
1

Secure Open Source Collaboration:

An Empirical Study of Linus’ Law
Andrew Meneely and Laurie Williams

North Carolina State University

Department of Computer Science, Raleigh, North Carolina, USA

{apmeneel, lawilli3}@ncsu.edu

ABSTRACT

Open source software is often considered to be secure. One factor

in this confidence in the security of open source software lies in

leveraging large developer communities to find vulnerabilities in

the code. Eric Raymond declares Linus’ Law “Given enough

eyeballs, all bugs are shallow.” Does Linus’ Law hold up ad

infinitum? Or, can the multitude of developers become “too many

cooks in the kitchen”, causing the system’s security to suffer as a

result? In this study, we examine the security of an open source

project in the context of developer collaboration. By analyzing

version control logs, we quantified notions of Linus’ Law as well

as the “too many cooks in the kitchen” viewpoint into developer

activity metrics. We performed an empirical case study by

examining correlations between the known security vulnerabilities

in the open source Red Hat Enterprise Linux 4 kernel and

developer activity metrics. Files developed by otherwise-

independent developer groups were more likely to have a

vulnerability, supporting Linus’ Law. However, files with changes

from nine or more developers were 16 times more likely to have a

vulnerability than files changed by fewer than nine developers,

indicating that many developers changing code may have a

detrimental effect on the system’s security.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – process metrics,

product metrics.

General Terms

Measurement, Security, Human Factors

Keywords

Linus’ Law, developer network, contribution network,

vulnerability, metric

1. INTRODUCTION
Open source software is often considered to be secure [7, 23].

One factor in this confidence in the security of open source

software lies in leveraging large developer communities to find

vulnerabilities in the code. In his essay, The Cathedral and the

Bazaar [19], Eric Raymond declares Linus’ Law1 as

“Given a large enough beta-tester and co-developer base,

almost every problem will be characterized quickly and the

fix obvious to someone.” [19]

Raymond states more colloquially, “Given enough eyeballs, all

bugs are shallow”. According to Raymond’s reasoning, diversity

of developer perspectives ought to be embraced, not avoided.

Therefore, more developers mean more vulnerabilities found and

fixed, or even prevented.

But does Linus’ Law hold up ad infinitum? Can a project have too

many developers, resulting in insecure software?

One opposing force to Linus’ Law might be the notion of “too

many cooks in the kitchen”, or what has been called an unfocused

contribution [17] in developer collaboration. Consider having

many people make a meal: without enough coordination and

communication, ingredients get skipped, added twice, or

significant steps of the recipe are left out. The meal can suffer as a

result of too many people. Likewise, perhaps the security of a

software project can suffer as a result of unfocused contributions

by too many developers.

An analysis of the structure of open source developer

collaboration can help the community understand how this

structure impacts the prevention or the injection of security

vulnerabilities. Our research objective, then, is to reduce security

vulnerabilities by providing actionable insight into the structural

nature of developer collaboration in open source software.

We performed an empirical analysis by quantifying developer

collaboration and unfocused contributions into developer activity

metrics. We examine the statistical correlation between the known

security vulnerabilities of the open source Red Hat Enterprise

Linux 4 kernel and developer activity metrics. We used version

control change logs to calculate four developer activity metrics.

Forming social networks based on who worked on which file, we

use network analysis to form metrics of developer groups and

unfocused contributions.

The rest of this paper is organized as follows. Section 2 covers

background. Sections 3 and 4 describe the case study, and

derivation of the metrics themselves. Section 5 presents the results

of the case study and a discussion. Sections 6, 7, and 8 discuss

limitations, related work, and summarize the study.

1 In this context, the word “law” is used to mean a repeated

observation [4].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CCS’09, November 9-13, 2009, Chicago, Illinois, USA.

Copyright 2009 ACM 978-1-60558-352-5/09/11…$10.00.

2

2. BACKGROUND
Our empirical analysis involves quantifying measures of social

networks and binary classification. In this section, we provide

background with regard to network analysis and binary

classification.

2.1 Network Analysis
In this paper, we use network analysis to quantify how developers

collaborate on projects. We use several terms from network

analysis [2] and define their meaning with respect to developer

groups and unfocused contributions in Section 4. In this section,

we define terms used in both analyses of developer groups and

unfocused contributions.

Network analysis is the study of characterizing and quantifying

network structures, represented by graphs [2]. In network

analysis, vertices of a graph are called nodes, and edges are called

connections. A sequence of non-repeating, adjacent nodes is a

path, and a shortest path between two nodes is called a geodesic

path (note that geodesic paths are not necessarily unique). In the

case of weighted edges, the geodesic path is the path of minimum

weight. Informally, a geodesic path is the “social distance” from

one node to another.

Centrality metrics are used to quantify the location of a node or

edge relative to the rest of the network. In this study, we use the

betweenness metric to quantify the centrality of a node in a

network. The betweenness [2] of node n is defined as the number

of geodesic paths that include n. Similarly, the edge betweenness

of edge e is defined as the number of geodesic paths which pass

through e. A high betweenness means a high centrality.

2.2 Binary Classification
To study the security of a system, we use a nominal metric defined

over each file: whether or not a file is vulnerable or neutral. We

consider a file to be vulnerable if the file was found to have at

least one vulnerability that required a patch after release. A

vulnerability is “an instance of a [fault] in the specification,

development, or configuration of software such that its

execution can violate an [implicit or explicit] security policy”.

[8]. We consider a file with no known vulnerabilities to be

“neutral”.

Since our security metric is nominal, our analysis is based on

binary classification. A binary classifier can make two possible

types of errors: false positives (FP) and false negatives (FN). A FP

is the classification of a neutral file as vulnerable, and a FN is the

classification of a vulnerable file as neutral. Likewise, a correctly

classified vulnerable file is a true positive (TP), and a correctly

classified neutral file is a true negative (TN). For evaluating

binary classification, we use recall, inspection rate, and area under

the Receiver Operating Characteristic (ROC) curve.

 Recall (R) is defined as the proportion of vulnerabilities

found: R=TP/(TP+FN).

 Inspection Rate (IR) is the proportion of total files that were

classified as vulnerable: IR=(TP+FP) /(TP+TN+FP+FN).

 Precision (P) is defined as the proportion of correctly

predicted vulnerable files: P=TP/(TP+FP).

 Area under the ROC Curve (AUC): represents the

proportion of the time that a classifier ranks a vulnerable file

higher than a neutral file. AUC is calculated by integrating a

ROC curve, usually by a summation approximation [24].

Optimally, IR is minimized, but Precision, Recall, and AUC are

maximized. For example, an IR=10% and R=50% means that the

classifier found 50% of the known vulnerabilities in just 10% of

the files. A classifier with P=25% means that, of the files

classified as vulnerable, 25% were actually vulnerable. A

classifier with an AUC of 75% means that, given one randomly-

chosen neutral and vulnerable file, the classifier would choose the

correct file 75% of the time.

3. CASE STUDY: LINUX KERNEL
We performed a case study on the Linux kernel2 as it was

distributed in the Red Hat Enterprise Linux 4 (RHEL4) operating

system3. A summary of the RHEL4 kernel is found in Table 1.

The entire project is over three million lines of C and assembly

code. The security data is a labeling of whether or not a source

code file was patched with a post-release vulnerability

(“vulnerable” or “neutral”). The developer activity metrics were

gathered from version control change logs.

Gathering the security data involved tracing through the

development artifacts related to each vulnerability reported in the

Linux kernel. When members of the open source community

become aware of a possible security vulnerability, members of the

Red Hat Security Response (RHSR) team perform the following

actions.

1. Create a defect report in the Red Hat Bugzilla database4. The

majority of the subsequent artifacts can be found or linked to

the new defect report.

2. Confirm the existence of the vulnerability in both the current

build of the kernel (also called the upstream version), and

the previous release of the kernel (also called a backport).

3. Form patches to fix the problem as necessary. Sometimes an

upstream patch would differ from the backport patch since

the kernel is always evolving.

4. Determine if the vulnerability is a regression (a vulnerability

introduced by a patch after release).

5. Register the vulnerability in the National Vulnerability

Database (NVD) and the next Red Hat Security Advisory

2 http://kernel.org/
3 http://www.redhat.com/rhel/
4 http://bugzilla.redhat.com/

Table 1: Summary of the RHEL4 Linux Kernel

Total number of files 14,286

Number of files changed

(total studied)

10,454

Percentage of files changed 73%

Number of developers 557

Development time 15 months

Number of vulnerable files 205

Percentage of changed files

with vulnerabilities

1.96%

Total number of commits 9,946

3

(RHSA). The RHSR Team reports NVD and RHSA data on

their security metrics website5.

We collected our security data from the Bugzilla database, the

NVD, and the RHSR security metrics database. Since each

vulnerability was handled slightly differently, we examined each

defect report manually to ensure that the backport patch was, in

fact, needed. Since we are only interested in vulnerabilities that

existed at the time of release, we did not include regressions in

our data set. For vulnerabilities that did not have all of the

relevant artifacts (e.g. defect reports, backport patches), we

consulted the director of the RHSR team to correct the data. Our

data set is a comprehensive list of reported, non-regression

vulnerabilities from RHEL4’s release in February 2005 through

July 2008. We found 205 files to be vulnerable (i.e. patched post-

release because of at least one vulnerability), which was 1.96% of

the 10,454 files we studied.

For the version control data from which developer activity metrics

were computed, we used the Linux kernel source repository6. The

RHEL4 operating system is based on kernel version 2.6.9, so we

used all of the version control data from kernel version 2.6.0 to

2.6.9, which was approximately 15 months of development and

maintenance. We included in our analysis source code files that

had the following file name extension: .c, .S, and .h. The version

control data contains records of 557 developers and 9,946

commits over 10,454 source files. Most of the kernel files

changed (73%) during those 15 months, including every

vulnerable file. Our study focused on the files that were changed

15 months prior to release.

4. DEVELOPER ACTIVITY METRICS
In our case study, we used the version control logs to analyze

development activity. As a project progresses, developers make

changes to various parts of the system. With many changes and

many developers, changes to files tend to overlap: multiple

developers may end up working on the same files around the same

time, indicating that they share a common contribution, or a

connection, with another developer. As a result of which files they

contribute to, some developers end up connected to many other

highly-connected developers, some end up in groups (“clusters”)

of developers, and some tend to stay peripheral to the entire

network.

5 http://www.redhat.com/security/data/metrics/
6 http://git.kernel.org/

From a source code perspective, some files are contributed to by

many developers who are also making contributions to many other

files. Other files are essentially “owned” by one or a small number

of developers.

Both developers and files become organized into a network

structure with some developers/files being the middle of the

network, in a cluster, or on the outside. In this section, we

quantify the structure of changes in the system using network

analysis to create four developer activity metrics. We define our

suite of developer activity metrics based on two networks:

developer networks and contribution networks, as will be

discussed in Sections 4.1 and 4.2, respectively.

In Sections 4.1 and 4.2, we will use the following example.

Suppose we are initially given the version control data in Table 2.

In our example, we have six developers (Andy, Kelly, Phil, Lucas,

Sarah, and Ben) and five files labeled A through E. The data in

Table 2 denote who made changes to which file. More examples

of the calculation of developer activity metrics can be found in

related work [6, 11].

A summary of the interpretation for each of the four metrics can

be found in Table 3. We empirically evaluate these metrics as

indicators of vulnerable files in Section 5.

Table 3: Developer activity metrics

Metric Definition for a file High values are symptomatic of…

DNMaxEdgeBetweenness

The maximum of the number of geodesic paths in

a developer network which include an edge that

the file was on

A file being changed by multiple, otherwise separate

developer groups

NumDevs
The number of distinct developers who changed

the file
Many developers worked on the file

NumCommits The number of commits made to a file Developers made many changes to the file

CNBetweenness
The number of geodesic paths containing the file

in the contribution network

File was changed by many developers who made many

changes to many other files

Table 2: Example version control data

Developer Files Changed

(# commits)

Andy A(1), B (2)

Kelly B(1)

Phil B(2)

Lucas A(1), C(2), D(1)

Sarah D(2), E(1)

Ben C(2), E(1)

4

4.1 Linus’ Law: Diversity in Perspectives
In his essay on open source development [19], Eric Raymond

describes several laws that explain how large open source projects

have thrived. Raymond states one of the laws colloquially as

Linus’ Law: “Given enough eyeballs, all bugs are shallow” with

the reasoning that, in a bazaar-like style of software development,

having more people work on the project yields a greater diversity

in understanding, leading to better improvements. Raymond

contends that diversity in perspectives ought to be embraced, not

avoided. Thus, if parts of the project do not have a diverse

perspective, perhaps vulnerabilities could arise.

While Linus’ Law includes a broad scope of users, testers, and

developers, we focus our study on developer groups as one aspect

of Linus’ Law. We use two metrics to quantify the group aspect of

Linus’s Law: NumDevs and DNMaxEdgeBetweenness.

The NumDevs metric is the number of distinct developers who

made a commit to the file. Said another way, the NumDevs metric

is the size of the developer group who contributed to the file.

According to the reasoning behind Linus’ Law, NumDevs should

have a positive impact on the security of a file, leading to a

hypothesis that neutral files would have contributions by more

developers than vulnerable files.

The number of developers contributing to one file, however, is not

the only aspect of Linus’ Law we wish to quantify. We can also

look at how developer groups (or clusters) form over the entire

project and how strongly connected these clusters are.

Specifically, as developer clusters form, diversity in perspectives

can be lost. Two separate groups may be working on similar areas

without working together. According to Raymond’s reasoning,

files worked on by otherwise-separated developer groups ought to

be more likely to be vulnerable because the groups are not fully

working with each other.

To empirically analyze developer groups, we need to first measure

developer collaboration. The first step we take to formally

estimate developer collaboration is to use a developer network.

We use the term developer network to be an estimation of the

structure of collaboration in a software development project based

on developer connections [1, 6, 13]. In our developer network,

two developers are connected if they have both made a change to

at least one file in common during a specified period of time (e.g.

one month). The result is an undirected, unweighted, and simple

graph where each node represents a developer and edges are based

on whether or not they have worked on the same file within a

specified period of time. For our example in Table 2, the

developer network is shown in Figure 1.

Figure 1: Resulting developer network from the Table 2

Second, we need to examine files between developer groups. In

large software projects, groups of developers can form based on

many factors, such as geographic location or feature of the

product. A developer group need not be formally defined; a group

can form out of a common need or affinity in the project. In

network analysis, the notion of groups is formalized by the term

cluster. A cluster of nodes is a set of nodes such that the number

of intra-set connections greatly outnumbers the number of inter-

set connections [2]. A cluster of developers, then, has more

connections within the cluster than to other developers. Having

many clusters in a network can be an indicator that, while

developers are collaborating within groups, the groups are not

collaborating with each other. The files that are worked on by

otherwise-separated clusters, therefore, may be more problematic.

In this study, we are using a developer network cluster metric to

measure the diversity in perspectives on a file.

Cluster metrics of developer networks can be used to identify files

that have been worked on by otherwise-separated clusters of

developers. To this end, we use the Edge Betweenness Clustering

technique [5] for discovering developer clusters. Edge

betweenness is defined similarly to node betweenness, only for

edges: the number of geodesic paths in the network that include a

given edge. The motivation for using edge betweenness is that the

betweenness of edges within a cluster will be very low since the

geodesic paths will be evenly distributed (in most cases,

developers are directly connected to each other within clusters).

As an illustration, consider a network where nodes are houses and

edges are streets. Large clusters of houses (e.g. cities) are

generally connected by well-traveled (highly between) streets:

highways. Conversely, streets that are within cities tend to be less

traveled as there are many direct routes within a city. By

identifying the highly between “highways” in a network, one can

use the exits of the highways to infer the locations of the cities.

Note that a city be composed of several “inner” clusters, (e.g.

neighborhoods) and cities can have drastically different sizes. In

fact, the notion of “clusteredness” is a varying concept depending

on the situation, so defining the exact clusters of a network is a

somewhat subjective exercise. However, regardless of how one

defines exact clusters, edges of highest betweenness are always

between clusters and are the focus of our metric.

In this study, we are interested in identifying the files that lie

between clusters on the highly between edges of the developer

network. Since files have a many-to-many relationship to edges,

we use the maximum of edge betweenness of a files in the

developer network, hence DNMaxEdgeBetweenness.

Note that improving upon the DNMaxEdgeBetweenness of a file

does not require a change in the file itself, but on creating more

connections between the two groups. One could create more

connections by finding other files that require improvement by

both groups. Once more connections are established, the number

of geodesic paths from one cluster of developers to the other will

be spread out over the new connections, lowering the edge

betweenness and, by definition, forming a single cluster. While

the optimal developer network need not be a single cluster, one

could use the DNMaxEdgeBetweenness metric to identify two

clusters of developers who would benefit from working together.

In our example developer network in Figure 1, the edge of highest

betweenness is the connection between Lucas and Andy

(betweenness is nine). The Lucas-Andy edge, connects two

clusters: Lucas/Sarah/Ben, and Andy/Kelly/Phil.

5

Figure 2: Contribution network from the example

4.2 Unfocused Contributions
In the open source community, some developers may choose to

make changes to many different parts of the system without

collaborating with other developers who could share knowledge

about the system and provide feedback on the suggested change.

This effect has been referred to as an unfocused contribution

[17] and could be a source of security problems.

To empirically analyze the notion of “too many cooks in the

kitchen,” we use two metrics: NumCommits and CNBetweenness.

The NumCommits metric is calculated similarly to NumDevs:

taken directly from the version control logs. NumCommits is the

number of commits made to the file during the time period under

study. Note that NumCommits and NumDevs can vary

independently: a file can have many commits and few developers.

Also, NumDevs could also be classified as an unfocused

contribution metric. If “too many developers” working on a file

result in the file being more vulnerable, then the meaning behind

the association would support the “too many cooks in the kitchen”

notion.

Note that a high NumCommits on a file can be unavoidable:

sometimes code inevitably needs to be changed to support new

features, enhancement, and maintenance [9-11]. A similar

argument could be made about NumDevs. However, if a file is

suffering from an unfocused contribution, the change activity

should be high, resulting in a high NumCommits and NumDevs.

However, since NumCommits and NumDevs only represents the

number of people and changes, not who is making changes of an

unfocused contribution, we add a third, more specific metric to

our study: CNBetweenness.

 The CNBetweenness metric is calculated from a contribution

network [17, 18]. A contribution network is an abstraction of

version control logs represented by a network. Informally, the

network represents who contributed changes to which file.

Formally, the contribution network employs an undirected,

weighted, and bipartite graph with two types of nodes: developers

and files. An edge exists where a developer made changes to a

file. Edges exist only between developers and files (not from

developers to developers or files to files). The weight of an edge

is the number of version control commits a developer made to the

file.

The contribution network from the given example can be found in

Figure 2.

We use the betweenness centrality measurement to quantify the

focus made on a given file. If a file has a high betweenness, then it

was changed by many developers who made changes to many

other files. If a file had a low betweenness, then the file was

worked on by fewer developers who made fewer changes to other

files.

Consider the difference in contributions in Figure 3. For the file

quota.c, changes were made by developers who worked on

only a few other files, some of which were in common with each

other. By focusing on a smaller number of files, and (by extension

coordinating with fewer developers), the developers of quota.c

are more focused on quota.c, and may be more likely to catch

security vulnerabilities. The developers of eventpoll.c,

however, are also working on many other files themselves, and

may not catch security problems in eventpoll.c. As a result,

quota.c had a more focused contribution, and perhaps a lower

likelihood of a vulnerability, than eventpoll.c.

Figure 3: Examples of focused and unfocused contributions

The CNBetweenness of a file is increased by (a) having many

developers work on a file, and (b) having developers work on

many different files. However, one can also improve (i.e.

decrease) a file’s CNBetweenness by changing which developers

work on which files rather than just reducing the amount of work

for developers. As a result, CNBetweenness can be useful for

assigning tasks to developers without adjusting the level of

change in a file. For example, one could reduce the

CNBetweenness of a file by assigning a task to a group of

developers focused on a few files, rather than developers already

working on other parts of the system.

5. EMPIRICAL ANALYSIS
Our empirical analysis of Linus’ Law and unfocused contributions

is a statistical correlation study between developer activity metrics

and security vulnerabilities. We focus our empirical analysis on

three questions in the following three subsections:

 Section 5.1: Are developer activity metrics related to

vulnerable files?

 Section 5.2: Can a “critical point” be found in each metric’s

range that is linked to an increase the likelihood of having a

vulnerable file?

 Section 5.3: How many of the vulnerable files can be

explained by the metrics?

Statistically speaking, the first question is an association question,

the second is a discriminative power question, and the third is a

predictive modeling question [20]7.

7 The framework from which these validity criteria are defined

assumes a ratio metric scale, whereas our study is at a nominal

scale. The exact statistical tests may differ but the spirit of the

validation criteria remains intact.

6

In this study we use the three validation criteria (association,

discriminative power, and predictability) to evaluate the strength

of the relationship between the developer activity metrics and

security vulnerabilities. We used SAS8 v9.1.3 for our statistical

analysis and Weka9 v3.6.0 for the Bayesian network prediction

model.

5.1 Association: Are The Metrics Correlated

With Vulnerable Files?
To examine how each of the four metrics summarized in Table 3

are related to security vulnerabilities, we examine the difference

between the vulnerable files and the neutral files in terms of each

metric. As suggested in other metrics validation studies [20], we

use the non-parametric Mann-Whitney-Wilcoxon (MWW) test

for difference in averages. Three outcomes are possible from this

test:

 The metric is statistically higher for vulnerable files than

neutral files,

 The metric is statistically lower for vulnerable files than for

neutral files, or

 The metric is not different between neutral and vulnerable

files at a statistically significant level (p<0.05).

We present our results for our four metrics in Table 3.

Table 4: Mann-Whitney-Wilcoxon test

Metric
Neutral

Avg

Vulnerable

Avg

MWW

p-value

DNMaxEdgeBetweenness 18.8 136.6 p<0.0001

NumDevs 2.2 4.9 p<0.0001

NumCommits 4.1 13.7 p<0.0001

CNBetweenness 3662.8 12198.6 p<0.0001

In all four cases, the metric was statistically higher for vulnerable

files than for neutral files, providing some mixed results regarding

Linus’ Law and unfocused contributions.

 The DNMaxEdgeBetweenness was higher for vulnerable

files, meaning that files developed by multiple, otherwise-

separated clusters of developers were more likely to have a

vulnerability. This supports the notion that, when two

otherwise-disparate groups of developers have a common

interest, multiple connections between the groups ought to be

made, which promotes diversity in perspectives.

 However, the NumDevs metric was higher for vulnerable

files, implying that too many developers changing a single

file is associated with an increase in likelihood of a

vulnerability. This result supports the unfocused contribution

aspect of NumDevs rather than the diversity in perspectives.

This result may be surprising as it goes against Linus’ Law,

indicating that too many eyeballs may be detrimental to the

security of the software.

 NumCommits was higher for vulnerable files, meaning that

vulnerable files were more likely to have underwent many

changes. This result is supports the “code churn” effect

8 http://www.sas.com/
9 http://www.cs.waikato.ac.nz/ml/weka/

found in other studies [13, 14, 21] where code undergoing a

lot of change tends to have more problems.

 CNBetweenness was also higher for vulnerable files than for

neutral files, meaning that vulnerable files were more likely

to have been worked on by many developers who also

worked on many other files. This result supports the

unfocused contribution view.

5.2 Discriminative Power: Are Some Metric

Values Better Than Others?
By evaluating the discriminative power [20] of developer activity

metrics, we are examining how well each metric can individually

differentiate files as vulnerable or neutral. The primary purpose of

discriminative power is to see where a metric is “too high” or “too

low”. A secondary advantage of discriminative power is to

provide a comparison between each metric. Difference in averages

(i.e. association) does not show relative correlation strength from

one metric to the next10. We use an analysis of critical values, and

AUC for discriminative power.

We use the term critical value of a metric to indicate a specific

point that can be used to classify files as either vulnerable or

neutral. For example, finding the critical value of NumDevs

would answer the question: how many developers is “too many”?

The exact critical value of a metric may vary depending on one’s

desired precision and recall (perhaps depending on the software

development process), so we analyze all feasible critical points of

our four metrics. Figure 4 contains plots of the critical values for

each of the four metrics. The possible critical value of the metric

is on the X-axis, and the two series are precision and recall as if

one had used the metric as a discriminator past the critical values.

As an example of using critical values, consider gathering all files

that had nine developers or more (NumDevs >= 9), then 33.3%

(precision) of those files would be vulnerable, which is

considerably high given that only 1.96% of the system’s files were

vulnerable11. Thus, using NumDevs provides 16 times

(=33.3/1.96) more discriminative power than random selection.

Furthermore, for files with fewer than nine developers,

(NumDevs<9), 1.25% of the files were vulnerable. However,

those 33.3% vulnerable files only account for 9.2% (recall) of the

known vulnerable files in the system, meaning more metrics with

high discriminative power are required. Table 5 shows some

example critical values along with the precision, and recall.

Note that, in all four plots of Figure 4, when the recall becomes

small, the precision has a greater variance. This effect is an

artifact of the sample size decreasing as one uses a large, therefore

more limiting, critical value.

Another way to compare the metrics in terms of discrimination is

with the AUC measurement. The AUC is calculated by finding the

proportion of occurrences where a given metric for vulnerable

files outrank a neutral file. Said another way, the AUC represents

the probability that a metric’s value for a randomly-chosen

10 E.g. NumDevs has a much smaller range of values than

CNBetweenness, so the size of the difference in averages cannot

be compared

11 Taken from the 1.96% vulnerable file proportion reported in

Section 3

7

vulnerable file is higher than a randomly-chosen neutral file. The

AUC measurement for each metric is given in Table 5.

Examining the results, one can see that different metrics have

different advantages. DNMaxEdgeBetweenness has a low recall,

implying that DNMaxEdgeBetweenness accounts for relatively

few vulnerabilities. NumDevs, NumCommits, and

CNBetweenness all have high precisions when compared to the

prior probability of 1.96%, but the recalls are still low. With the

highest recall is NumCommits, meaning that examining files with

25 commits or more (in the 15 months of development), contain

17.1% of the known vulnerable files. Furthermore, upon

examining those files, about one in four would be vulnerable. The

result of having all four metrics being correlated (from Section

Table 5: Discriminative power results

Metric AUC* Example

Critical

Value

P* R*

DNMaxEdgeBetweenness 94.6% 270 7.6% 4.9%

NumDevs 85.7% 9 33.3% 9.2%

NumCommits 85.3% 25 26.7% 17.1%

CNBetweenness 78.6% 40,000 17.4% 7.3%

AUC: area under the ROC curve, P=precision, R=recall.

Figure 4: Critical values of metrics for the discriminative power criterion

8

5.1), but having low recalls means, that while the metrics are

correlated with vulnerabilities, none of them individually account

for all of the vulnerabilities.

Note also that critical values can vary according to the project

being studied. Our critical values are specific to the RHEL4

kernel during the time period we studied, so other projects may

have different exact critical values.

5.3 Predictability: How Many Vulnerable

Files Are Explained?
The predictability criterion is used to estimate how many

vulnerabilities can be explained by combining all of the metrics

into a single model. As a secondary purpose, one can use

predictability analysis as a simulation of how well one could have

predicted vulnerabilities prior to release. Said another way, if the

model can predict vulnerable files, then development teams can

use the metrics to find vulnerabilities prior to release, and

prioritize inspection and fortification efforts accordingly.

A key element of prediction is the supervised model. A supervised

model is a method of combining multiple metrics into a single

binary classification prediction (“neutral” or “vulnerable”) [24].

In our study, we used two modeling methods: multivariate

discriminant analysis and Bayesian networks. Discriminant

analysis is a modeling method that uses an n-dimensional space to

achieve maximum separation of variables. Discriminant analysis

has widespread applications, including facial recognition [12,

22]. Bayesian networks use Bayesian inference on a network of

metrics, taking into account conditional dependencies between

metrics. Bayesian networks also have widespread applications,

including gene expression [16] and satellite failure monitoring

systems.

Supervised models require a training set and a validation set. In

this study, we use cross validation to generate each set. For

discriminant analysis, we used hold-one-out cross validation with

recall, precision, and inspection rate as defined in Section 2.2.

Hold-one-out cross-validation is performed by iteratively

removing each data point from the set, training on all but the

removed data point, then predicting for the removed point. For

Bayesian Networks we used ten-fold cross-validation. Ten-fold

cross validation is similar to hold-one-out, except the data is

randomly partitioned into 10 partitions, with each partition being

the held-out test set exactly once. Since ten-fold cross-validation

is based on random partitions, we performed the cross-validation

15 times and report the average. The precision, recall, and

inspection rate of the models can be found in Table 6.

Our results show a significantly higher recall than with the

individual metrics at critical points. However, the precision is

lower to achieve this higher recall. One note of interest here is the

low inspection rate. If a team wanted to inspect files using the

Bayesian network model, then they would only need to inspect

4.9% of the files and would find 33.3% of the vulnerable files.

The difference in modeling methods shows that Bayesian

networks tend to be more precise, requiring a lower inspection

rate, but find a smaller percentage of the known vulnerable files

than multivariate discriminant analysis. One can use this fact for

deciding which modeling method to use if the goal is to predict

vulnerable files based on our four developer activity metrics.

Figure 5 shows the recall, inspection rate, and precision for all 15

runs of ten-fold cross-validation Bayesian network models. The

figure shows minute variations from trial to trial, meaning that

negligible variation in the model performance was due to the

random partitioning in cross-validation.

Figure 5: Variation of Bayesian Network in cross-validation

The results of our predictability analysis show that the four

developer activity metrics can be used to predict vulnerable files,

but not all of the vulnerable files. This conclusion is a logical one:

even if the models were perfect, we have no way of knowing if

every vulnerable file was vulnerable because of poor developer

activity.

5.4 Discussion
Our results show a statistically significant correlation in all four

developer activity metrics. Three of the four metrics support the

notion of unfocused contributions, specifically that the vulnerable

files were undergoing a lot of change (NumCommits), by many

developers (NumDevs), and by developers who were also working

on many other files (CNBetweenness).

When examining unfocused contributions, one might consider

what Frederick Brooks says about too many developers on a

project:

 “If each part of the task must be separately coordinated

with each other part, the effort increases as

n(n-1)/2.”[3]

In context, Brooks is specifically discussing Brook’s Law,

“Adding manpower to a late software project makes it later”.

However the reasoning bears resemblance to the unfocused

contribution argument in that coordinating a large number of

developers can require a communication and coordination effort

quadratic in the number of developers. While unfocused

Table 6: Predictability Results

Method P* R* IR*

Multivariate

Discriminant

Analysis

9.9% 50.7% 10.0%

Bayesian

Networks
13.3% 33.2% 4.9%

* P=precision, R=recall, IR=inspection rate,

9

contributions do not necessarily negate Linus’ Law, our results

show that they are a legitimate opposing force.

As far as diversity in perspectives, more developers changing the

code does not mean an increase in security. One interesting

observation is in the NumDevs chart in Figure 4: the proportion of

vulnerabilities steadily increases as the number of developers

increases (until about nine when the recall drops). However, files

worked on by disparate, otherwise-separated clusters of

developers are more likely to have a vulnerability.

One factor to consider when evaluating software security and

Linus’ Law is taking ongoing code change into account. Many

open source projects are constantly changing and evolving (the

Linux kernel is no exception). The developer community must

continually keep up with finding vulnerabilities and fortification

efforts in an ever-changing, ever-branching project.

6. LIMITATIONS
All of our developer activity metrics require version control data,

and therefore change in the system. For developer networks, if a

file has no commits to it during the period of study, the file has no

developers in its history and therefore no measurement can be

made. In our case study, all of the vulnerabilities happened to be

in files that were changed 15 months prior to release (our time

period under study). A vulnerability could be in a file that was not

changed, but since our case study had no instance of that

situation, this effect did not have an impact on our results.

Also, we cannot claim that developer activity metrics cause

vulnerabilities. Studies of historical data can only show a

statistically significant correlation. Proving causation would

require a controlled experiment, which is not feasible for an

ongoing project like the Linux kernel. Furthermore, although we

used the term “validation criteria”, we do not consider developer

activity metrics to be fully validated until further case studies

support consistent, repeatable results.

Since our data only includes known vulnerabilities, we cannot

make any claims about latent, undiscovered vulnerabilities. As a

result of the latent, undiscovered vulnerabilities, we cannot say

that a low precision (i.e. a high occurrence of false positives) is

actually indicative of real false positives, or that our model is

finding more vulnerabilities in the system that have not yet been

confirmed.

7. RELATED WORK
The topics of developers and collaboration have been examined in

several recent empirical studies. All of the studies, however, either

examine the meaning of developer activity metrics or relate them

to reliability. Only one of the studies relate developer activity

metrics to security.

Shin et al. [21] evaluated the statistical connection between

vulnerabilities and metrics of complexity, code churn, and

developer activity. The study denotes two case studies of large,

open source projects: multiple releases of Mozilla Firefox and the

RHEL4 kernel. Among the findings include a statistically

significant correlation between metrics of all three categories and

security vulnerabilities. Also, in the Mozilla project, a model

containing all three types of metrics was able to find 70.8% of the

known vulnerabilities by selecting only 10.9% of the project’s

files. The study examines a different collection of metrics than

this study and combines disparate metrics into a single model.

Meneely et al., [13] examined the relationship between developer

activity metrics and reliability. The empirical case study examined

three releases of a large, proprietary networking product. The

authors used developer centrality metrics from the developer

network to examine whether files are more likely to have failures

if they were changed by developers who are peripheral to the

network. The authors formed a model that included metrics of

developer centrality, code churn (the degree to which a file was

changed recently), and lines of code to predict failures from one

release to the next. Their model’s prioritization found 58% of the

system’s failures in 20% of the files, where a perfect prioritization

would have found 61%. The study did not include work on

developer clusters, unfocused contributions, or security.

Bird et al. [1] uses a similar approach to ours with the purpose of

examining social structures in open source projects. Also

discussing connections and contradictions between some of

Brooks’s ideas [3] and the bazaar-like development of open

source projects, the authors empirically examine how open source

developers self-organize. The authors use similar network

structures as our developer network to find the presence of sub-

communities within open source projects. In addition to

examining version control change logs, the authors mined email

logs and other artifacts of several open source projects to find a

community structure. The authors conclude that sub-communities

do exist in open source projects, as evidenced by the project

artifacts exhibiting a social network structure that resembles

collaboration networks in other disciplines. In our study, we

leverage network analysis metrics as an estimation of

collaboration and examine their relationship to vulnerabilities in

the project.

Pinzger et al. [17] were the first to propose the contribution

network. The contribution network is designed to use version

control data to quantify the direct and indirect contribution of

developers on specific resources of the project. The researchers

used metrics of centrality in their study of Microsoft Windows

Vista and found that closeness was the most significant metric for

predicting reliability failures. Files that were contributed to by

many developers, especially by developers who were making

many different contributions themselves, were found to be more

failure-prone than files developed in relative isolation. The

finding is that files which are being focused on by a few

developers are less problematic than files developed by many

developers. In our study, we use centrality metrics on contribution

networks to predict vulnerabilities in files.

Gonzales-Barahona and Lopez-Fernandez [6] were the first to

propose the idea of creating developer networks as models of

collaboration from source repositories. The authors’ objective was

to present the developer network and to differentiate and

characterize projects.

Nagappan et al. [15] created a logistic regression model for

failures in the Windows Vista operating system. The model was

based on what they called “Overall Organizational Ownership”

(OOW). The metrics for OOW included concepts like

organizational cohesiveness and diverse contributions. Among the

findings is that more edits made by many, non-cohesive

developers leads to more problems post-release. The OOW model

was able to predict with 87% average precision and 84% average

recall. The OOW model bears a resemblance to the contribution

10

network in that both models attempt to differentiate healthy

changes in software from the problematic changes.

8. SUMMARY
The objective of this research is to reduce security vulnerabilities

by providing actionable insight into the structural nature of

developer collaboration in open source software. Within our case

study of the RHEL4 kernel, we found four metrics that

empirically support the notions of Linus’ Law and unfocused

contributions. An empirical analysis of our data demonstrates the

following observations:

(a) source code files changed by multiple, otherwise-separated

clusters of developers are more likely to be vulnerable than

changed by a single cluster; and

 (b) files are likely to be vulnerable when changed by many

developers who have made many changes to other files.

Practitioners can use these observations to prioritize security

fortification efforts or to consider organizational changes among

developers. While the results are statistically significant, the

individual correlations indicate that developer activity metrics are

likely to perform best for prediction in the presence of other

metrics.

9. ACKNOWLEDGMENTS
We thank Mark Cox and the Realsearch group for their valuable

support. This work was supported by the U.S. Army Research

Office (ARO) under grant W911NF-08-1-0105 managed by

NCSU Secure Open Systems Initiative (SOSI).

10. REFERENCES
[1] C. Bird, D. Pattison, R. D'Souza et al., "Latent Social

Structures in Open Source Projects," in FSE, Atlanta,

GA, 2008, p. p24-36.

[2] U. Brandes, and T. Erlebach, Network Analysis:

Methodological Foundations, Berlin: Springer, 2005.

[3] F. Brooks, The mythical man-month: Addison-Wesley,

1995.

[4] A. Endres, and D. Rombach, A Handbook of Software

and Systems Engineering: Empirical Observations,

Laws and Theories: Addison Wesley, 2003.

[5] M. Girvan, and M. E. J. Newman, "Community

Structure in Social and Biological Networks," The

Proceedings of the National Academy of Sciences, vol.

99, no. 12, p. 7821-7826, 2001.

[6] J. M. Gonzales-Barahona, L. Lopez-Fernandez, and G.

Robles, "Applying Social Network Analysis to the

Information in CVS Repositories," in 2005 Mining

Software Repositories, Edinburgh, Scotland, United

Kingdom, 2004, p.

[7] J.-H. Hoepman, and B. Jacobs, "Increased security

through open source," Commun. ACM, vol. 50, no. 1,

p. 79-83, 2007.

[8] ISO, ISO/IEC DIS 14598-1 Information Technology -

Software Product Evaluation, 1996.

[9] M. M. Lehman, and L. Belady, Program Evolution:

Processes of Software Change, London: Academic

Press, 1985.

[10] M. M. Lehman, and J. F. Ramil, "Rules and Tools for

Software Evolution Planning and Management," Annals

of Software Engineering, vol. 11, no. 1, p. 15-44, 2001.

[11] M. M. Lehman, J. F. Ramil, P. D. Wernick et al.,

"Metrics and Laws of Software Evolution -- The

Nineties View," in 4th International Software Metrics

Symposium (METRICS '97), Albuquerque, NM, 1997,

p. 20-32.

[12] A. M. Martinez, and A. C. Kak, "PCA versus LDA,"

IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 2, p. 228-233, 2001.

[13] A. Meneely, L. Williams, J. Osborne et al., "Predicting

Failures with Developer Networks and Social Network

Analysis " in Foundations in Software Engineering,

Atlanta, GA, 2008, p. to appear.

[14] N. Nagappan, and T. Ball, "Use of Relative Code Churn

Measures to Predict System Defect Density," in 27th

International Conference on Software Engineering, St.

Louis, MO, USA, 2005, p. 284-292.

[15] N. Nagappan, B. Murphy, and V. R. Basili, "The

Influence of Organizational Structure on Software

Quality," in International Conference on Software

Engineering, Leipzig, Germany, 2008, p. 521-530.

[16] K. Numata, S. Imoto, and S. Miyano, "A Structure

Learning Algorithm for Inference of Gene Networks

from Microarray Gene Expression Data Using Bayesian

Networks," in Bioinformatics and Bioengineering,

2007. BIBE 2007., p. 1280-1284.

[17] M. Pinzger, N. Nagappan, and B. Murphy, "Can

Developer-Module Networks Predict Failures?," in

Foundations in Software Engineering, Atlanta, GA,

2008, p. 2-12.

[18] M. Pinzger, N. Nagappan, and B. Murphy, "Can

Developer-Module Networks Predict Failures?," in

Foundations in Software Engineering, Atlanta, GA,

2008, p. to appear.

[19] E. S. Raymond, The Cathedral and the Bazaar:

Musings on Linux and Open Source by an Accidental

Revolutionary, Sebastopol, California: O'Reilly and

Associates, 1999.

[20] N. F. Schneidewind, "Methodology For Validating

Software Metrics," IEEE Transactions on Software

Engineering, vol. 18, no. 5, p. 410-422, 1992.

[21] Y. Shin, A. Meneely, L. Williams et al., "Evaluating

Complexity, Code Churn, and Developer Activity

Metrics as Indicators of Software Vulnerabilities,"

NCSU CSC Technical Report TR-2009-10, submitted

to IEEE TSE.

[22] K. Tae-Kyun, and J. Kittler, "Locally linear

discriminant analysis for multimodally distributed

classes for face recognition with a single model image,"

Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 27, no. 3, p. 318-327, 2005.

[23] B. Witten, C. Landwehr, and M. Caloyannides, "Does

Open Source Improve System Security?," IEEE Softw.,

vol. 18, no. 5, p. 57-61, 2001.

[24] I. H. Witten, and E. Frank, Data Mining: Practical

machine learning tools and techniques, 2 ed., San

Francisco: Morgan Kaufmann, 2005.

