
5-1

CHAPTER 5

SOFTWARE MAINTENANCE

ACRONYMS

MR Modification Request

PR Problem Report

SCM Software Configuration
Management

SLA Service-Level Agreement
SQA Software Quality Assurance
V&V Verification and Validation

INTRODUCTION

Software development efforts result in the deliv-
ery of a software product that satisfies user
requirements. Accordingly, the software product
must change or evolve. Once in operation, defects
are uncovered, operating environments change,
and new user requirements surface. The mainte-
nance phase of the life cycle begins following a
warranty period or postimplementation support
delivery, but maintenance activities occur much
earlier.

Software maintenance is an integral part of a
software life cycle. However, it has not received
the same degree of attention that the other phases
have. Historically, software development has had
a much higher profile than software maintenance
in most organizations. This is now changing, as
organizations strive to squeeze the most out of
their software development investment by keep-
ing software operating as long as possible. The
open source paradigm has brought further atten-
tion to the issue of maintaining software artifacts
developed by others.

In this Guide, software maintenance is defined
as the totality of activities required to provide
cost-effective support to software. Activities are
performed during the predelivery stage as well as

during the postdelivery stage. Predelivery activi-
ties include planning for postdelivery operations,
maintainability, and logistics determination for
transition activities >1*, c6s9@. Postdelivery
activities include software modification, training,
and operating or interfacing to a help desk.

The Software Maintenance knowledge area
(KA) is related to all other aspects of software
engineering. Therefore, this KA description is
linked to all other software engineering KAs of
the Guide.

BREAKDOWN OF TOPICS FOR
SOFTWARE MAINTENANCE

The breakdown of topics for the Software Main-
tenance KA is shown in Figure 5.1.

1. Software Maintenance Fundamentals

This first section introduces the concepts and
terminology that form an underlying basis to
understanding the role and scope of software
maintenance. The topics provide definitions and
emphasize why there is a need for maintenance.
Categories of software maintenance are critical to
understanding its underlying meaning.

1.1. Definitions and Terminology
>1*, c3@ >2*, c1s2, c2s2@

The purpose of software maintenance is defined
in the international standard for software mainte-
nance: ISO/IEC/IEEE 14764 >1*@.1 In the context
of software engineering, software maintenance is
essentially one of the many technical processes.

1 For the purpose of conciseness and ease of read-
ing, this standard is referred to simply as IEEE 14764
in the subsequent text of this KA.

blay

blay

blay

5-2 SWEBOK® Guide V3.0

The objective of software maintenance is to
modify existing software while preserving its
integrity. The international standard also states
the importance of having some maintenance
activities prior to the final delivery of software
(predelivery activities). Notably, IEEE 14764
emphasizes the importance of the predelivery
aspects of maintenance—planning, for example.

1.2. Nature of Maintenance
>2*, c1s3@

Software maintenance sustains the software prod-
uct throughout its life cycle (from development
to operations). Modification requests are logged
and tracked, the impact of proposed changes is
determined, code and other software artifacts are

modified, testing is conducted, and a new version
of the software product is released. Also, train-
ing and daily support are provided to users. The
term maintainer is defined as an organization that
performs maintenance activities. In this KA, the
term will sometimes refer to individuals who per-
form those activities, contrasting them with the
developers.

IEEE 14764 identifies the primary activities of
software maintenance as process implementation,
problem and modification analysis, modification
implementation, maintenance review/acceptance,
migration, and retirement. These activities are
discussed in section 3.2, Maintenance Activities.

Maintainers can learn from the develop-
ers’ knowledge of the software. Contact with
the developers and early involvement by the

Figure 5.1. Breakdown of Topics for the Software Maintenance KA

blay

blay

blay

blay

blay

Software Maintenance 5-3

maintainer helps reduce the overall maintenance
effort. In some instances, the initial developer
cannot be reached or has moved on to other tasks,
which creates an additional challenge for main-
tainers. Maintenance must take software artifacts
from development (for example, code or docu-
mentation) and support them immediately, then
progressively evolve/maintain them over a soft-
ware life cycle.

1.3. Need for Maintenance 
>2*, c1s5@

Maintenance is needed to ensure that the software
continues to satisfy user requirements. Mainte-
nance is applicable to software that is developed
using any software life cycle model (for example,
spiral or linear). Software products change due
to corrective and noncorrective software actions.
Maintenance must be performed in order to

� correct faults;
� improve the design;
� implement enhancements;
� interface with other software;
� adapt programs so that different hardware,

software, system features, and telecommuni-
cations facilities can be used;

� migrate legacy software; and
� retire software.

Five key characteristics comprise the maintain-
er’s activities:

� maintaining control over the software’s day-
to-day functions;

� maintaining control over software
modification;

� perfecting existing functions;
� identifying security threats and fixing secu-

rity vulnerabilities; and
� preventing software performance from

degrading to unacceptable levels.

1.4. Majority of Maintenance Costs 
>2*, c4s3, c5s5.2@

Maintenance consumes a major share of the finan-
cial resources in a software life cycle. A common

perception of software maintenance is that it
merely fixes faults. However, studies and sur-
veys over the years have indicated that the major-
ity, over 80 percent, of software maintenance is
used for noncorrective actions >2*, figure 4.1@.
Grouping enhancements and corrections together
in management reports contributes to some mis-
conceptions regarding the high cost of correc-
tions. Understanding the categories of software
maintenance helps to understand the structure of
software maintenance costs. Also, understanding
the factors that influence the maintainability of
software can help to contain costs. Some environ-
mental factors and their relationship to software
maintenance costs include the following:

� Operating environment refers to hardware
and software.

� Organizational environment refers to poli-
cies, competition, process, product, and
personnel.

1.5. Evolution of Software 
>2*, c3s5@

Software maintenance in terms of evolution was
first addressed in the late 1960s. Over a period of
twenty years, research led to the formulation of
eight “Laws of Evolution.” Key findings include a
proposal that maintenance is evolutionary devel-
opment and that maintenance decisions are aided
by understanding what happens to software over
time. Some state that maintenance is continued
development, except that there is an extra input
(or constraint)–in other words, existing large soft-
ware is never complete and continues to evolve;
as it evolves, it grows more complex unless some
action is taken to reduce this complexity.

1.6. Categories of Maintenance 
>1*, c3, c6s2@ >2*, c3s3.1@

Three categories (types) of maintenance have
been defined: corrective, adaptive, and perfec-
tive >2*, c4s3@. IEEE 14764 includes a fourth
category–preventative.

� Corrective maintenance: reactive modifi-
cation (or repairs) of a software product

5-4 SWEBOK® Guide V3.0

performed after delivery to correct discov-
ered problems. Included in this category
is emergency maintenance, which is an
unscheduled modification performed to tem-
porarily keep a software product operational
pending corrective maintenance.

� Adaptive maintenance: modification of a
software product performed after delivery to
keep a software product usable in a changed
or changing environment. For example,
the operating system might be upgraded
and some changes to the software may be
necessary.

� Perfective maintenance: modification of a
software product after delivery to provide
enhancements for users, improvement of
program documentation, and recoding to
improve software performance, maintain-
ability, or other software attributes.

� Preventive maintenance: modification of a
software product after delivery to detect and
correct latent faults in the software product
before they become operational faults.

IEEE 14764 classifies adaptive and perfective
maintenance as maintenance enhancements. It
also groups together the corrective and preven-
tive maintenance categories into a correction cat-
egory, as shown in Table 5.1.

Table 5.1. Software Maintenance Categories

Correction Enhancement

Proactive Preventive Perfective

Reactive Corrective Adaptive

2. Key Issues in Software Maintenance

A number of key issues must be dealt with to
ensure the effective maintenance of software.
Software maintenance provides unique techni-
cal and management challenges for software
engineers—for example, trying to find a fault in
software containing a large number of lines of
code that another software engineer developed.
Similarly, competing with software developers
for resources is a constant battle. Planning for a
future release, which often includes coding the

next release while sending out emergency patches
for the current release, also creates a challenge.
The following section presents some of the tech-
nical and management issues related to software
maintenance. They have been grouped under the
following topic headings:

� technical issues,
� management issues,
� cost estimation, and
� measurement.

2.1. Technical Issues

2.1.1. Limited Understanding 
>2*, c6@

Limited understanding refers to how quickly a
software engineer can understand where to make
a change or correction in software that he or she
did not develop. Research indicates that about half
of the total maintenance effort is devoted to under-
standing the software to be modified. Thus, the
topic of software comprehension is of great inter-
est to software engineers. Comprehension is more
difficult in text-oriented representation—in source
code, for example—where it is often difficult to
trace the evolution of software through its releases/
versions if changes are not documented and if the
developers are not available to explain it, which is
often the case. Thus, software engineers may ini-
tially have a limited understanding of the software;
much has to be done to remedy this.

2.1.2. Testing
>1*, c6s2.2.2@ >2*, c9@

The cost of repeating full testing on a major
piece of software is significant in terms of time
and money. In order to ensure that the requested
problem reports are valid, the maintainer should
replicate or verify problems by running the
appropriate tests. Regression testing (the selec-
tive retesting of software or a component to ver-
ify that the modifications have not caused unin-
tended effects) is an important testing concept in
maintenance. Additionally, finding time to test is
often difficult. Coordinating tests when different
members of the maintenance team are working

Software Maintenance 5-5

on different problems at the same time remains a
challenge. When software performs critical func-
tions, it may be difficult to bring it offline to test.
Tests cannot be executed in the most meaning-
ful place–the production system. The Software
Testing KA provides additional information and
references on this matter in its subtopic on regres-
sion testing.

2.1.3. Impact Analysis
>1*, c5s2.5@ >2*, c13s3@

Impact analysis describes how to conduct, cost-
effectively, a complete analysis of the impact of
a change in existing software. Maintainers must
possess an intimate knowledge of the software’s
structure and content. They use that knowledge
to perform impact analysis, which identifies all
systems and software products affected by a soft-
ware change request and develops an estimate of
the resources needed to accomplish the change.
Additionally, the risk of making the change is
determined. The change request, sometimes called
a modification request (MR) and often called a
problem report (PR), must first be analyzed and
translated into software terms. Impact analysis is
performed after a change request enters the soft-
ware configuration management process. IEEE
14764 states the impact analysis tasks:

� analyze MRs/PRs;
� replicate or verify the problem;
� develop options for implementing the

modification;
� document the MR/PR, the results, and the

execution options;
� obtain approval for the selected modification

option.

The severity of a problem is often used to
decide how and when it will be fixed. The soft-
ware engineer then identifies the affected com-
ponents. Several potential solutions are provided,
followed by a recommendation as to the best
course of action.

Software designed with maintainability in mind
greatly facilitates impact analysis. More informa-
tion can be found in the Software Configuration
Management KA.

2.1.4. Maintainability
>1*, c6s8@ >2*, c12s5.5@

IEEE 14764 >1*, c3s4@ defines maintainability
as the capability of the software product to be
modified. Modifications may include corrections,
improvements, or adaptation of the software to
changes in environment as well as changes in
requirements and functional specifications.

As a primary software quality characteristic,
maintainability should be specified, reviewed, and
controlled during software development activi-
ties in order to reduce maintenance costs. When
done successfully, the software’s maintainability
will improve. Maintainability is often difficult to
achieve because the subcharacteristics are often
not an important focus during the process of soft-
ware development. The developers are, typically,
more preoccupied with many other activities and
frequently prone to disregard the maintainer’s
requirements. This in turn can, and often does,
result in a lack of software documentation and test
environments, which is a leading cause of difficul-
ties in program comprehension and subsequent
impact analysis. The presence of systematic and
mature processes, techniques, and tools helps to
enhance the maintainability of software.

2.2. Management Issues

2.2.1. Alignment with Organizational 
Objectives 

>2*, c4@

Organizational objectives describe how to demon-
strate the return on investment of software main-
tenance activities. Initial software development is
usually project-based, with a defined time scale and
budget. The main emphasis is to deliver a product
that meets user needs on time and within budget.
In contrast, software maintenance often has the
objective of extending the life of software for as
long as possible. In addition, it may be driven by
the need to meet user demand for software updates
and enhancements. In both cases, the return on
investment is much less clear, so that the view at
the senior management level is often that of a major
activity consuming significant resources with no
clear quantifiable benefit for the organization.

5-6 SWEBOK® Guide V3.0

2.2.2. Staffing
>2*, c4s5, c10s4@

Staffing refers to how to attract and keep soft-
ware maintenance staff. Maintenance is not often
viewed as glamorous work. As a result, software
maintenance personnel are frequently viewed
as “second-class citizens,” and morale therefore
suffers.

2.2.3. Process
>1*, c5@ >2*, c5@

The software life cycle process is a set of activities,
methods, practices, and transformations that peo-
ple use to develop and maintain software and its
associated products. At the process level, software
maintenance activities share much in common
with software development (for example, software
configuration management is a crucial activity in
both). Maintenance also requires several activities
that are not found in software development (see
section 3.2 on unique activities for details). These
activities present challenges to management.

2.2.4. Organizational Aspects of Maintenance 
>1*, c7s2.3@ >2*, c10@

Organizational aspects describe how to iden-
tify which organization and/or function will be
responsible for the maintenance of software. The
team that develops the software is not necessar-
ily assigned to maintain the software once it is
operational.

In deciding where the software maintenance
function will be located, software engineering
organizations may, for example, stay with the
original developer or go to a permanent main-
tenance-specific team (or maintainer). Having a
permanent maintenance team has many benefits:

� allows for specialization;
� creates communication channels;
� promotes an egoless, collegiate atmosphere;
� reduces dependency on individuals;
� allows for periodic audit checks.

Since there are many pros and cons to each
option, the decision should be made on a case-by-
case basis. What is important is the delegation or

assignment of the maintenance responsibility to a
single group or person, regardless of the organi-
zation’s structure.

2.2.5. Outsourcing
>3*@

Outsourcing and offshoring software mainte-
nance has become a major industry. Organiza-
tions are outsourcing entire portfolios of soft-
ware, including software maintenance. More
often, the outsourcing option is selected for less
mission-critical software, as organizations are
unwilling to lose control of the software used in
their core business. One of the major challenges
for outsourcers is to determine the scope of the
maintenance services required, the terms of a ser-
vice-level agreement, and the contractual details.
Outsourcers will need to invest in a maintenance
infrastructure, and the help desk at the remote site
should be staffed with native-language speakers.
Outsourcing requires a significant initial invest-
ment and the setup of a maintenance process that
will require automation.

2.3. Maintenance Cost Estimation

Software engineers must understand the different
categories of software maintenance, discussed
above, in order to address the question of estimat-
ing the cost of software maintenance. For plan-
ning purposes, cost estimation is an important
aspect of planning for software maintenance.

2.3.1. Cost Estimation
>2*, c7s2.4@

Section 2.1.3 describes how impact analysis iden-
tifies all systems and software products affected
by a software change request and develops an
estimate of the resources needed to accomplish
that change.

Maintenance cost estimates are affected
by many technical and nontechnical factors.
IEEE 14764 states that “the two most popular
approaches to estimating resources for software
maintenance are the use of parametric models
and the use of experience” >1*, c7s4.1@. A combi-
nation of these two can also be used.

Software Maintenance 5-7

2.3.2. Parametric Models
>2*, c12s5.6@

Parametric cost modeling (mathematical models)
has been applied to software maintenance. Of sig-
nificance is that historical data from past main-
tenance are needed in order to use and calibrate
the mathematical models. Cost driver attributes
affect the estimates.

2.3.3. Experience
>2*, c12s5.5@

Experience, in the form of expert judgment,
is often used to estimate maintenance effort.
Clearly, the best approach to maintenance esti-
mation is to combine historical data and experi-
ence. The cost to conduct a modification (in terms
of number of people and amount of time) is then
derived. Maintenance estimation historical data
should be provided as a result of a measurement
program.

2.4. Software Maintenance Measurement
>1*, c6s5@ >2*, c12@

Entities related to software maintenance, whose
attributes can be subjected to measurement,
include process, resource, and product [2*,
c12s3.1@.

There are several software measures that can
be derived from the attributes of the software,
the maintenance process, and personnel, includ-
ing size, complexity, quality, understandability,
maintainability, and effort. Complexity measures
of software can also be obtained using available
commercial tools. These measures constitute a
good starting point for the maintainer’s measure-
ment program. Discussion of software process
and product measurement is also presented in the
Software Engineering Process KA. The topic of
a software measurement program is described in
the Software Engineering Management KA.

2.4.1. Specific Measures
 >2*, c12@

The maintainer must determine which measures
are appropriate for a specific organization based
on that organization’s own context. The software

quality model suggests measures that are specific
for software maintenance. Measures for subchar-
acteristics of maintainability include the follow-
ing >4*, p. 60@:

� Analyzability: measures of the maintainer’s
effort or resources expended in trying either
to diagnose deficiencies or causes of failure
or to identify parts to be modified.

� Changeability: measures of the maintainer’s
effort associated with implementing a speci-
fied modification.

� Stability: measures of the unexpected behav-
ior of software, including that encountered
during testing.

� Testability: measures of the maintainer’s and
users’ effort in trying to test the modified
software.

� Other measures that maintainers use include
� size of the software,
� complexity of the software ,
� understandability, and
� maintainability.

Providing software maintenance effort, by
categories, for different applications provides
business information to users and their organiza-
tions. It can also enable the comparison of soft-
ware maintenance profiles internally within an
organization.

3. Maintenance Process

In addition to standard software engineering pro-
cesses and activities described in IEEE 14764,
there are a number of activities that are unique to
maintainers.

3.1. Maintenance Processes
>1*, c5@ >2*, c5@ >5, s5.5@

Maintenance processes provide needed activities
and detailed inputs/outputs to those activities as
described in IEEE 14764. The maintenance pro-
cess activities of IEEE 14764 are shown in Figure
5.2. Software maintenance activities include

� process implementation,
� problem and modification analysis,
� modification implementation,

5-8 SWEBOK® Guide V3.0

� maintenance review/acceptance,
� migration, and
� software retirement.

Figure 5.2. Software Maintenance Process

Other maintenance process models include:

� quick fix,
� spiral,
� Osborne’s,
� iterative enhancement, and
� reuse-oriented.

Recently, agile methodologies, which promote
light processes, have been also adapted to main-
tenance. This requirement emerges from the ever-
increasing demand for fast turnaround of main-
tenance services. Improvement to the software
maintenance process is supported by specialized
software maintenance capability maturity models
(see >6@ and >7@, which are briefly annotated in the
Further Readings section).

3.2. Maintenance Activities
>1*, c5, c6s8.2, c7s3.3@

The maintenance process contains the activities
and tasks necessary to modify an existing soft-
ware product while preserving its integrity. These

activities and tasks are the responsibility of the
maintainer. As already noted, many maintenance
activities are similar to those of software develop-
ment. Maintainers perform analysis, design, cod-
ing, testing, and documentation. They must track
requirements in their activities—just as is done
in development—and update documentation as
baselines change. IEEE 14764 recommends that
when a maintainer uses a development process,
it must be tailored to meet specific needs >1*,
c5s3.2.2@. However, for software maintenance,
some activities involve processes unique to soft-
ware maintenance.

3.2.1. Unique Activities
>1*, c3s10, c6s9, c7s2, c7s3@ >2*, c6, c7@

There are a number of processes, activities, and
practices that are unique to software maintenance:

� Program understanding: activities needed to
obtain a general knowledge of what a software
product does and how the parts work together.

� Transition: a controlled and coordinated
sequence of activities during which software
is transferred progressively from the devel-
oper to the maintainer.

� Modification request acceptance/rejection:
modifications requesting work beyond a cer-
tain size/effort/complexity may be rejected
by maintainers and rerouted to a developer.

� Maintenance help desk: an end-user and
maintenance coordinated support function
that triggers the assessment, prioritization,
and costing of modification requests.

� Impact analysis: a technique to identify areas
impacted by a potential change;

� Maintenance Service-Level Agreements
(SLAs) and maintenance licenses and con-
tracts: contractual agreements that describe
the services and quality objectives.

3.2.2. Supporting Activities
>1*, c4s1, c5, c6s7@ >2*, c9@

Maintainers may also perform support activities,
such as documentation, software configuration
management, verification and validation, problem
resolution, software quality assurance, reviews,

Software Maintenance 5-9

and audits. Another important support activity
consists of training the maintainers and users.

3.2.3. Maintenance Planning Activities
>1*, c7s3@

An important activity for software maintenance is
planning, and maintainers must address the issues
associated with a number of planning perspec-
tives, including

� business planning (organizational level),
� maintenance planning (transition level),
� release/version planning (software level), and
� individual software change request planning

(request level).

At the individual request level, planning is
carried out during the impact analysis (see sec-
tion 2.1.3, Impact Analysis). The release/version
planning activity requires that the maintainer:

� collect the dates of availability of individual
requests,

� agree with users on the content of subsequent
releases/versions,

� identify potential conflicts and develop
alternatives,

� assess the risk of a given release and develop
a back-out plan in case problems should
arise, and

� inform all the stakeholders.

Whereas software development projects can
typically last from some months to a few years,
the maintenance phase usually lasts for many
years. Making estimates of resources is a key ele-
ment of maintenance planning. Software main-
tenance planning should begin with the decision
to develop a new software product and should
consider quality objectives. A concept document
should be developed, followed by a maintenance
plan. The maintenance concept for each software
product needs to be documented in the plan [1*,
c7s2@ and should address the

� scope of the software maintenance,
� adaptation of the software maintenance

process,

� identification of the software maintenance
organization, and

� estimate of software maintenance costs.

The next step is to develop a corresponding
software maintenance plan. This plan should be
prepared during software development and should
specify how users will request software modifica-
tions or report problems. Software maintenance
planning is addressed in IEEE 14764. It provides
guidelines for a maintenance plan. Finally, at
the highest level, the maintenance organization
will have to conduct business planning activities
(budgetary, financial, and human resources) just
like all the other divisions of the organization.
Management is discussed in the chapter Related
Disciplines of Software Engineering.

3.2.4. Software Configuration Management
>1*, c5s1.2.3@ >2*, c11@

IEEE 14764 describes software configuration
management as a critical element of the mainte-
nance process. Software configuration manage-
ment procedures should provide for the verifica-
tion, validation, and audit of each step required
to identify, authorize, implement, and release the
software product.

It is not sufficient to simply track modifica-
tion requests or problem reports. The software
product and any changes made to it must be con-
trolled. This control is established by implement-
ing and enforcing an approved software configu-
ration management (SCM) process. The Software
Configuration Management KA provides details
of SCM and discusses the process by which soft-
ware change requests are submitted, evaluated,
and approved. SCM for software maintenance is
different from SCM for software development in
the number of small changes that must be con-
trolled on operational software. The SCM pro-
cess is implemented by developing and following
a software configuration management plan and
operating procedures. Maintainers participate in
Configuration Control Boards to determine the
content of the next release/version.

5-10 SWEBOK® Guide V3.0

3.2.5. Software Quality
>1*, c6s5, c6s7, c6s8@ >2*, c12s5.3@

It is not sufficient to simply hope that increased
quality will result from the maintenance of soft-
ware. Maintainers should have a software qual-
ity program. It must be planned and processes
must be implemented to support the maintenance
process. The activities and techniques for Soft-
ware Quality Assurance (SQA), V&V, reviews,
and audits must be selected in concert with all
the other processes to achieve the desired level
of quality. It is also recommended that the main-
tainer adapt the software development processes,
techniques and deliverables (for instance, testing
documentation), and test results. More details can
be found in the Software Quality KA.

4. Techniques for Maintenance

This topic introduces some of the generally
accepted techniques used in software maintenance.

4.1. Program Comprehension
>2*, c6, c14s5@

Programmers spend considerable time reading and
understanding programs in order to implement
changes. Code browsers are key tools for program
comprehension and are used to organize and pres-
ent source code. Clear and concise documentation
can also aid in program comprehension.

4.2. Reengineering
>2*, c7@

Reengineering is defined as the examination and
alteration of software to reconstitute it in a new
form, and includes the subsequent implementa-
tion of the new form. It is often not undertaken to
improve maintainability but to replace aging leg-
acy software. Refactoring is a reengineering tech-
nique that aims at reorganizing a program without
changing its behavior. It seeks to improve a pro-
gram structure and its maintainability. Refactor-
ing techniques can be used during minor changes.

4.3. Reverse Engineering
>1*, c6s2@ >2*, c7, c14s5@

Reverse engineering is the process of analyzing
software to identify the software’s components
and their inter-relationships and to create repre-
sentations of the software in another form or at
higher levels of abstraction. Reverse engineer-
ing is passive; it does not change the software
or result in new software. Reverse engineer-
ing efforts produce call graphs and control flow
graphs from source code. One type of reverse
engineering is redocumentation. Another type is
design recovery. Finally, data reverse engineer-
ing, where logical schemas are recovered from
physical databases, has grown in importance over
the last few years. Tools are key for reverse engi-
neering and related tasks such as redocumenta-
tion and design recovery.

4.4. Migration
>1*, c5s5@

During software’s life, it may have to be modi-
fied to run in different environments. In order to
migrate it to a new environment, the maintainer
needs to determine the actions needed to accom-
plish the migration, and then develop and docu-
ment the steps required to effect the migration in
a migration plan that covers migration require-
ments, migration tools, conversion of product
and data, execution, verification, and support.
Migrating software can also entail a number of
additional activities such as

� notification of intent: a statement of why
the old environment is no longer to be sup-
ported, followed by a description of the new
environment and its date of availability;

� parallel operations: make available the
old and new environments so that the user
experiences a smooth transition to the new
environment;

� notification of completion: when the sched-
uled migration is completed, a notification is
sent to all concerned;

Software Maintenance 5-11

� postoperation review: an assessment of par-
allel operation and the impact of changing to
the new environment;

� data archival: storing the old software data.

4.5. Retirement 
>1*, c5s6@

Once software has reached the end of its use-
ful life, it must be retired. An analysis should
be performed to assist in making the retirement
decision. This analysis should be included in the
retirement plan, which covers retirement require-
ments, impact, replacement, schedule, and effort.
Accessibility of archive copies of data may also
be included. Retiring software entails a number
of activities similar to migration.

5. Software Maintenance Tools
>1*, c6s4@ >2*, c14@

This topic encompasses tools that are particularly
important in software maintenance where exist-
ing software is being modified. Examples regard-
ing program comprehension include

� program slicers, which select only parts of a
program affected by a change;

� static analyzers, which allow general view-
ing and summaries of a program content;

� dynamic analyzers, which allow the main-
tainer to trace the execution path of a
program;

� data flow analyzers, which allow the main-
tainer to track all possible data flows of a
program;

� cross-referencers, which generate indices of
program components; and

� dependency analyzers, which help maintain-
ers analyze and understand the interrelation-
ships between components of a program.

Reverse engineering tools assist the process by
working backwards from an existing product to
create artifacts such as specification and design
descriptions, which can then be transformed to
generate a new product from an old one. Main-
tainers also use software test, software configura-
tion management, software documentation, and
software measurement tools.

5-12 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

IE
E

E
/I

SO
/I

EC
 1

47
64

 2
00

6
[1

*]

G
ru

bb
 a

nd
 T

ak
an

g
20

03

[2
*]

Sn
ee

d
20

08

[3
*]

1. Software Maintenance
Fundamentals

1.1. Definitions and Terminology c3 c1s2, c2s2

1.2. Nature of Maintenance c1s3

1.3. Need for Maintenance c1s5

1.4. Majority of Maintenance Costs c4s3, c5s5.2

1.5. Evolution of Software c3s5

1.6. Categories of Maintenance c3, c6s2 c3s3.1, c4s3

2. Key Issues in Software
Maintenance

2.1. Technical Issues

2.1.1. Limited Understanding c6

2.1.2. Testing c6s2.2.2 c9

2.1.3. Impact Analysis c5s2.5 c13s3

2.1.4. Maintainability c6s8, c3s4 c12s5.5

2.2. Management Issues

2.2.1. Alignment with
Organizational objectives c4

2.2.2. Staffing c4s5, c10s4

2.2.3. Process c5 c5

2.2.4. Organizational Aspects of
Maintenance c7s.2.3 c10

2.2.5. Outsourcing/Offshoring all

2.3. Maintenance Cost Estimation

2.3.1. Cost Estimation c7s4.1 c7s2.4

Software Maintenance 5-13

IE
E

E
/I

SO
/I

EC
 1

47
64

 2
00

6
[1

*]

G
ru

bb
 a

nd
 T

ak
an

g
20

03

[2
*]

Sn
ee

d
20

08

[3
*]

2.3.2. Parametric Models c12s5.6

2.3.3. Experience c12s5.5

2.4. Software Maintenance
Measurement c6s5 c12, c12s3.1

2.4.1. Specific Measures c12

3. Maintenance Process

3.1. Maintenance Processes c5 c5

3.2. Maintenance Activities c5, c5s3.2.2,
c6s8.2, c7s3.3

3.2.1. Unique Activities c3s10, c6s9, c7s2,
c7s3 c6,c7

3.2.2. Supporting Activities c4s1, c5, c6s7 c9

3.2.3. Maintenance Planning
Activities

c7s2, c7s.3

3.2.4. Software Configuration
Management c5s1.2.3 c11

3.2.5. Software Quality c6s5, c6s7, c6s8 c12s5.3

4. Techniques for Maintenance

4.1. Program Comprehension c6,c14s5

4.2. Reengineering c7

4.3. Reverse Engineering c6s2 c7, c14s5

4.4. Migration c5s5

4.5. Retirement c5s6

5. Software Maintenance Tools c6s4 c14

5-14 SWEBOK® Guide V3.0

FURTHER READINGS

A. April and A. Abran, Software Maintenance 
Management: Evaluation and Continuous 
Improvement >6@.

This book explores the domain of small software
maintenance processes (S3M). It provides road-
maps for improving software maintenance pro-
cesses in organizations. It describes a software
maintenance specific maturity model organized
by levels which allow for benchmarking and con-
tinuous improvement. Goals for each key prac-
tice area are provided, and the process model pre-
sented is fully aligned with the architecture and
framework of international standards ISO12207,
ISO14764 and ISO15504 and popular maturity
models like ITIL, CoBIT, CMMI and CM3.

M. Kajko-Mattsson, “Towards a Business
Maintenance Model,” IEEE Int’l Conf.
Software Maintenance >7@.

This paper presents an overview of the Correc-
tive Maintenance Maturity Model (CM3). In
contrast to other process models, CM3 is a spe-
cialized model, entirely dedicated to corrective
maintenance of software. It views maintenance in
terms of the activities to be performed and their
order, in terms of the information used by these
activities, goals, rules and motivations for their
execution, and organizational levels and roles
involved at various stages of a typical corrective
maintenance process.

REFERENCES

>1*@ IEEE Std. 14764-2006 (a.k.a. ISO/IEC 
14764:2006) Standard for Software 
Engineering—Software Life Cycle 
Processes—Maintenance, IEEE, 2006.

>2*@ P. Grubb and A.A. Takang, Software 
Maintenance: Concepts and Practice, 2nd
ed., World Scientific Publishing, 2003.

>3*@ H.M. Sneed, “Offering Software
Maintenance as an Offshore Service,” Proc. 
IEEE Int’l Conf. Software Maintenance
(ICSM 08), IEEE, 2008, pp. 1–5.

>4*@ J.W. Moore, The Road Map to Software 
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006.

>5@ ISO/IEC/IEEE 24765:2010 Systems and 
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

>6@ A. April and A. Abran, Software 
Maintenance Management: Evaluation 
and Continuous Improvement, Wiley-IEEE
Computer Society Press, 2008.

>7@ M. Kajko-Mattsson, “Towards a Business
Maintenance Model,” Proc. Int’l Conf. 
Software Maintenance, IEEE, 2001, pp.
500–509.

	Table of Contents

	Cover

	Foreword
	Foreword to the 2004 Edition
	Editors
	Coeditors
	Contributing Editors
	Change Control Board
	Knowledge Area Editors
	Knowledge Area Editors
of Previous SWEBOK Versions
	Review Team
	Acknowledgements
	IEEE Computer Society Presidents

	Professional Activities Board, 2013 Membership
	Motions Regarding the Approval of SWEBOK Guide V3.0
	Motions Regarding the Approval of SWEBOK Guide 2004 Version

	Introduction to the Guide
	Chapter 1: Software Requirements
	1. Software Requirements Fundamentals
	1.1. Definition of a Software Requirement
	1.2. Product and Process Requirements
	1.3. Functional and Nonfunctional Requirements
	1.4. Emergent Properties
	1.5. Quantifiable Requirements
	1.6. System Requirements and Software Requirements

	2. Requirements Process
	2.1. Process Models
	2.2. Process Actors
	2.3. Process Support and Management
	2.4. Process Quality and Improvement

	3. Requirements Elicitation
	3.1. Requirements Sources
	3.2. Elicitation Techniques

	4. Requirements Analysis
	4.1. Requirements Classification
	4.2. Conceptual Modeling
	4.3. Architectural Design and Requirements Allocation
	4.4. Requirements Negotiation
	4.5. Formal Analysis

	5. Requirements Specification
	5.1. System Definition Document
	5.2. System Requirements Specification
	5.3. Software Requirements Specification

	6. Requirements Validation
	6.1. Requirements Reviews
	6.2. Prototyping
	6.3. Model Validation
	6.4. Acceptance Tests

	7. Practical Considerations
	7.1. Iterative Nature of the Requirements Process
	7.2. Change Management
	7.3. Requirements Attributes
	7.4. Requirements Tracing
	7.5. Measuring Requirements

	8. Software Requirements Tools
	Matrix of Topics vs. Reference Material

	Chapter 2: Software Design
	1. Software Design Fundamentals
	1.1. General Design Concepts
	1.2. Context of Software Design
	1.3. Software Design Process
	1.4. Software Design Principles

	2. Key Issues in Software Design
	2.1. Concurrency
	2.2. Control and Handling of Events
	2.3. Data Persistence
	2.4. Distribution of Components
	2.5. Error and Exception Handling and Fault Tolerance
	2.6. Interaction and Presentation
	2.7. Security

	3. Software Structure and Architecture
	3.1. Architectural Structures and Viewpoints
	3.2. Architectural Styles
	3.3. Design Patterns
	3.4. Architecture Design Decisions
	3.5. Families of Programs and Frameworks

	4. User Interface Design
	4.1. General User Interface Design Principles
	4.2. User Interface Design Issues
	4.3. The Design of User Interaction Modalities
	4.4. The Design of Information Presentation
	4.5. User Interface Design Process
	4.6. Localization and Internationalization
	4.7. Metaphors and Conceptual Models

	5. Software Design Quality Analysis and Evaluation
	5.1. Quality Attributes
	5.2. Quality Analysis and Evaluation Techniques
	5.3. Measures

	6. Software Design Notations
	6.1. Structural Descriptions (Static View)
	6.2. Behavioral Descriptions (Dynamic View)

	7. Software Design Strategies and Methods
	7.1. General Strategies
	7.2. Function-Oriented (Structured) Design
	7.3. Object-Oriented Design
	7.4. Data Structure-Centered Design
	7.5. Component-Based Design (CBD)
	7.6. Other Methods

	8. Software Design Tools
	Matrix of Topics vs. Reference Material

	Chapter 3: Software Construction
	1. Software Construction Fundamentals
	1.1. Minimizing Complexity
	1.2. Anticipating Change
	1.3. Constructing for Verification
	1.4. Reuse
	1.5. Standards in Construction

	2. Managing Construction
	2.1. Construction in Life Cycle Models
	2.2. Construction Planning
	2.3. Construction Measurement

	3. Practical Considerations
	3.1. Construction Design
	3.2. Construction Languages
	3.3. Coding
	3.4. Construction Testing
	3.5. Construction for Reuse
	3.6. Construction with Reuse
	3.7. Construction Quality
	3.8. Integration

	4. Construction Technologies
	4.1. API Design and Use
	4.2. Object-Oriented Runtime Issues
	4.3. Parameterization and Generics
	4.4. Assertions, Design by Contract, and Defensive Programming
	4.5. Error Handling, Exception Handling, and Fault Tolerance
	4.6. Executable Models
	4.7. State-Based and Table-Driven Construction Techniques
	4.8. Runtime Configuration and Internationalization
	4.9. Grammar-Based Input Processing
	4.10. Concurrency Primitives
	4.11. Middleware
	4.12. Construction Methods for Distributed Software
	4.13. Constructing Heterogeneous Systems
	4.14. Performance Analysis and Tuning
	4.15. Platform Standards
	4.16. Test-First Programming

	5. Software Construction Tools
	5.1. Development Environments
	5.2. GUI Builders
	5.3. Unit Testing Tools
	5.4. Profiling, Performance Analysis, and Slicing Tools

	Matrix of Topics vs. Reference Material

	Chapter 4: Software Testing
	1. Software Testing Fundamentals
	1.1. Testing-Related Terminology
	1.2. Key Issues
	1.3. Relationship of Testing to Other Activities

	2. Test Levels
	2.1. The Target of the Test
	2.2. Objectives of Testing

	3. Test Techniques
	3.1. Based on the Software Engineer’s Intuition and Experience
	3.2. Input Domain-Based Techniques
	3.3. Code-Based Techniques
	3.4. Fault-Based Techniques
	3.5. Usage-Based Techniques
	3.6. Model-Based Testing Techniques
	3.7. Techniques Based on the Nature of the Application
	3.8. Selecting and Combining Techniques

	4. Test-Related Measures
	4.1. Evaluation of the Program Under Test
	4.2. Evaluation of the Tests Performed

	5. Test Process
	5.1. Practical Considerations
	5.2. Test Activities

	6. Software Testing Tools
	6.1. Testing Tool Support
	6.2. Categories of Tools

	Matrix of Topics vs. Reference Material

	Chapter 5: Software Maintenance
	1. Software Maintenance Fundamentals
	1.1. Definitions and Terminology
	1.2. Nature of Maintenance
	1.3. Need for Maintenance
	1.4. Majority of Maintenance Costs
	1.5. Evolution of Software
	1.6. Categories of Maintenance

	2. Key Issues in Software Maintenance
	2.1. Technical Issues
	2.2. Management Issues
	2.3. Maintenance Cost Estimation
	2.4. Software Maintenance Measurement

	3. Maintenance Process
	3.1. Maintenance Processes
	3.2. Maintenance Activities

	4. Techniques for Maintenance
	4.1. Program Comprehension
	4.2. Reengineering
	4.3. Reverse Engineering
	4.4. Migration
	4.5. Retirement

	5. Software Maintenance Tools
	Matrix of Topics vs. Reference Material

	Chapter 6: Software Configuration Management
	1. Management of the SCM Process
	1.1. Organizational Context for SCM
	1.2. Constraints and Guidance for the SCM Process
	1.3. Planning for SCM
	1.4. SCM Plan
	1.5. Surveillance of Software Configuration Management

	2. Software Configuration Identification
	2.1. Identifying Items to Be Controlled
	2.2. Software Library

	3. Software Configuration Control
	3.1. Requesting, Evaluating, and Approving Software Changes
	3.2. Implementing Software Changes
	3.3. Deviations and Waivers

	4. Software Configuration Status Accounting
	4.1. Software Configuration Status Information
	4.2. Software Configuration Status Reporting

	5. Software Configuration Auditing
	5.1. Software Functional Configuration Audit
	5.2. Software Physical Configuration Audit
	5.3. In-Process Audits of a Software Baseline

	6. Software Release Management and Delivery
	6.1. Software Building
	6.2. Software Release Management

	7. Software Configuration Management Tools
	Matrix of Topics vs. Reference Material

	Chapter 7: Software Engineering Management
	1. Initiation and Scope Definition
	1.1. Determination and Negotiation of Requirements
	1.2. Feasibility Analysis
	1.3. Process for the Review and Revision of Requirements

	2. Software Project Planning
	2.1. Process Planning
	2.2. Determine Deliverables
	2.3. Effort, Schedule, and Cost Estimation
	2.4. Resource Allocation
	2.5. Risk Management
	2.6. Quality Management
	2.7. Plan Management

	3. Software Project Enactment
	3.1. Implementation of Plans
	3.2. Software Acquisition and Supplier Contract Management
	3.3. Implementation of Measurement Process
	3.4. Monitor Process
	3.5. Control Process
	3.6. Reporting

	4. Review and Evaluation
	4.1. Determining Satisfaction of Requirements
	4.2. Reviewing and Evaluating Performance

	5. Closure
	5.1. Determining Closure
	5.2. Closure Activities

	6. Software Engineering Measurement
	6.1. Establish and Sustain Measurement Commitment
	6.2. Plan the Measurement Process
	6.3. Perform the Measurement Process
	6.4. Evaluate Measurement

	7. Software Engineering Management Tools
	Matrix of Topics vs. Reference Material

	Chapter 8: Software Engineering Process
	1. Software Process Definition
	1.1. Software Process Management
	1.2. Software Process Infrastructure

	2. Software Life Cycles
	2.1. Categories of Software Processes
	2.2. Software Life Cycle Models
	2.3. Software Process Adaptation
	2.4. Practical Considerations

	3. Software Process Assessment and Improvement
	3.1. Software Process Assessment Models
	3.2. Software Process Assessment Methods
	3.3. Software Process Improvement Models
	3.4. Continuous and Staged Software Process Ratings

	4. Software Measurement
	4.1. Software Process and Product Measurement
	4.2. Quality of Measurement Results
	4.3. Software Information Models
	4.4. Software Process Measurement Techniques

	5. Software Engineering Process Tools
	Matrix of Topics vs. Reference Material

	Chapter 9: Software Engineering Models
and Methods
	1. Modeling
	1.1. Modeling Principles
	1.2. Properties and Expression of Models
	1.3. Syntax, Semantics, and Pragmatics
	1.4. Preconditions, Postconditions, and Invariants

	2. Types of Models
	2.1. Information Modeling
	2.2. Behavioral Modeling
	2.3. Structure Modeling

	3. Analysis of Models
	3.1. Analyzing for Completeness
	3.2. Analyzing for Consistency
	3.3. Analyzing for Correctness
	3.4. Traceability
	3.5. Interaction Analysis

	4. Software Engineering Methods
	4.1. Heuristic Methods
	4.2. Formal Methods
	4.3. Prototyping Methods
	4.4. Agile Methods

	Matrix of Topics vs. Reference Material

	Chapter 10: Software Quality
	1. Software Quality Fundamentals
	1.1. Software Engineering Culture and Ethics
	1.2. Value and Costs of Quality
	1.3. Models and Quality Characteristics
	1.4. Software Quality Improvement
	1.5. Software Safety

	2. Software Quality Management Processes
	2.1. Software Quality Assurance
	2.2. Verification & Validation
	2.3. Reviews and Audits

	3. Practical Considerations
	3.1. Software Quality Requirements
	3.2. Defect Characterization
	3.3. Software Quality Management Techniques
	3.4. Software Quality Measurement

	4. Software Quality Tools
	Matrix of Topics vs. Reference Material

	Chapter 11: Software Engineering Professional Practice
	1. Professionalism
	1.1. Accreditation, Certification, and Licensing
	1.2. Codes of Ethics and Professional Conduct
	1.3. Nature and Role of Professional Societies
	1.4. Nature and Role of Software Engineering Standards
	1.5. Economic Impact of Software
	1.6. Employment Contracts
	1.7. Legal Issues
	1.8. Documentation
	1.9. Tradeoff Analysis

	2. Group Dynamics and Psychology
	2.1. Dynamics of Working in Teams/Groups
	2.2. Individual Cognition
	2.3. Dealing with Problem Complexity
	2.4. Interacting with Stakeholders
	2.5. Dealing with Uncertainty and Ambiguity
	2.6. Dealing with Multicultural Environments

	3. Communication Skills
	3.1. Reading, Understanding, and Summarizing
	3.2. Writing
	3.3. Team and Group Communication
	3.4. Presentation Skills

	Matrix of Topics vs. Reference Material

	Chapter 12: Software Engineering Economics
	1. Software Engineering Economics Fundamentals
	1.1. Finance
	1.2. Accounting
	1.3. Controlling
	1.4. Cash Flow
	1.5. Decision-Making Process
	1.6. Valuation
	1.7. Inflation
	1.8. Depreciation
	1.9. Taxation
	1.10. Time-Value of Money
	1.11. Efficiency
	1.12. Effectiveness
	1.13. Productivity

	2. Life Cycle Economics
	2.1. Product
	2.2. Project
	2.3. Program
	2.4. Portfolio
	2.5. Product Life Cycle
	2.6. Project Life Cycle
	2.7. Proposals
	2.8. Investment Decisions
	2.9. Planning Horizon
	2.10. Price and Pricing
	2.11. Cost and Costing
	2.12. Performance Measurement
	2.13. Earned Value Management
	2.14. Termination Decisions
	2.15. Replacement and Retirement Decisions

	3. Risk and Uncertainty
	3.1. Goals, Estimates, and Plans
	3.2. Estimation Techniques
	3.3. Addressing Uncertainty
	3.4. Prioritization
	3.5. Decisions under Risk
	3.6. Decisions under Uncertainty

	4. Economic Analysis Methods
	4.1. For-Profit Decision Analysis
	4.2. Minimum Acceptable Rate of Return
	4.3. Return on Investment
	4.4. Return on Capital Employed
	4.5. Cost-Benefit Analysis
	4.6. Cost-Effectiveness Analysis
	4.7. Break-Even Analysis
	4.8. Business Case
	4.9. Multiple Attribute Evaluation
	4.10. Optimization Analysis

	5. Practical Considerations
	5.1. The “Good Enough” Principle
	5.2. Friction-Free Economy
	5.3. Ecosystems
	5.4. Offshoring and Outsourcing

	Matrix of Topics vs. Reference Material

	Chapter 13: Computing Foundations
	1. Problem Solving Techniques
	1.1. Definition of Problem Solving
	1.2. Formulating the Real Problem
	1.3. Analyze the Problem
	1.4. Design a Solution Search Strategy
	1.5. Problem Solving Using Programs

	2. Abstraction
	2.1. Levels of Abstraction
	2.2. Encapsulation
	2.3. Hierarchy
	2.4. Alternate Abstractions

	3. Programming Fundamentals
	3.1. The Programming Process
	3.2. Programming Paradigms

	4. Programming Language Basics
	4.1. Programming Language Overview
	4.2. Syntax and Semantics of Programming Languages
	4.3. Low-Level Programming Languages
	4.4. High-Level Programming Languages
	4.5. Declarative vs. Imperative Programming Languages

	5. Debugging Tools and Techniques
	5.1. Types of Errors
	5.2. Debugging Techniques
	5.3. Debugging Tools

	6. Data Structure and Representation
	6.1. Data Structure Overview
	6.2. Types of Data Structure
	6.3. Operations on Data Structures

	7. Algorithms and Complexity
	7.1. Overview of Algorithms
	7.2. Attributes of Algorithms
	7.3. Algorithmic Analysis
	7.4. Algorithmic Design Strategies
	7.5. Algorithmic Analysis Strategies

	8. Basic Concept of a System
	8.1. Emergent System Properties
	8.2. Systems Engineering
	8.3. Overview of a Computer System

	9. Computer Organization
	9.1. Computer Organization Overview
	9.2. Digital Systems
	9.3. Digital Logic
	9.4. Computer Expression of Data
	9.5. The Central Processing Unit (CPU)
	9.6. Memory System Organization
	9.7. Input and Output (I/O)

	10. Compiler Basics
	10.1. Compiler/Interpreter Overview
	10.2. Interpretation and Compilation
	10.3. The Compilation Process

	11. Operating Systems Basics
	11.1. Operating Systems Overview
	11.2. Tasks of an Operating System
	11.3. Operating System Abstractions
	11.4. Operating Systems Classification

	12. Database Basics and Data Management
	12.1. Entity and Schema
	12.2. Database Management Systems (DBMS)
	12.3. Database Query Language
	12.4. Tasks of DBMS Packages
	12.5. Data Management
	12.6. Data Mining

	13. Network Communication Basics
	13.1. Types of Network
	13.2. Basic Network Components
	13.3. Networking Protocols and Standards
	13.4. The Internet
	13.5. Internet of Things
	13.6. Virtual Private Network (VPN)

	14. Parallel and Distributed Computing
	14.1. Parallel and Distributed Computing Overview
	14.2. Difference between Parallel and Distributed Computing
	14.3. Parallel and Distributed Computing Models
	14.4. Main Issues in Distributed Computing

	15. Basic User Human Factors
	15.1. Input and Output
	15.2. Error Messages
	15.3. Software Robustness

	16. Basic Developer Human Factors
	16.1. Structure
	16.2. Comments

	17. Secure Software Development and Maintenance
	17.1. Software Requirements Security
	17.2. Software Design Security
	17.3. Software Construction Security
	17.4. Software Testing Security
	17.5. Build Security into Software Engineering Process
	17.6. Software Security Guidelines

	Matrix of Topics vs. Reference Material

	Chapter 14: Mathematical Foundations
	1. Set, Relations, Functions
	1.1. Set Operations
	1.2. Properties of Set
	1.3. Relation and Function

	2. Basic Logic
	2.1. Propositional Logic
	2.2. Predicate Logic

	3. Proof Techniques
	3.1. Methods of Proving Theorems

	4. Basics of Counting
	5. Graphs and Trees
	5.1. Graphs
	5.2. Trees

	6. Discrete Probability
	7. Finite State Machines
	8. Grammars
	8.1. Language Recognition

	9. Numerical Precision, Accuracy, and Errors
	10. Number Theory
	10.1. Divisibility
	10.2. Prime Number, GCD

	11. Algebraic Structures
	11.1. Group
	11.2. Rings

	Matrix of Topics vs. Reference Material

	Chapter 15: Engineering Foundations
	1. Empirical Methods and Experimental Techniques
	1.1. Designed Experiment
	1.2. Observational Study
	1.3. Retrospective Study

	2. Statistical Analysis
	2.1. Unit of Analysis (Sampling Units), Population, and Sample
	2.2. Concepts of Correlation and Regression

	3. Measurement
	3.1. Levels (Scales) of Measurement
	3.2. Direct and Derived Measures
	3.3. Reliability and Validity
	3.4. Assessing Reliability

	4. Engineering Design
	4.1. Engineering Design in Engineering Education
	4.2. Design as a Problem Solving Activity
	4.3. Steps Involved in Engineering Design

	5. Modeling, Simulation, and Prototyping
	5.1. Modeling
	5.2. Simulation
	5.3. Prototyping

	6. Standards
	7. Root Cause Analysis
	7.1. Techniques for Conducting Root Cause Analysis

	Matrix of Topics vs. Reference Material

	Appendix A: Knowledge Area Description Specifications
	Appendix B: IEEE and ISO/IEC Standards Supporting the Software Engineering Body of Knowledge (SWEBOK)
	Appendix C: Consolidated Reference List

