covers 

background. Sections 3 and 4 describe the case study, and 

derivation of the metrics themselves. Section 5 presents the results 

of the case study and a discussion. Sections 6, 7, and 8 discuss 

limitations, related work, and summarize the study. 

                                                                 

1 In this context, the word “law” is used to mean a repeated 

observation [4]. 
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2. BACKGROUND 
Our empirical analysis involves quantifying measures of social 

networks and binary classification. In this section, we provide 

background with regard to network analysis and binary 

classification.  

2.1 Network Analysis  
In this paper, we use network analysis to quantify how developers 

collaborate on projects. We use several terms from network 

analysis [2] and define their meaning with respect to developer 

groups and unfocused contributions in Section 4. In this section, 

we define terms used in both analyses of developer groups and 

unfocused contributions. 

Network analysis is the study of characterizing and quantifying 

network structures, represented by graphs [2]. In network 

analysis, vertices of a graph are called nodes, and edges are called 

connections. A sequence of non-repeating, adjacent nodes is a 

path, and a shortest path between two nodes is called a geodesic 

path (note that geodesic paths are not necessarily unique).  In the 

case of weighted edges, the geodesic path is the path of minimum 

weight. Informally, a geodesic path is the “social distance” from 

one node to another.  

Centrality metrics are used to quantify the location of a node or 

edge relative to the rest of the network. In this study, we use the 

betweenness metric to quantify the centrality of a node in a 

network. The betweenness [2] of node n is defined as the number 

of geodesic paths that include n. Similarly, the edge betweenness 

of edge e is defined as the number of geodesic paths which pass 

through e. A high betweenness means a high centrality.  

2.2 Binary Classification 
To study the security of a system, we use a nominal metric defined 

over each file: whether or not a file is vulnerable or neutral. We 

consider a file to be vulnerable if the file was found to have at 

least one vulnerability that required a patch after release. A 

vulnerability is “an instance of a [fault] in the specification, 

development,  or  configuration  of  software  such  that  its  

execution  can  violate  an  [implicit  or explicit] security policy”. 

[8]. We consider a file with no known vulnerabilities to be 

“neutral”. 

Since our security metric is nominal, our analysis is based on 

binary classification. A binary classifier can make two possible 

types of errors: false positives (FP) and false negatives (FN). A FP 

is the classification of a neutral file as vulnerable, and a FN is the 

classification of a vulnerable file as neutral. Likewise, a correctly 

classified vulnerable file is a true positive (TP), and a correctly 

classified neutral file is a true negative (TN). For evaluating 

binary classification, we use recall, inspection rate, and area under 

the Receiver Operating Characteristic (ROC) curve.  

 Recall (R) is defined as the proportion of vulnerabilities 

found: R=TP/(TP+FN).  

 Inspection Rate (IR) is the proportion of total files that were 

classified as vulnerable: IR=(TP+FP) /(TP+TN+FP+FN). 

 Precision (P) is defined as the proportion of correctly 

predicted vulnerable files: P=TP/(TP+FP). 

 Area under the ROC Curve (AUC): represents the 

proportion of the time that a classifier ranks a vulnerable file 

higher than a neutral file. AUC is calculated by integrating a 

ROC curve, usually by a summation approximation [24]. 

Optimally, IR is minimized, but Precision, Recall, and AUC are 

maximized. For example, an IR=10% and R=50% means that the 

classifier found 50% of the known vulnerabilities in just 10% of 

the files. A classifier with P=25% means that, of the files 

classified as vulnerable, 25% were actually vulnerable. A 

classifier with an AUC of 75% means that, given one randomly-

chosen neutral and vulnerable file, the classifier would choose the 

correct file 75% of the time.  

3. CASE STUDY: LINUX KERNEL 
We performed a case study on the Linux kernel2 as it was 

distributed in the Red Hat Enterprise Linux 4 (RHEL4) operating 

system3. A summary of the RHEL4 kernel is found in Table 1. 

The entire project is over three million lines of C and assembly 

code. The security data is a labeling of whether or not a source 

code file was patched with a post-release vulnerability 

(“vulnerable” or “neutral”). The developer activity metrics were 

gathered from version control change logs. 

 

Gathering the security data involved tracing through the 

development artifacts related to each vulnerability reported in the 

Linux kernel. When members of the open source community 

become aware of a possible security vulnerability, members of the 

Red Hat Security Response (RHSR) team perform the following 

actions.  

1. Create a defect report in the Red Hat Bugzilla database4. The 

majority of the subsequent artifacts can be found or linked to 

the new defect report. 

2. Confirm the existence of the vulnerability in both the current 

build of the kernel (also called the upstream version), and 

the previous release of the kernel (also called a backport).  

3. Form patches to fix the problem as necessary. Sometimes an 

upstream patch would differ from the backport patch since 

the kernel is always evolving. 

4. Determine if the vulnerability is a regression (a vulnerability 

introduced by a patch after release).  

5. Register the vulnerability in the National Vulnerability 

Database (NVD) and the next Red Hat Security Advisory 

                                                                 

2 http://kernel.org/ 
3 http://www.redhat.com/rhel/ 
4 http://bugzilla.redhat.com/ 

Table 1: Summary of the RHEL4 Linux Kernel 

Total number of files 14,286 

Number of files changed 

(total studied) 

10,454  

Percentage of files changed 73% 

Number of developers 557 

Development time 15 months 

Number of vulnerable files 205 

Percentage of changed files 

with vulnerabilities 

1.96% 

Total number of commits 9,946 
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(RHSA). The RHSR Team reports NVD and RHSA data on 

their security metrics website5.  

We collected our security data from the Bugzilla database, the 

NVD, and the RHSR security metrics database. Since each 

vulnerability was handled slightly differently, we examined each 

defect report manually to ensure that the backport patch was, in 

fact, needed. Since we are only interested in vulnerabilities that 

existed at the time of release, we did not include regressions in 

our data set. For vulnerabilities that did not have all of the 

relevant artifacts (e.g. defect reports, backport patches), we 

consulted the director of the RHSR team to correct the data. Our 

data set is a comprehensive list of reported, non-regression 

vulnerabilities from RHEL4’s release in February 2005 through 

July 2008. We found 205 files to be vulnerable (i.e. patched post-

release because of at least one vulnerability), which was 1.96% of 

the 10,454 files we studied. 

For the version control data from which developer activity metrics 

were computed, we used the Linux kernel source repository6. The 

RHEL4 operating system is based on kernel version 2.6.9, so we 

used all of the version control data from kernel version 2.6.0 to 

2.6.9, which was approximately 15 months of development and 

maintenance. We included in our analysis source code files that 

had the following file name extension: .c, .S, and .h. The version 

control data contains records of 557 developers and 9,946 

commits over 10,454 source files. Most of the kernel files 

changed (73%) during those 15 months, including every 

vulnerable file. Our study focused on the files that were changed 

15 months prior to release.  

4. DEVELOPER ACTIVITY METRICS 
In our case study, we used the version control logs to analyze 

development activity. As a project progresses, developers make 

changes to various parts of the system. With many changes and 

many developers, changes to files tend to overlap: multiple 

developers may end up working on the same files around the same 

time, indicating that they share a common contribution, or a 

connection, with another developer. As a result of which files they 

contribute to, some developers end up connected to many other 

highly-connected developers, some end up in groups (“clusters”) 

of developers, and some tend to stay peripheral to the entire 

network.  

                                                                 

5 http://www.redhat.com/security/data/metrics/ 
6 http://git.kernel.org/ 

From a source code perspective, some files are contributed to by 

many developers who are also making contributions to many other 

files. Other files are essentially “owned” by one or a small number 

of developers.  

Both developers and files become organized into a network 

structure with some developers/files being the middle of the 

network, in a cluster, or on the outside. In this section, we 

quantify the structure of changes in the system using network 

analysis to create four developer activity metrics. We define our 

suite of developer activity metrics based on two networks: 

developer networks and contribution networks, as will be 

discussed in Sections 4.1 and 4.2, respectively. 

In Sections 4.1 and 4.2, we will use the following example. 

Suppose we are initially given the version control data in Table 2. 

In our example, we have six developers (Andy, Kelly, Phil, Lucas, 

Sarah, and Ben) and five files labeled A through E. The data in 

Table 2 denote who made changes to which file. More examples 

of the calculation of developer activity metrics can be found in 

related work [6, 11]. 

A summary of the interpretation for each of the four metrics can 

be found in Table 3. We empirically evaluate these metrics as 

indicators of vulnerable files in Section 5. 

 

 

 

 

 

 

 

Table 3: Developer activity metrics 

Metric Definition for a file  High values are symptomatic of… 

DNMaxEdgeBetweenness 

The maximum of the number of geodesic paths in 

a developer network which include an edge that 

the file was on 

A file being changed by multiple, otherwise separate 

developer groups 

NumDevs 
The number of distinct developers who changed 

the file  
Many developers worked on the file 

NumCommits The number of commits made to a file Developers made many changes to the file 

CNBetweenness 
The number of geodesic paths containing the file 

in the contribution network  

File was changed by many developers who made many 

changes to many other files 

Table 2: Example version control data 

Developer Files Changed 

(# commits) 

Andy A(1), B (2) 

Kelly B(1) 

Phil B(2) 

Lucas A(1), C(2), D(1) 

Sarah D(2), E(1) 

Ben C(2), E(1) 
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4.1 Linus’ Law: Diversity in Perspectives 
In his essay on open source development [19], Eric Raymond 

describes several laws that explain how large open source projects 

have thrived. Raymond states one of the laws colloquially as 

Linus’ Law: “Given enough eyeballs, all bugs are shallow” with 

the reasoning that, in a bazaar-like style of software development, 

having more people work on the project yields a greater diversity 

in understanding, leading to better improvements. Raymond 

contends that diversity in perspectives ought to be embraced, not 

avoided. Thus, if parts of the project do not have a diverse 

perspective, perhaps vulnerabilities could arise.  

While Linus’ Law includes a broad scope of users, testers, and 

developers, we focus our study on developer groups as one aspect 

of Linus’ Law. We use two metrics to quantify the group aspect of 

Linus’s Law: NumDevs and DNMaxEdgeBetweenness. 

The NumDevs metric is the number of distinct developers who 

made a commit to the file. Said another way, the NumDevs metric 

is the size of the developer group who contributed to the file. 

According to the reasoning behind Linus’ Law, NumDevs should 

have a positive impact on the security of a file, leading to a 

hypothesis that neutral files would have contributions by more 

developers than vulnerable files.   

The number of developers contributing to one file, however, is not 

the only aspect of Linus’ Law we wish to quantify. We can also 

look at how developer groups (or clusters) form over the entire 

project and how strongly connected these clusters are. 

Specifically, as developer clusters form, diversity in perspectives 

can be lost. Two separate groups may be working on similar areas 

without working together. According to Raymond’s reasoning, 

files worked on by otherwise-separated developer groups ought to 

be more likely to be vulnerable because the groups are not fully 

working with each other.  

To empirically analyze developer groups, we need to first measure 

developer collaboration. The first step we take to formally 

estimate developer collaboration is to use a developer network. 

We use the term developer network to be an estimation of the 

structure of collaboration in a software development project based 

on developer connections [1, 6, 13]. In our developer network, 

two developers are connected if they have both made a change to 

at least one file in common during a specified period of time (e.g. 

one month). The result is an undirected, unweighted, and simple 

graph where each node represents a developer and edges are based 

on whether or not they have worked on the same file within a 

specified period of time. For our example in Table 2, the 

developer network is shown in Figure 1. 

  

Figure 1: Resulting developer network from the Table 2 

Second, we need to examine files between developer groups. In 

large software projects, groups of developers can form based on 

many factors, such as geographic location or feature of the 

product. A developer group need not be formally defined; a group 

can form out of a common need or affinity in the project. In 

network analysis, the notion of groups is formalized by the term 

cluster. A cluster of nodes is a set of nodes such that the number 

of intra-set connections greatly outnumbers the number of inter-

set connections [2]. A cluster of developers, then, has more 

connections within the cluster than to other developers. Having 

many clusters in a network can be an indicator that, while 

developers are collaborating within groups, the groups are not 

collaborating with each other. The files that are worked on by 

otherwise-separated clusters, therefore, may be more problematic. 

In this study, we are using a developer network cluster metric to 

measure the diversity in perspectives on a file. 

Cluster metrics of developer networks can be used to identify files 

that have been worked on by otherwise-separated clusters of 

developers. To this end, we use the Edge Betweenness Clustering 

technique [5] for discovering developer clusters. Edge 

betweenness is defined similarly to node betweenness, only for 

edges: the number of geodesic paths in the network that include a 

given edge. The motivation for using edge betweenness is that the 

betweenness of edges within a cluster will be very low since the 

geodesic paths will be evenly distributed (in most cases, 

developers are directly connected to each other within clusters). 

As an illustration, consider a network where nodes are houses and 

edges are streets. Large clusters of houses (e.g. cities) are 

generally connected by well-traveled (highly between) streets: 

highways. Conversely, streets that are within cities tend to be less 

traveled as there are many direct routes within a city. By 

identifying the highly between “highways” in a network, one can 

use the exits of the highways to infer the locations of the cities. 

Note that a city be composed of several “inner” clusters, (e.g. 

neighborhoods) and cities can have drastically different sizes. In 

fact, the notion of “clusteredness” is a varying concept depending 

on the situation, so defining the exact clusters of a network is a 

somewhat subjective exercise. However, regardless of how one 

defines exact clusters, edges of highest betweenness are always 

between clusters and are the focus of our metric. 

In this study, we are interested in identifying the files that lie 

between clusters on the highly between edges of the developer 

network. Since files have a many-to-many relationship to edges, 

we use the maximum of edge betweenness of a files in the 

developer network, hence DNMaxEdgeBetweenness. 

Note that improving upon the DNMaxEdgeBetweenness of a file 

does not require a change in the file itself, but on creating more 

connections between the two groups. One could create more 

connections by finding other files that require improvement by 

both groups. Once more connections are established, the number 

of geodesic paths from one cluster of developers to the other will 

be spread out over the new connections, lowering the edge 

betweenness and, by definition, forming a single cluster. While 

the optimal developer network need not be a single cluster, one 

could use the DNMaxEdgeBetweenness metric to identify two 

clusters of developers who would benefit from working together.  

In our example developer network in Figure 1, the edge of highest 

betweenness is the connection between Lucas and Andy 

(betweenness is nine). The Lucas-Andy edge, connects two 

clusters: Lucas/Sarah/Ben, and Andy/Kelly/Phil. 
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Figure 2: Contribution network from the example 

4.2 Unfocused Contributions 
In the open source community, some developers may choose to 

make changes to many different parts of the system without 

collaborating with other developers who could share knowledge 

about the system and provide feedback on the suggested change. 

This effect has been referred to as an unfocused contribution 

[17] and could be a source of security problems.  

To empirically analyze the notion of “too many cooks in the 

kitchen,” we use two metrics: NumCommits and CNBetweenness. 

The NumCommits metric is calculated similarly to NumDevs: 

taken directly from the version control logs. NumCommits is the 

number of commits made to the file during the time period under 

study. Note that NumCommits and NumDevs can vary 

independently: a file can have many commits and few developers.  

Also, NumDevs could also be classified as an unfocused 

contribution metric. If “too many developers” working on a file 

result in the file being more vulnerable, then the meaning behind 

the association would support the “too many cooks in the kitchen” 

notion. 

Note that a high NumCommits on a file can be unavoidable: 

sometimes code inevitably needs to be changed to support new 

features, enhancement, and maintenance [9-11]. A similar 

argument could be made about NumDevs. However, if a file is 

suffering from an unfocused contribution, the change activity 

should be high, resulting in a high NumCommits and NumDevs. 

However, since NumCommits and NumDevs only represents the 

number of people and changes, not who is making changes of an 

unfocused contribution, we add a third, more specific metric to 

our study: CNBetweenness. 

 The CNBetweenness metric is calculated from a contribution 

network [17, 18]. A contribution network is an abstraction of 

version control logs represented by a network. Informally, the 

network represents who contributed changes to which file. 

Formally, the contribution network employs an undirected, 

weighted, and bipartite graph with two types of nodes: developers 

and files. An edge exists where a developer made changes to a 

file. Edges exist only between developers and files (not from 

developers to developers or files to files). The weight of an edge 

is the number of version control commits a developer made to the 

file.  

The contribution network from the given example can be found in 

Figure 2.  

We use the betweenness centrality measurement to quantify the 

focus made on a given file. If a file has a high betweenness, then it 

was changed by many developers who made changes to many 

other files. If a file had a low betweenness, then the file was 

worked on by fewer developers who made fewer changes to other 

files.  

Consider the difference in contributions in Figure 3. For the file 

quota.c, changes were made by developers who worked on 

only a few other files, some of which were in common with each 

other. By focusing on a smaller number of files, and (by extension 

coordinating with fewer developers), the developers of quota.c 

are more focused on quota.c, and may be more likely to catch 

security vulnerabilities. The developers of eventpoll.c, 

however, are also working on many other files themselves, and 

may not catch security problems in eventpoll.c. As a result, 

quota.c had a more focused contribution, and perhaps a lower 

likelihood of a vulnerability, than eventpoll.c. 

 

Figure 3: Examples of focused and unfocused contributions 

The CNBetweenness of a file is increased by (a) having many 

developers work on a file, and (b) having developers work on 

many different files. However, one can also improve (i.e. 

decrease) a file’s CNBetweenness by changing which developers 

work on which files rather than just reducing the amount of work 

for developers. As a result, CNBetweenness can be useful for 

assigning tasks to developers without adjusting the level of 

change in a file. For example, one could reduce the 

CNBetweenness of a file by assigning a task to a group of 

developers focused on a few files, rather than developers already 

working on other parts of the system. 

5. EMPIRICAL ANALYSIS 
Our empirical analysis of Linus’ Law and unfocused contributions 

is a statistical correlation study between developer activity metrics 

and security vulnerabilities. We focus our empirical analysis on 

three questions in the following three subsections: 

 Section 5.1:  Are developer activity metrics related to 

vulnerable files?  

 Section 5.2:  Can a “critical point” be found in each metric’s 

range that is linked to an increase the likelihood of having a 

vulnerable file? 

 Section 5.3:  How many of the vulnerable files can be 

explained by the metrics? 

Statistically speaking, the first question is an association question, 

the second is a discriminative power question, and the third is a 

predictive modeling question [20]7.  

                                                                 

7 The framework from which these validity criteria are defined 

assumes a ratio metric scale, whereas our study is at a nominal 

scale. The exact statistical tests may differ but the spirit of the 

validation criteria remains intact. 
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In this study we use the three validation criteria (association, 

discriminative power, and predictability) to evaluate the strength 

of the relationship between the developer activity metrics and 

security vulnerabilities.  We used SAS8 v9.1.3 for our statistical 

analysis and Weka9 v3.6.0 for the Bayesian network prediction 

model.    

5.1 Association: Are The Metrics Correlated 

With Vulnerable Files? 
To examine how each of the four metrics summarized in Table 3 

are related to security vulnerabilities, we examine the difference 

between the vulnerable files and the neutral files in terms of each 

metric. As suggested in other metrics validation studies [20], we 

use the non-parametric Mann-Whitney-Wilcoxon (MWW) test 

for difference in averages. Three outcomes are possible from this 

test:  

 The metric is statistically higher for vulnerable files than 

neutral files,  

 The metric is statistically lower for vulnerable files than for 

neutral files, or 

 The metric is not different between neutral and vulnerable 

files at a statistically significant level (p<0.05). 

We present our results for our four metrics in Table 3.  

Table 4: Mann-Whitney-Wilcoxon test 

Metric 
Neutral 

Avg 

Vulnerable 

Avg 

MWW 

p-value 

DNMaxEdgeBetweenness 18.8 136.6 p<0.0001 

NumDevs 2.2 4.9 p<0.0001 

NumCommits 4.1 13.7 p<0.0001 

CNBetweenness 3662.8 12198.6 p<0.0001 

In all four cases, the metric was statistically higher for vulnerable 

files than for neutral files, providing some mixed results regarding 

Linus’ Law and unfocused contributions.  

 The DNMaxEdgeBetweenness was higher for vulnerable 

files, meaning that files developed by multiple, otherwise-

separated clusters of developers were more likely to have a 

vulnerability. This supports the notion that, when two 

otherwise-disparate groups of developers have a common 

interest, multiple connections between the groups ought to be 

made, which promotes diversity in perspectives.  

 However, the NumDevs metric was higher for vulnerable 

files, implying that too many developers changing a single 

file is associated with an increase in likelihood of a 

vulnerability. This result supports the unfocused contribution 

aspect of NumDevs rather than the diversity in perspectives. 

This result may be surprising as it goes against Linus’ Law, 

indicating that too many eyeballs may be detrimental to the 

security of the software.  

 NumCommits was higher for vulnerable files, meaning that 

vulnerable files were more likely to have underwent many 

changes. This result is supports the “code churn” effect 

                                                                 

8 http://www.sas.com/ 
9 http://www.cs.waikato.ac.nz/ml/weka/ 

found in other studies [13, 14, 21] where code undergoing a 

lot of change tends to have more problems.  

 CNBetweenness was also higher for vulnerable files than for 

neutral files, meaning that vulnerable files were more likely 

to have been worked on by many developers who also 

worked on many other files. This result supports the 

unfocused contribution view. 

5.2 Discriminative Power: Are Some Metric 

Values Better Than Others? 
By evaluating the discriminative power [20] of developer activity 

metrics, we are examining how well each metric can individually 

differentiate files as vulnerable or neutral. The primary purpose of 

discriminative power is to see where a metric is “too high” or “too 

low”. A secondary advantage of discriminative power is to 

provide a comparison between each metric. Difference in averages 

(i.e. association) does not show relative correlation strength from 

one metric to the next10. We use an analysis of critical values, and 

AUC for discriminative power. 

We use the term critical value of a metric to indicate a specific 

point that can be used to classify files as either vulnerable or 

neutral. For example, finding the critical value of NumDevs 

would answer the question: how many developers is “too many”? 

The exact critical value of a metric may vary depending on one’s 

desired precision and recall (perhaps depending on the software 

development process), so we analyze all feasible critical points of 

our four metrics. Figure 4 contains plots of the critical values for 

each of the four metrics. The possible critical value of the metric 

is on the X-axis, and the two series are precision and recall as if 

one had used the metric as a discriminator past the critical values.  

As an example of using critical values, consider gathering all files 

that had nine developers or more (NumDevs >= 9), then 33.3% 

(precision) of those files would be vulnerable, which is 

considerably high given that only 1.96% of the system’s files were 

vulnerable11. Thus, using NumDevs provides 16 times 

(=33.3/1.96) more discriminative power than random selection. 

Furthermore, for files with fewer than nine developers, 

(NumDevs<9), 1.25% of the files were vulnerable. However, 

those 33.3% vulnerable files only account for 9.2% (recall) of the 

known vulnerable files in the system, meaning more metrics with 

high discriminative power are required. Table 5 shows some 

example critical values along with the precision, and recall.  

Note that, in all four plots of Figure 4, when the recall becomes 

small, the precision has a greater variance. This effect is an 

artifact of the sample size decreasing as one uses a large, therefore 

more limiting, critical value. 

Another way to compare the metrics in terms of discrimination is 

with the AUC measurement. The AUC is calculated by finding the 

proportion of occurrences where a given metric for vulnerable 

files outrank a neutral file. Said another way, the AUC represents 

the probability that a metric’s value for a randomly-chosen 

                                                                 

10 E.g. NumDevs has a much smaller range of values than 

CNBetweenness, so the size of the difference in averages cannot 

be compared 

11 Taken from the 1.96% vulnerable file proportion reported in 

Section 3 
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vulnerable file is higher than a randomly-chosen neutral file. The 

AUC measurement for each metric is given in Table 5. 

Examining the results, one can see that different metrics have 

different advantages. DNMaxEdgeBetweenness has a low recall, 

implying that DNMaxEdgeBetweenness accounts for relatively 

few vulnerabilities. NumDevs, NumCommits, and 

CNBetweenness all have high precisions when compared to the 

prior probability of 1.96%, but the recalls are still low. With the 

highest recall is NumCommits, meaning that examining files with 

25 commits or more (in the 15 months of development), contain 

17.1% of the known vulnerable files. Furthermore, upon 

examining those files, about one in four would be vulnerable. The 

result of having all four metrics being correlated (from Section 

Table 5: Discriminative power results 

Metric AUC* Example 

Critical 

Value 

P* R* 

DNMaxEdgeBetweenness 94.6% 270 7.6% 4.9% 

NumDevs 85.7% 9 33.3% 9.2% 

NumCommits 85.3% 25 26.7% 17.1% 

CNBetweenness 78.6% 40,000 17.4% 7.3% 

AUC: area under the ROC curve, P=precision, R=recall. 

 

 

Figure 4: Critical values of metrics for the discriminative power criterion 
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5.1), but having low recalls means, that while the metrics are 

correlated with vulnerabilities, none of them individually account 

for all of the vulnerabilities. 

Note also that critical values can vary according to the project 

being studied. Our critical values are specific to the RHEL4 

kernel during the time period we studied, so other projects may 

have different exact critical values.  

5.3 Predictability: How Many Vulnerable 

Files Are Explained? 
The predictability criterion is used to estimate how many 

vulnerabilities can be explained by combining all of the metrics 

into a single model. As a secondary purpose, one can use 

predictability analysis as a simulation of how well one could have 

predicted vulnerabilities prior to release. Said another way, if the 

model can predict vulnerable files, then development teams can 

use the metrics to find vulnerabilities prior to release, and 

prioritize inspection and fortification efforts accordingly. 

A key element of prediction is the supervised model. A supervised 

model is a method of combining multiple metrics into a single 

binary classification prediction (“neutral” or “vulnerable”) [24]. 

In our study, we used two modeling methods: multivariate 

discriminant analysis and Bayesian networks. Discriminant 

analysis is a modeling method that uses an n-dimensional space to 

achieve maximum separation of variables. Discriminant  analysis  

has  widespread  applications,  including  facial  recognition  [12, 

22]. Bayesian networks use Bayesian inference on a network of 

metrics, taking into account conditional dependencies between 

metrics. Bayesian networks also have widespread applications, 

including gene  expression [16] and  satellite  failure monitoring 

systems. 

Supervised models require a training set and a validation set. In 

this study, we use cross validation to generate each set. For 

discriminant analysis, we used hold-one-out cross validation with 

recall, precision, and inspection rate as defined in Section 2.2. 

Hold-one-out cross-validation is performed by iteratively 

removing each data point from the set, training on all but the 

removed data point, then predicting for the removed point. For 

Bayesian Networks we used ten-fold cross-validation. Ten-fold 

cross validation is similar to hold-one-out, except the data is 

randomly partitioned into 10 partitions, with each partition being 

the held-out test set exactly once. Since ten-fold cross-validation 

is based on random partitions, we performed the cross-validation 

15 times and report the average. The precision, recall, and 

inspection rate of the models can be found in Table 6.  

Our results show a significantly higher recall than with the 

individual metrics at critical points. However, the precision is 

lower to achieve this higher recall. One note of interest here is the 

low inspection rate. If a team wanted to inspect files using the 

Bayesian network model, then they would only need to inspect 

4.9% of the files and would find 33.3% of the vulnerable files. 

The difference in modeling methods shows that Bayesian 

networks tend to be more precise, requiring a lower inspection 

rate, but find a smaller percentage of the known vulnerable files 

than multivariate discriminant analysis. One can use this fact for 

deciding which modeling method to use if the goal is to predict 

vulnerable files based on our four developer activity metrics. 

Figure 5 shows the recall, inspection rate, and precision for all 15 

runs of ten-fold cross-validation Bayesian network models. The 

figure shows minute variations from trial to trial, meaning that 

negligible variation in the model performance was due to the 

random partitioning in cross-validation. 

 

Figure 5: Variation of Bayesian Network in cross-validation 

The results of our predictability analysis show that the four 

developer activity metrics can be used to predict vulnerable files, 

but not all of the vulnerable files. This conclusion is a logical one: 

even if the models were perfect, we have no way of knowing if 

every vulnerable file was vulnerable because of poor developer 

activity.  

5.4 Discussion 
Our results show a statistically significant correlation in all four 

developer activity metrics. Three of the four metrics support the 

notion of unfocused contributions, specifically that the vulnerable 

files were undergoing a lot of change (NumCommits), by many 

developers (NumDevs), and by developers who were also working 

on many other files (CNBetweenness). 

When examining unfocused contributions, one might consider 

what Frederick Brooks says about too many developers on a 

project: 

 “If each part of the task must be separately coordinated 

with each other part, the effort increases as  

n(n-1)/2.”[3]  

In context, Brooks is specifically discussing Brook’s Law, 

“Adding manpower to a late software project makes it later”.  

However the reasoning bears resemblance to the unfocused 

contribution argument in that coordinating a large number of 

developers can require a communication and coordination effort 

quadratic in the number of developers. While unfocused 

Table 6: Predictability Results 

Method P* R* IR* 

Multivariate 

Discriminant 

Analysis 

9.9% 50.7% 10.0% 

Bayesian 

Networks 
13.3% 33.2% 4.9% 

* P=precision, R=recall, IR=inspection rate,  
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contributions do not necessarily negate Linus’ Law, our results 

show that they are a legitimate opposing force. 

As far as diversity in perspectives, more developers changing the 

code does not mean an increase in security. One interesting 

observation is in the NumDevs chart in Figure 4: the proportion of 

vulnerabilities steadily increases as the number of developers 

increases (until about nine when the recall drops). However, files 

worked on by disparate, otherwise-separated clusters of 

developers are more likely to have a vulnerability.  

One factor to consider when evaluating software security and 

Linus’ Law is taking ongoing code change into account. Many 

open source projects are constantly changing and evolving (the 

Linux kernel is no exception). The developer community must 

continually keep up with finding vulnerabilities and fortification 

efforts in an ever-changing, ever-branching project.  

6. LIMITATIONS 
All of our developer activity metrics require version control data, 

and therefore change in the system. For developer networks, if a 

file has no commits to it during the period of study, the file has no 

developers in its history and therefore no measurement can be 

made. In our case study, all of the vulnerabilities happened to be 

in files that were changed 15 months prior to release (our time 

period under study). A vulnerability could be in a file that was not 

changed, but since our case study had no instance of that 

situation, this effect did not have an impact on our results.  

Also, we cannot claim that developer activity metrics cause 

vulnerabilities. Studies of historical data can only show a 

statistically significant correlation. Proving causation would 

require a controlled experiment, which is not feasible for an 

ongoing project like the Linux kernel. Furthermore, although we 

used the term “validation criteria”, we do not consider developer 

activity metrics to be fully validated until further case studies 

support consistent, repeatable results. 

Since our data only includes known vulnerabilities, we cannot 

make any claims about latent, undiscovered vulnerabilities. As a 

result of the latent, undiscovered vulnerabilities, we cannot say 

that a low precision (i.e. a high occurrence of false positives) is 

actually indicative of real false positives, or that our model is 

finding more vulnerabilities in the system that have not yet been 

confirmed. 

7. RELATED WORK 
The topics of developers and collaboration have been examined in 

several recent empirical studies. All of the studies, however, either 

examine the meaning of developer activity metrics or relate them 

to reliability. Only one of the studies relate developer activity 

metrics to security.  

Shin et al. [21] evaluated the statistical connection between 

vulnerabilities and metrics of complexity, code churn, and 

developer activity. The study denotes two case studies of large, 

open source projects: multiple releases of Mozilla Firefox and the 

RHEL4 kernel. Among the findings include a statistically 

significant correlation between metrics of all three categories and 

security vulnerabilities. Also, in the Mozilla project, a model 

containing all three types of metrics was able to find 70.8% of the 

known vulnerabilities by selecting only 10.9% of the project’s 

files. The study examines a different collection of metrics than 

this study and combines disparate metrics into a single model. 

Meneely et al., [13] examined the relationship between developer 

activity metrics and reliability. The empirical case study examined 

three releases of a large, proprietary networking product. The 

authors used developer centrality metrics from the developer 

network to examine whether files are more likely to have failures 

if they were changed by developers who are peripheral to the 

network. The authors formed a model that included metrics of 

developer centrality, code churn (the degree to which a file was 

changed recently), and lines of code to predict failures from one 

release to the next. Their model’s prioritization found 58% of the 

system’s failures in 20% of the files, where a perfect prioritization 

would have found 61%. The study did not include work on 

developer clusters, unfocused contributions, or security. 

Bird et al. [1] uses a similar approach to ours with the purpose of 

examining social structures in open source projects. Also 

discussing connections and contradictions between some of 

Brooks’s ideas [3] and the bazaar-like development of open 

source projects, the authors empirically examine how open source 

developers self-organize. The authors use similar network 

structures as our developer network to find the presence of sub-

communities within open source projects. In addition to 

examining version control change logs, the authors mined email 

logs and other artifacts of several open source projects to find a 

community structure. The authors conclude that sub-communities 

do exist in open source projects, as evidenced by the project 

artifacts exhibiting a social network structure that resembles 

collaboration networks in other disciplines. In our study, we 

leverage network analysis metrics as an estimation of 

collaboration and examine their relationship to vulnerabilities in 

the project.  

Pinzger et al. [17] were the first to propose the contribution 

network. The contribution network is designed to use version 

control data to quantify the direct and indirect contribution of 

developers on specific resources of the project. The researchers 

used metrics of centrality in their study of Microsoft Windows 

Vista and found that closeness was the most significant metric for 

predicting reliability failures. Files that were contributed to by 

many developers, especially by developers who were making 

many different contributions themselves, were found to be more 

failure-prone than files developed in relative isolation. The 

finding is that files which are being focused on by a few 

developers are less problematic than files developed by many 

developers. In our study, we use centrality metrics on contribution 

networks to predict vulnerabilities in files. 

Gonzales-Barahona and Lopez-Fernandez [6] were the first to 

propose the idea of creating developer networks as models of 

collaboration from source repositories. The authors’ objective was 

to present the developer network and to differentiate and 

characterize projects.  

Nagappan et al. [15] created a logistic regression model for 

failures in the Windows Vista operating system. The model was 

based on what they called “Overall Organizational Ownership” 

(OOW). The metrics for OOW included concepts like 

organizational cohesiveness and diverse contributions. Among the 

findings is that more edits made by many, non-cohesive 

developers leads to more problems post-release. The OOW model 

was able to predict with 87% average precision and 84% average 

recall. The OOW model bears a resemblance to the contribution 
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network in that both models attempt to differentiate healthy 

changes in software from the problematic changes. 

8. SUMMARY 
The objective of this research is to reduce security vulnerabilities 

by providing actionable insight into the structural nature of 

developer collaboration in open source software. Within our case 

study of the RHEL4 kernel, we found four metrics that 

empirically support the notions of Linus’ Law and unfocused 

contributions. An empirical analysis of our data demonstrates the 

following observations:  

(a) source code files changed by multiple, otherwise-separated 

clusters of developers are more likely to be vulnerable than 

changed by a single cluster; and 

 (b) files are likely to be vulnerable when changed by many 

developers who have made many changes to other files. 

Practitioners can use these observations to prioritize security 

fortification efforts or to consider organizational changes among 

developers. While the results are statistically significant, the 

individual correlations indicate that developer activity metrics are 

likely to perform best for prediction in the presence of other 

metrics. 
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