
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Int. J. Production Economics

Int. J. Production Economics 121 (2009) 5–20
0925-52

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/ijpe
A model-driven approach for collaborative service-oriented
architecture design
Jihed Touzi a,�, Fréderick Benaben a, Hervé Pingaud a, Jean Pierre Lorré b

a Ecole des Mines d’Albi-Carmaux, Campus Jarlard, 81013 Albi Cedex 09, France
b EBM WebSourcing, 10 av. de l’Europe, parc technologique du canal, 31520 Ramonville St Agne, France
a r t i c l e i n f o

Article history:

Received 11 December 2007

Accepted 23 September 2008
Available online 18 April 2009

Keywords:

Process Modelling

BPMN

Information system

Transformation rule

MDA

SOA
73/$ - see front matter & 2009 Elsevier B.V. A

016/j.ijpe.2008.09.019

responding author. Tel.: +33563493138; fax:

ail address: jihed.touzi@enstimac.fr (J. Touzi).
a b s t r a c t

In a collaborative context, the integration of industrial partners deeply depends on the

ability to use a collaborative architecture to interact efficiently. In this paper, we propose

to tackle this point according to the fact that partners of the collaboration respect the

Service-Oriented Architecture (SOA) paradigm. We propose to design such a collabora-

tive architecture according to Model-Driven Architecture (MDA) principles. We aim at

using business models to design a logical model of a solution (logical architecture) as a

principal step to reach the final collaborative solution. This paper presents the

theoretical aspects of this subject and the dedicated transformation rules.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

It is now widely recognized that for sustainability
reasons, small- and medium-sized enterprises (SMEs)
should be involved in many kinds of industrial networks
in order to maintain their business efficiency. Such
collaborations can be described in many ways, such as:
�
 in a given value chain, a group of specialized
organizations with complementarities decides to de-
velop jobs together in order to achieve a common goal
(supply chain model);

�
 a group of relatively similar organizations decides to

sign an alliance in order to achieve the critical capacity
required by an offer;

�
 etcy

In parallel to these networked business strategies, new
requirements are specified for the definition of the
collaborative platform that will support collaboration
ll rights reserved.

+33563493183.
between organizations. The diversity of business process
categories to develop inside the network is as large as the
variety of types of collaboration between those business
organizations. A network is a living, open system that
evolves and adapts its processes regularly, as does a single
organization. Thus, using the term ‘‘collaboration’’ we
seek to describe the widest of industrial network config-
urations. For each partner, the basic problem is to be able
to establish fruitful connections with others at low
transaction costs and as quickly as possible.

Abstracting from the IEC TC 65/290/DC standard (IEC,
2005; Kosanke, 2005), we adapt the different levels of
collaborative maturity that can be used to characterize an
organization: communicating (capable of exchanging and
sharing information), open (capable of sharing business
services and functionalities with others), federated (cap-
able of working with others according to a set of
collaborative processes that have a common objective
and to assure its own objectives) and interoperable

(capable of working with others without a special effort
so that, from the external point of view, the set of
enterprises appear as a homogeneous and seamless
system). Interoperability, which is the ultimate rung of

www.sciencedirect.com/science/journal/proeco
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2008.09.019
mailto:jihed.touzi@enstimac.fr

ARTICLE IN PRESS

Specification of the solutionModelization of the collaboration

Partner 1

Partner 3

Partner 2

Partner n

Business level Information system level

Transformation ?

Fig. 1. From a description of the collaboration to a specification of the solution.

1 www.omg.org.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–206
the collaborative maturity ladder, appears as a concept
that facilitates the ease of partner connectivity.

An information system is based on a set of software
applications that allows one organization to manage and
progress in its business. The efficiency of exchange of
information and documents with new partners deeply
depends on the capability of the information system to be
interoperable.

Because of the organization’s heterogeneity at cultural,
linguistic, business and technological levels, the design of
solutions for interoperability of heterogeneous informa-
tion systems is a quite complex problem. The interoper-
ability of an organization through its information system
has been the subject of intensive research recently. The
problem tackled in this article is about how to bridge the
gap between the business level (a set description of how
partners in the network collaborate) and the information
system level (to find, configure and assemble components
of the partner’s information systems). The question is
about transforming a business knowledge about the
collaboration itself to a technical knowledge about how
to make information systems of partners interoperable
(Fig. 1).

The role of specific models describing, from the one
hand, the collaboration and from the other hand, the
solution should be to enable the transition between the
two levels, i.e., it should be driven by models (model-
driven). The first kind of models show business aspects of
the collaboration like roles implied, synchronization of
activities, messages exchanged, etc. The second kind
of models describe the technical solution based on a
logical choice of well-defined architecture: components,
services, etc.
Models should be considered according to semantic
and syntactic points of view. From the syntactic point of
view, models allow to represent a knowledge needed in
the different steps of the design of the final software. From
the semantic point of view, models must be well under-
stood and semantically agreed. If the semantic point of
view is crucial to share different models provided by
heterogeneous partners, it exists today in a number of
architectures, proposals and design processes that help to
formulate correctly models at the semantic level. Some
are released with international standards (e.g., ISO), others
are developed at regional or national level (e.g., CEN) and
others are developed by independent project teams and
groups (e.g., OMG, W3C, IAI). Most of the standards cited,
have been developed in strong contact with industry
needs.

Nowadays, the model driven approach is followed by
numerous projects and communities like INTEROP (2007)
in the European Union and model-driven architecture
(MDA) (OMG, 2003a, b), which is carried out by the Object
Management Group (OMG).1 MDA, for instance, intends to
promote the use of models as fundamental way of
designing and implementing different kinds of systems.
This article intends to provide an innovative methodology
to develop a collaborative architecture (that provides
interoperability capacity to partners) following the MDA
approach. The article is structured as follows: In Section 2
we present an overview of approaches and architectures
that facilitate the establishment of the interoperability.
The Service-Oriented Approach (SOA) will be presented in

http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org

ARTICLE IN PRESS

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–20 7
this section. The theoretical aspects of this subject and the
dedicated formalized transformation rules are detailed in
Section 3. Section 4 describes the developed prototype to
illustrate our work. Section 5 gives an example of
application of the presented transformation rules. Section
6 presents the conclusion of this work and areas of future
research.
2. Overview of approaches and architectures for
interoperability

Interoperability can be defined as ‘‘achieved only if the
interaction between two systems can, at least, take place
at the three levels: data, resource and business process
with the semantics de-fined in a business context’’ (Chen
and Doumeingts, 2003). Interoperability is one possibility
for realizing an integration, not the only one (Vernadat,
2006), but it promotes the idea that integration has to be
prepared using standards, reference frameworks or spe-
cific architectures and approaches so that the act of
connecting to others appears to be as much as possible as
a plug-and-play action.

As cited above, the problem of enterprise interoper-
ability concerns three levels: data, resources and business
processes. Different research works define frameworks to
characterize interoperability levels: European Interoper-

ability Framework (EIF) (EIF, 2004), ATHENA Interoperability

Framework (AIF) (ATHENA, 2004), Interoperability Devel-

opment for Enterprise Applications and Software (IDEAS)
(IDEAS, 2003) and e-Government Interoperability Frame-

work (e-GIF) (e-Gov, 2005).
EIF and e-GIF focus on interoperability in the e-

Government/e-Administration domain but the levels they
present (organisational, semantic, technical) are compa-
tible with the industrial domain. The IDEAS framework
defines three levels: business (business context and
processes of organizations), knowledge (definition of
products, competencies, etc. in the organization) and ICT

systems (applications and communication infrastructure)
and a transversal level of semantics to assure a mutual
understanding of the three levels mentioned above. AIF
adopts a holistic approach of interoperability that allows a
good analyse of interoperability needs: it concerns meta-
models, concepts, formalisms and standards that help to
formalize the different levels of interoperability (i.e., a
process model presents interoperability characteristics on
an organizational level).

According to these frameworks, we can deduce that the
problem of interoperability deals globally with organiza-

tional, conceptual, and technical issues:
�
 at the organizational level, the business context of the
collaboration must be explained: how do partners
interact? Which data are exchanged? Which resources
do they expose to others? Process and data models are
examples of solutions for modelizing interoperability
at this level;

�
 at the conceptual level, data, resources and business

processes of different information systems must be
linked in spite of their heterogeneous structures and
different interpretations. The problem is both syntactic
and semantic and

�
 at the technical level, the aim is to reconcile the

different applications, technologies, systems and com-
munication infrastructures used by the partners.
Defining the final collaborative solution that meets the
interoperability requirements is not an easy task. In a
distributed environment of a collaboration, technical
components (database, ERP, web service, etc.) of partner’s
information systems should work together to answer the
business needs expressed by partners. The selection and
the configuration of these components is not only a
problem at technological level but it should be aligned
with conceptual and organizational levels. Despite the fact
that interoperability problems usually occur at a horizon-
tal level (partners’ heterogeneity of processes, data and
applications), the problem tackled in this article could be
seen as a vertical interoperability problem. Indeed, our
contribution allows to go down from the organizational
level to the technical level, according to the MDA
principles.

A critical choice to do in the development of inter-
operability solutions according to the MDA paradigm is
the definition of a target logical architecture indepen-
dently of platform considerations. ‘‘Interoperability is
achieved if two (or more) systems can exchange informa-
tion and use the information in manner for which they
have the basic capability’’ (IEEE, 1990). If according to the
last definition, interoperability seems to allow an easy and
open access to information system resources, it is
important that interoperability must be controlled. We
need to manage interaction between the organization’s
collaborative (public) and internal (private) processes.
Only a public part of an organization’s information system
will be visible to other partners, most of the other part
remains invisible for competitive and strategic reasons.
Service-oriented architecture is a perfect solution to
answer these expectations. SOA allows organizations to
achieve the necessary wide integration through software
interfaces. These interfaces called ‘‘services’’ can be easily
adaptable, reconfigurable and reusable in new collabora-
tions.

If services represent a good answer to technical and
syntactical interoperability issues, they fail in the seman-
tic one: witch service is needed exactly to answer this
specific business need? Research works in enterprise
ontology and semantic web services (Missikoff and
Taglino, 2006) try to propose some tracks of solution. If
this subject is not the heart of our contribution, we believe
that a pragmatic way to tackle the semantic correspon-
dences between business needs and IS specifications is
based on the definition of an architectural framework
which defines related formalisms, meta-models and the
linked transformation mechanisms. The work presented
in this paper has this objective.

The collaborative architecture that we aim to develop,
conforming to the MDA principles, respects the SOA vision
of designing collaborative systems. In the following, we
present briefly the basic characteristics and principles of

ARTICLE IN PRESS

CIM

kcarTlacinhceTkcarTssenisuB

Computation Independant Model

Platform Independant Model

Platform Model

Platform Specific Model

PIM
PM

1

2

3

PSM

perimeter of the contribution

Fig. 2. Model-driven architecture.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–208
MDA and SOA and how we define our contribution
according to these two architectures.

2.1. Model-driven architecture

The Object Management Group has been proposing the
MDA approach as a reference to achieve wide interoper-
ability of enterprise models and software applications.
Two main aspects are essential in the engineering
principles promoted by MDA:
�
 use of different models at each abstraction levels: from
conceptual (CIM, or Computer-Independent Model) to
logical (PIM, or Platform-Independent Model), and
from logical to physical layers (PSM, or Platform-
Specific Model). The models are in closed connections
and transformation mechanisms facilitate passage
from one layer to another and

�

2 Enterprise modelling aims to describe practices in enterprises from

several points of view: functional, physical, business process, decisions,

information, etc.
separation of concerns by segregating implementation
choices from business needs specifications (business
track). Technology is defined by the choice of the
implementation platform in a generic way (technical
track). In fact, the ultimate solution is a mix of
information coming from these two tracks, processed
to produce the PSM.

The Y symbol is frequently used to summarize these
principles, as shown in Fig. 2.

As cited above the transition from one level to another
is based on model transformations. A model transforma-
tion can be seen as morphism between elements of two
models. A meta-model allows fixing the syntax and the
semantic of the different elements that compose a model.
Morphism between two models is explained as a mapping
between the elements of two related meta-models. On the
basis of the defined mappings, a transformation can be
done to link two models. By executing a model transfor-
mation, models conforming to the source meta-model are
transformed to models conforming to the target meta-
model. This is crucial in our problematic of transforming a
collaborative process model into an information system
model: firstly, we have to define the two meta-models of
the collaborative process and of the collaborative archi-
tecture model and secondly, we have to define the
transformation rules based on established mappings
between the different elements of the two meta-models.
The model-driven interoperability (MDI) proposal
(Grangel Seguer et al., 2007) attempts to provide solutions
that, following the MDA approach, can help enterprises to
transform models at different levels of abstraction in
order to generate enterprise software applications (ESA)
from enterprise models2 and how a model-driven
approach could be a useful way to solve interoperability
problems. An application of the MDI approach is described
in Grangel Seguer et al. (2007). Authors explain how GRAI
(Doumeingts et al., 1998) extended actigrams can be
transformed into unified modelling language (UML)
activity diagrams at the CIM level. If the MDI proposal
defines meta-models needed to represent the transition
(enterprise model/ESA), there are not transformation rules
explicitly defined and the propositions still be without
implementations of prototype to show the feasibility of
the approach. Our contribution presents clearly a for-
malized set of transformation rules (under a set of
preliminary assumptions).We have developed also, in
our research work, a prototype using a transformation
model tool to illustrate our work.

ARTICLE IN PRESS

3 ESB is a technology which implements a SOA pattern based on a

distributed lightweight web services approach.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–20 9
2.2. Service-oriented architecture

SOA is based on the fundamental idea that an
information system is no more than a collection of easily
accessible services that can be dynamically connected in
order to provide the desired solution (Vernadat, 2006;
Maamar et al., 2005). Choosing a SOA approach seems to
be a suitable candidate for tackling the complexity of
interoperability establishment. SOA allows to obtain a
loosely coupled architecture describing collaboration
between autonomous systems in contrast to classical
tightly coupled systems and monolithic architectures.
These autonomous systems are represented using services
and have independent lifecycles. Indeed, enterprise
applications and internal processes can be encapsulated
as services. A service is the key concept of the SOA
paradigm. It is a discrete piece of functionality (of the
enterprise) that appears to be atomic and self-contained
from the point of view of the service consumer. Services
communicate using a set of messages as input and output.
Each message has a particular structure. It can be a
complex business object (purchase order, invoice, etc.).

Schematically, SOA solutions are designed to manage
and orchestrate bonds between applicative services with-
in a process trade. SOA is designed to provide the
flexibility to treat elements of business processes and
the underlying IT infrastructure as components (or
services) that can be reused and combined to address
changing business priorities. The consumer of a service
has to ask a third-party registry for the service that
matches its criteria. If there is such a service in the
registry, it gives the consumer a contract and an endpoint
address for the service.

While web-services technology provides support for
many SOA concepts, it does not implement all of them.
Moreover, service consumers can execute web services
directly if they know the service’s address and contract.

The design of collaborative solutions respecting SOA
considerations has become one of the major topics in the
domain of interoperability. As example, the platform-
independent model for service-oriented architecture
(PIM4SOA) project (Benguria et al., 2006) aims to develop
a meta-model for SOA. This meta-model consists of a set
of essential aspects for SOA. PIM4SOA addresses four
system aspects (views): processes (logical order in terms
of actions, control flows and interactions between ser-
vices), information (related to the messages or structures
exchanged by services), services (description of services:
access, operations and types) and quality of services
(extra-functional qualities that can be applied to services,
information and processes). The project also provides a set
of transformations that link the meta-model with specific
platforms (agents, web services, etc.) following the MDA
approach. However, transformation rules and mappings
between PIM and PSM levels are not explicitly explained
in the project.

Our contribution is presented as follow: from a
collaborative process model (CIM level), we want to
deduce, using transformation rules, a SOA model (PIM
level) related to a services collaborative solution, a vertical
transformation in MDA vocabulary. Our approach is close
to the MDI approach cited. Indeed, on the one hand, a
collaborative process describes in a disproportionate way
views of enterprise modelling. We consider that the most
powerful means to tackle one collaboration of partners is
to handle the associated collaborative process. The
increasing interest in the field of business process
management (BPM) shows the central position of pro-
cesses in the definition of collaborations. On the other
hand, the SOA model generated represents a logical
solution (independent of technical considerations). The
interest of the model obtained is that it can be used to
generate others specific platform assets (agents architec-
ture, components architecture, etc.). In our work, the SOA
model generated is the fundamental part of a wider
solution that addresses implementation of an enterprise
service bus (ESB).3 A number of questions have been done:
Which process modelling formalism to represent colla-
borative process? Which language to represent generated
SOA models? What about meta-models definition and the
requisite transformation rules?
3. Model-driven approach for collaborative service-
oriented architecture design

The transformation from a business requirement level
(collaborative process model) to a SOA infrastructure
requirement level (information system model) is not an
easy task. We need to specify languages and formalisms
needed for the definition of each level. A meta-model for
each level has to be defined later. The main entities of the
steps of our approach are described below.
3.1. Collaborative business process modelling

The aim of a process model is to depict interactions
between two or more business entities. Currently, there
are scores of business process modelling languages, tools
and methodologies. They can be classed according to
defined maturity levels. In a collaborative context and due
to the complexity of interactions between partners,
an adapted process modelling language must be used.
For example, specific attention must be paid to the
private/public considerations in the modelling of the
collaboration. The business process modelling notation
(BPMN) (BPMI, 2004) is an adapted answer to current
needs in the field of the collaborative process modelling.
The adoption of BPMN standard notation will help unify
the expression of basic business process concepts (e.g.,
public and private processes, choreographies) as well as
advanced modelling concepts (e.g., exception handling,
transaction compensation).

The objective of the BPMN formalism is to support
process management by both technical and business
users. Interactions in BPMN are represented using the
‘‘message flow’’ concept which shows an exchange of data
between two actors of the process. These actors are

ARTICLE IN PRESS

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–2010
represented using ‘‘pool’’ concept. Pools can be divided in
many ‘‘lanes’’ (different roles of an actor). There are many
synchronization mechanisms in BPMN: sequencing (‘‘se-

quence flow’’ concept), events (‘‘start event’’, ‘‘intermediate

event’’ and ‘‘end event’’ concepts), forking (‘‘parallel gate-

way’’ concept), conditioning (‘‘data-based gateway’’ and
‘‘event-based gateway’’ concepts), etc. The reasons why we
have chosen BPMN are because this formalism is suffi-
ciently rich and expressive and provides a notation that is
intuitive to business users yet able to represent complex
process semantics.

In the collaborative processes that we consider in our
work, a special pool called ‘‘collaborative information

system’’ (CIS) plays the role of a mediator4 between
different partner’s information systems. This central pool
contains the big part of the collaborative process and
orchestrates synchronization between the different colla-
borative tasks of partners. This method of representation
respects the public/private paradigm. Indeed, organiza-
tions are represented by their public part (collaborative
tasks) in the process. They are able to interact in a
different context without changing their internal pro-
cesses.
3.2. Collaborative service-oriented architecture modelling

The collaborative SOA which we aim to define can be
modelled using the unified modelling language (OMG,
2003a, b) which is a standard for software modelling. It is
able to represent many views of the system design like
functional view (or user view), structural view and
behavioural view. Functional view describes competencies
of the system in use context, while structural view models
its global organization in terms of logical components and
their interfaces. Finally, behavioural view describes sce-
narios, operating modes and performance of part or whole
of the system. Different diagrams, gathered, give a
complete description of the system. A first approach for
modelizing SOA consists in representing everything as
class: a service is a class, an exchanged message is a class,
etc. This could make the models difficult to understand
and to use. For this reason, we have developed a specific
profile (based on a meta-model) to represent collaborative
SOA aspects. This profile is inspired by the results of the
PIM4SOA project (Benguria et al., 2006).

The collaborative architecture that we propose is an
extension of the classical SOA paradigm (PIM4SOA). It
contains an intermediate entity (called mediator) that
manages partner’s services and the execution of the
collaborative process. This mediator provides also a set
of ‘‘added value’’ services that cannot be provided by the
partners in the collaboration (e.g., payment check,
supplier selection). The generation of a model that
represents an instantiation of the collaborative architec-
ture defined according to a given BPMN collaborative
process is the aim of this contribution.
4 This article does not focus on the mediator concept. For more

detailed information, please see Touzi (2007).
3.3. Feasibility of the BPMN–UML transformation

It is an important question to know if the BPMN model
will give enough information to specify the SOA model. A
BPMN model is a process-centric view of a system. In
comparison with the four points of view of the ISO19440
(ISO 19440, 2005) standard (functional, resources, infor-
mational and organizational views), a BPMN model
mainly covers the functional view, and the informational
and organizational views only partially. The result is that
the transformation will not completely provide all
information needed by the SOA model. A data structure
deficit is evident, because in BPMN the concept of
message-flow is not well supported by data models. The
data models have to be studied in parallel to the
transformation of process models. Considering the re-
source view of the ISO 19440, services are software
resources supposed to be qualified and available.

Fig. 3 shows the coverage of the different ISO 19440
views by the BPMN formalism. BPMN models allow the
construction of diagrams of the behavioural and func-
tional views (arrows A and B). For the others views
(arrows C, D, E and F), we need an additional knowledge to
obtain complete UML diagrams. That is the reason why we
have to define a well structured collaborative architecture
(the target collaborative SOA meta-model) in the MDA
approach which starts from the BPMN model.

Consequently, a major part of the specification seems
to be provided by the transformation of BPMN collabora-
tive models according to the prevailing set of assump-
tions.
3.4. Meta-models definition and formalization

In this section, we present a definition and a for-
malization of the needed meta-models to perform the
CIM–PIM transformation. A graphical model (UML class
diagram) joined to a formal definition of the meta-model
will be presented.
3.4.1. Collaborative process meta-model

The first meta-model is of the collaborative process.
The BPMN language is used with a systematic approach
into which pools of partners form a matrix of containers
showing coordinated entities. The main BPMN formalism
components appear on the class diagram of Fig. 4.
The definition of the collaborative process respects two
critical constraints:
�
 a mediator pool (called ‘‘CIS pool’’) must be entirely
represented in the process model. This choice is
interesting because the collaborative process may con-
tain tasks that refer to collaborative or technical ‘‘added-
value’’ services provided by a mediator entity and

�
 for competitive reasons, partners do not want to

show their internal processes and applications. In the
meta-model, partners are represented by their colla-
borative tasks that refer to a set of communication
interfaces.

ARTICLE IN PRESS

Fig. 4. Collaborative process meta-model.

Enterprise Model

Organizational
view

Informational
view

Vue fonctionnelle Resources
view

BPMN
 formalism

Functionnal
view

Information System model

Vue Vue
structurelle

UML
Formalism

Architectural
view

Structural
view

Behavioural
 view

Functional
 view

A

C
D

E

F

B

Fig. 3. BPMN–UML covers.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–20 11
A formal definition of the meta-model is described below:

Definition 1. One collaborative process model CPM con-

tains
�
 one ‘‘CIS pool’’ pCIS: the orchestration container of the
process, managed by the mediator entity,

�
 a set of ‘‘CIS lane’’ LCIS container to represent the

functional divisions of the mediator of the collabora-
tion,
�
 a set of ‘‘partner pool’’ PPAR: containers to represent
partners of the collaboration,

�
 a set of ‘‘partner lane’’ LPAR: containers (optional) to

represent functional divisions of one partner of the
collaboration,

�
 a set of ‘‘partner task’’ TPAR: interfaces of partner’s

information systems in the collaboration. These tasks
can be of three types: Send Task TPARs (when a partner
sends a message to the CIS), Receive Task TPARr (when a
partner waits for a message from the CIS) and Service

ARTICLE IN PRESS

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–2012
Task T PARse (when the task represents a service). TPARs

,TPARr , TPARseCT PAR,

�
 a set of ‘‘CIS task’’ T CIS: orchestration task of the

collaborative process,

�
 a set of ‘‘sub-process’’ Sp: a part of a process,

�
 a set of ‘‘Event’’ E, an event can be partitioned into

‘‘start event’’ Es , ‘‘intermediate event’’ Ei, ‘‘end event’’ Ee.
Es, Ei, EeCE,

�
 Ei is composed of the subsets ‘‘intermediate message

event’’ Eim and ‘‘intermediate timer event’’. Eit . Eim ,
EitCEi,

�
 a set of ‘‘gateway’’ G, composed of the subsets: ‘‘parallel

gateway’’ Gp, ‘‘data-based inclusive gateway’’ Gdbi,
‘‘event-based exclusive gateway’’ Gebe and ‘‘data-based

exclusive gateway’’ Gdbe. Gp, Gdbi, Gebe, GdbeCG,

�
 a set of relations ‘‘sequence flow’’ Sf, where x.Sf.y, xAsfIN

and yAsfOUT are, respectively, the source and the target
element of the relation Sf:
1 sfINC(Es

[Ei
[TCIS

[G), a source of a ‘‘sequence flow’’
must be ‘‘start event’’ or ‘‘intermediate event’’ or ‘‘CIS

task’’ or ‘‘gateway’’,
1 sfOUTC(Ee

[Ei
[TCIS

[G), a target of a ‘‘sequence flow’’
must be ‘‘end event’’ or ‘‘intermediate event’’ or ‘‘CIS

task’’ or ‘‘gateway’’,
1 Sf may be linked to an element ‘‘data’’ d which

presents a business object exchanged.

�
 a set of relation ‘‘message flow’’ Mf, where x.Mf.y,

xAmfIN and yAmfOUT are, respectively, the source and
the target object of the relation Mf:
1 mfINC(TPAR

[Ei
[TCIS
[Ee), a source of a ‘‘message

flow’’ must be ‘‘partner task’’ or ‘‘intermediate event’’
or ‘‘CIS task’’ or ‘‘end event’’

1 mfOUTC(TPAR
[Ei
[TCIS

[Es), a source of a ‘‘message

flow’’ must be ‘‘partner task’’ or ‘‘intermediate event’’
or ‘‘CIS task’’ or ‘‘start event’’

1 Mf is linked obligatory to at least an element ‘‘data’’

d which presents a business object exchanged.
3.4.2. Collaborative SOA meta-model

The collaborative architecture meta-model is described
in Fig. 5. Three packages are proposed corresponding to
three views where specific concerns of the collaboration,
respecting SOA considerations, can be addressed:
�
 Services view: services that are used in the collabora-
tion are described; they are business reachable
computing functionalities with a known location on
the communication network. In this view, information
about addresses, operations and descriptions of part-
ner’s services are provided.

�
 Information view: data are exchanged by messages

between services; they are defined here in the
structure by a data model, and also as a communica-
tion utility by identification of the emission and
reception services. These messages refer to business
objects (invoice, order, etc.).

�
 Process view: interaction between services and coordi-

nation aspects are specified by the control of processes
described here. This view deals with a specification of
the orchestration of invoking services in the collabora-
tive process.

Fig. 5 shows that in the services view, services registry

describes a set of partner services. It is a container used by
the CIS to find information needed about a partner service.
The CIS services sub-package deals with a set of added
value CIS services. In the Information view, each exchanged
message in the collaboration has its own format and is
described by a semantic definition. In the process view,
traditional process modelling concepts are retained.
A collaborative process is composed of a set of constructs
that refer to the business process execution language
(BPEL) standard (OASIS, 2003). Basic activities refer to how
to deal with services of the collaboration: to invoke a
service (invoke), to wait for a new message (receive) and to
reply to a previous invocation (reply). Structured activities

refer to how to structure the execution of the process (the
logical order): parallel (flow), sequence (sequence), loop
(while), etc. Event handlers manage the different events
that characterize the execution of the process.

Each view is closely linked to the others two views
using UML associations: in order to operate, a service
(service view) needs and produces messages (information
view), and the execution of one activity of the collabora-
tive process (process view) needs to call one service
(service view) to be performed.

A formal definition of the meta-model is described
below:

Definition 2. An collaborative SOA Model is composed of:
�
 one ‘‘Services Package’’ paser which contains:
1 two sub-packages ‘‘partners services’’ papar to de-

scribe partner’s services and ‘‘CIS services’’ paCIS to
describe business services provided by the mediator

1 one ‘‘registry class’’ creg: to manage and subscribe
partner’s services. It is a container used by the CIS to
find information needed about a partner service

1 a set of ‘‘services class’’ Cser to represent abstract
services

1 a set of ‘‘partner_service class’’Cpsr to represent
partner’s services

1 a set of ‘‘partner_service_description class’’Cpsd to
describe partner’s services

1 a set of ‘‘enterprise_division attribute’’ Aedi

1 a set of ‘‘generic_service class’’Cgsr

1 a set of ‘‘specific_service class’’Cssr

1 a set of ‘‘service_category attribute’’ Asca.

�
 one ‘‘Information Package’’ paInf,

1 a set of ‘‘business_object class’’ Cbob which are linked
with two classes: ‘‘format class’’ Cfor and ‘‘seman-

tic_definition class’’ Csde.

�
 one ‘‘Process Package’’ papro which contains:

�
 two sub-packages ‘‘basic activity’’ pabac to describe the

basic synchronization activities of the process and
‘‘structured activity’’ pasac to describe activities which
control the flow of the process,
1 a set of ‘‘invoke class’’ Cinv

1 a set of ‘‘receive class’’ Crec

1 a set of ‘‘reply class’’ Crep

ARTICLE IN PRESS

Fig. 5. Collaborative process meta-model.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–20 13
1 A set of ‘‘pick class’’ Cpik

1 A set of ‘‘flow class’’ Cflo

1 A set of ‘‘while class’’ Cwhi

1 a set of ‘‘sequence class’’ Cseq

1 A set of ‘‘scope class’’ Csco

1 A set of ‘‘switch class’’ Cswi

1 A set of ‘‘message variable class’’ Cmva

1 A set of ‘‘partner class’’ Cpar

1 A set of ‘‘event handler class’’ Ceha

1 A set of ‘‘association’’ Asso:x.Asso.y , x, y are classes of
the collaborative SOA model.
3.5. Transformation rules

Transformation rules are classified into two categories:
�
 basic generation rules are used at first to create
elements of the target model. Most of these rules are
defined by a direct mapping between meta-model
elements and

�
 binding rules are then applied to generate the links

between the elements resulting from the previous
phase. Existing relations in the source model are
transformed into relations in the target model.

3.5.1. Preliminary assumptions

The rules we present in the following section are made
under a set of assumptions that we show here. The
CIMOSA enterprise modelling methodology presents for
the majority of rules the basis of deduction:
�
 A functional part of an organization (or network of
organizations) which composed of a set of activities is
strongly connected to a resources part of an organiza-
tion (or network of organizations). An activity needs
(or is based on) an applicative resource to operate.

ARTICLE IN PRESS

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–2014
�
 Every exchange between two partners of the collabora-
tion can be characterized by the description of a
business object (structure, semantic definition, etc.).

�
 For each functional part (a set of activities), there is an

organizational part which is responsible for.

Other rules are simply inspired on theone hand from our
expertise, in BPM and information system domains and on
the other hand from the expertise of our industrial
partners (EBMWebsourcing) in the domain of the design
of collaborative solutions:

3.5.2. Basic generation rules

Figs. 6–8 show a graphical representation of the set of
rules that are applied during transformation to generate
the three views of the SOA model. Circles located in
the middle of two class diagrams represent the rules. The
class diagrams are sub-graphs, which are parts of the
presented meta-models. On the left part of each Figure is
the sub-graph of the source meta-model, and on the right
part is the sub-graph of the target meta-model. The rules
have to be interpreted in the following manner: ‘‘When an
object is identified in the collaborative process model
(belongs to the left side sub-graph linked to the rule), it
will be transformed into an object instantiated from the
class on right side of the figure. We mean that it will
 Rs1

Rs2

Rs3

Rs4

 Rs5Services
description

Fig. 6. Transformation rules for ge
become an object in the collaborative information system
of the network.’’

Based on Definitions 1 and 2, the following presents a
formal representation of these rules. We consider the
function gen where x�!

gen
y, x is a subset of the collaborative

process meta-model (Definition 1) and y is a subset of the
SOA meta-model (Definition 2). This function must be
interpreted as follow: ‘‘for every x, detected in the source
model, y elements are generated in the target model’’. Fig. 6
shows the rules needed to generate UML classes of the
services view from the collaborative process.
�

ner
Rs1 rule:

8x 2 TCIS; x�!
gen

y=y 2 fCgsr
[Cssr

g.

For each CIS task in the collaborative process model a
CIS service is generated, either specific or generic. An
annotation (generic) is added to the process model task
to make it easier to identify generic CIS services;

�
 Rs2 rule:

8x 2 LCIS; x�!
gen

y=y 2 Asca.

The CIS lane of the collaborative process corresponds to
an attribute of the collaborative service class
which defines the organization of services of the CIS
according to different categories;
ating the services view.

ARTICLE IN PRESS

Information
description

 Ri1

 Ri2

Fig. 7. Transformation rules for generating the information view.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–20 15
�
 Rs3rule:

8x 2 Tpar ; x�!
gen

y=y 2 Cpsr .

This rule is similar to Rs1 but concerns the deduction of
a partner service from a partner task;

�
 Rs4 rule:

8x 2 Lpar ; x�!
gen

y=y 2 Aedi.

This rule expresses the organization of the partners’
services. An attribute (enterprise division) shows the
partner division to which the service belongs;

�
 Rs5 rule is not a rule to implement but it shows the need

for additional knowledge to obtain a complete and
useful view of services. This additional knowledge
concerns a description of service implementations
(address, access protocols, etc.).

Following the same logic, Fig. 7 introduces two transfor-
mation rules applied to the information view. Transforma-
tion rules provide syntactic indications that help to create
business objects:
�
 Ri1 rule:

8x 2 d; d�!
gen
ðy; z;wÞ=y 2 Cbob; z 2 Cfor ; w 2 Csde.

This rule concerns the data element that is associated
with the message flow element. The deduced business

object elements refer to the messages (data) exchanged
between partners in the collaboration;
�
 Ri2 rule is not a rule to implement but it shows the limits
of the BPMN model in describing exchanged business
objects (invoice, order, etc.). As previously stated, the
transformation is not sufficiently developed in this
view. Additional knowledge is needed to describe
structure of information.

In contrast, Fig. 8 is the most developed part of the
transformation procedure, with nine rules. Some of the
rules in Fig. 8 are adaptations of recommendations
provided by BPMI (BPMI, 04) where they address the
problem of BPMN graph conversion to BPEL, well-defined
XML phrases, and the work on BPMN-BPEL mapping by
Ouyang et al., (2006):
�
 Rp1 rule:

8x 2 Lpar ; x�!
gen

y=y 2 Cpar .

This rule concerns the deduction of partner element
that is important to specify the holder of one activity
from BPMN partner lane element;

�
 Rp2 rule:

8x 2 d; x�!
gen

y=y 2 Cmva.

This rule represents one business object of the
collaborative process using specific message variables

in the process view;

�
 Rp3 rule:

8x 2 Sf ; x�!
gen

y=y 2 Cseq.

ARTICLE IN PRESS

 R p1

 R p3

 R p7

 R p6

 R p5

 R p8

 R p4

 R p2

 R p9

Fig. 8. Transformation rules for generating the process view.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–2016
This rule concerns the deduction of sequence ele-
ments (logical sequence of basic activities) from BPMN
sequence flow;

�
 Rp4 rule:

8x 2 Gp; x�!
gen

y=y 2 Cflo

8x 2 Gdbi; x�!
gen

y=y 2 Cflo
2 zCswi

8x 2 Gebe; x�!
gen

y=y 2 Cpik

8x 2 Gdbe; x�!
gen

y=y 2 Cswi.

This rule allows the transformation of BPMN gate-
ways into different BPEL elements (pick, flow and
switch) depending on the type of gateway:
1 if it is a parallel gateway, a flow class will be generated

to express a parallel execution of activities;
1 if it is a data-based inclusive gateway, a flow class

will be generated, associated with a switch class for
each set of activities linked to the gateway;
1 if it is an event-based exclusive gateway, a pick class
will be generated to express that an event must be
produced to continue the execution of the process;

1 if it is a data-based exclusive gateway, a switch class
will be generated to express that the continuation
of the execution of the process depends on the
value of a variable;
�
 Rp5 rule:

8x 2 Ei; x 2 MfIn; x�!
gen

y=y 2 Crec

8x 2 Ei; x 2 MfOut; x�!
gen

y=y 2 Cinv.
�
 This rule concerns the transformation of intermediate

events into basic activities. This transformation depends
on the type of the message flow connected to the
event;
1 if it is an inbound message flow, a receive class

will be generated because a new message is
received;

1 if it is a outbound message flow, an invoke class will
be generated because a new message is sent.

ARTICLE IN PRESS

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–20 17
�

diff
Rp6 rule:

8x 2 Es; x�!
gen

y=y 2 Crec .

This rule concerns the transformation of start events

into receive classes. The process receives a message
that produces a start event to start the process;

�
 Rp7 rule:

8x 2 Tpar
[Tcis:

x 2 MfIN ^ xeMfOUT; x�!
gen

y=y 2 Cinv

x 2 MfOUT ^ xeMfIN; x�!
gen

y=y 2 Crec

x 2 MfIN ^ xeMfOUT; x�!
gen

y=y 2 Crep.

This rule shows that BPMN tasks will be transformed
into basic activities. Depending on the type of the BPMN
class, a receive, reply or invoke activity is generated. The
type of the BPMN task can be defined according to
inbound and outbound message flows connected to the
task;

�
 Rp8 rule:

8x 2 Ee; x�!
gen

y=y 2 Cinv.

This rule concerns the transformation of end events

into invoke classes. The process sends a message that
signals its end;

�
 Rp9 rule:

8x 2 Sp; x�!
gen

y=y 2 Csco.
�
 This rule shows that a BPMN sub-process must be
transformed into a scope element. This element defines
a limited part of the execution of the process
(activities, gateways, message variables, etc.).

3.5.3. Binding rules

Binding rules can be used to build interactions
between the generated elements of the CIS model (results
from the application of the first category of rules). These
links could be inside one CIS package or between two
different packages (dependence). The goal is to define, in
the target model, the relations needed in accordance with
the existing relations in the source model. The relations
are of type, association. We define the function
Y ¼ Equivalent (X, pa), where X belongs to the BPMN
model and Y is the result of the transformation rules
defined, belongs to the information system model. pa is
the target package of the generated element (services,
information, process).5

Three binding rules, Rb1 to Rb3, are given:
�
 Rb1 rule (sequence ordering):

x 2 SfIN; y 2 SfOUT
5 One BPMN element can be mapped onto one different element of

erent package.
r 2 Sf ; x:r:y

x0 ¼ Equivalent ðx; processÞ

y0 ¼ Equivalent ðy; processÞ

r0 ¼ Equivalent ðr; processÞðr0 2 Cseq
Þ

r�!
gen
ðfrom; toÞ=from; to 2 Ass2; r0:from:x0; r0:to:y0

a sequence element issued from rule Rp3 is asso-
ciated with two basic activities into the same process
package;

�
 Rb2 rule (information processing): we define the

function y ¼ isManipulatedBy(x) where y is a task and
x is a business object, manipulated (sended or
received) by x (i.e. there is a message flow outgoing
or ingoing x)

y 2 fTpar
[TCIS

g; x 2 d; y ¼ isManipulatedBy ðxÞ

y0 ¼ Equivalent ðy; servicesÞðy0 2 Cpar
[Cgsr

[Cssr
Þ

x0 ¼ Equivalent ðx; informationÞ; ðx0 2 Cbob
Þ

d�!
gen

use=use 2 Asso; x0:use:y0
Fig. 9. Technical architecture of the developed prototype.

ARTICLE IN PRESS

Fig. 10. Example of a collaborative process.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–2018
a service from a service package is related to a
business object from the information package;

�

6 www.eclipse.org/emf.
Rb3 rule (service identification):

x 2 fTpar
[TCIS

g

x0 ¼ Equivalent ðx;processÞ ðx0 2 Cinv
[Crec

[Crep
Þ

x00 ¼ Equivalent ðx; servicesÞ ðy0 2 Cser
Þ

x�!
gen

call=call 2 Asso; x0:call:x00

a basic activity from the process package is linked to
a service from the service package.

4. Prototype development

A prototype transformation tool has been developed to
implement our proposition. It is based on three open
source tools that run on the IDE Eclipse& platform. Intalio

designer& is a BPM tool that helps users to specify a BPMN
model. The Atlas transformation language (ATL)& (Jouault
and Kurtev, 2006) can use a process model in XML format
coming from Intalio designer& in input, and produces the
UML model in output (applying the transformation rules
mentioned into this paper). ATL is QVT-compatible. Query,
view and transformation (QVT) is a specialized language
that is being developed under the guidance of the OMG.
One of the purposes of this language is to allow
transformations between models. The ATL tool is the
cornerstone of our transformation system. The TOP-
CASED& tool is a computer-aided software environment
that can create a graphical representation of the UML
model. Fig. 9 shows the technical architecture of the
prototype.

Meta-models are created using the Eclipse Modelling
Framework (EMF)6 which allows to create an ecore file
(.ecore) for each meta-model. ATL can deal directly with
ecore files as input and output of the transformations.

The formalized rules presented in the previous section
are the cornerstone of the deduction of the ATL code
needed to perform the models transformations. As a
simple example of the ATL code,

The Rs3 rule: 8x 2 Tpar , x�!
gen

y=y 2 Cpsr corresponds to
this ATL code:

rule generatePartnerservices

{

from

a: BPMN!PartnerTask

to

service: UML2!Class

(

name o- a.name

)

}

The from and to parts of the ATL rule correspond
respectively to the left and the right sides of the
formalized rule Rs3. The whole ATL code is more
complicated than the example presented, especially
concerning the imperative rules (not declarative) which
are not based on a direct mapping between elements.

http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.eclipse.org/emf

ARTICLE IN PRESS

Fig. 11. Result of the transformation using the developed prototype.

7 For reasons of clarity in the model, we show only a few relevant

UML classes.

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–20 19
5. Example of transformation

A series of simple case studies have been defined and
examined in order to begin the validation of the approach.
A simple example of a collaborative process is proposed in
Fig. 10.

The collaboration takes place between a customer and
a set of suppliers for a trading transaction. The customer
sends an order to the mediator (CIS pool). The CIS must
find a supplier corresponding to the customer order
characteristics. The contacted supplier has to analyse the
order and to answer the customer. If the answer is
positive, the supplier has to inform the customer when
the product is ready for dispatch. Then, the two partners
have to perform payment and billing operations.

Fig. 11 shows the result of the transformation of the
collaborative process of Fig. 10 using the developed
prototype.7

The model obtained is useful for managing message,
service and process definitions in the CIS. In the services

view package, a registry of services is linked with
all partners’ services involved in the collaboration.

ARTICLE IN PRESS

J. Touzi et al. / Int. J. Production Economics 121 (2009) 5–2020
‘‘treat order’’ task is mapped into ‘‘treat order’’ service
which is linked to the registry. The CIS services sub-
package contains all collaborative services managed by
the CIS. ‘‘control billing’’ and ‘‘control payment’’ services
are deduced from the BPMN model. In the information

view package, business objects that refer to supplier and
customer are defined for each message exchanged in the
collaboration. ‘‘order to request’’ and ‘‘estimate’’ are
examples of business objects but without details about
their structure. In the process view package, synchroniza-
tions between different partners’ activities are estab-
lished. The ‘‘event-based gateway’’ of the BPMN process is
mapped into a ‘‘pick’’ element. BPMN tasks are mapped
into activities according to their type. The strong point of
this ATL-generated model is that using UML associations it
clearly shows, on the one hand, links between messages
and services and, on the other hand, links between
activities and services. ‘‘Control payment’’ activity needs
the service with the same name to run. The ‘‘treat order’’
service deals with ‘‘order to request’’ business object. This
kind of knowledge is crucial in SOA context.

However, the model obtained is incomplete. For
example, we do not have information about the specific
format of the business objects. Therefore, partners must
provide this information. This information is crucial to
allow partners to exchange messages with a structure that
these partners can understand.

6. Conclusion and prospects

The presented work intends to enrich frameworks
which define interoperability at the three levels (CIM, PIM,
PSM) with the definition and the formalization of
transformation rules between models that belong to CIM
and PIM levels, under a set of assumptions, inspired by the
actual practices in the development of systems integration
solutions.

Our MDA methodology bridges the gap between the
business analyst level (BPMN collaborative process mod-
el) and the IT developer level (collaborative SOA model).
The principal limitation of our approach is the difficulty to
semantically prove the correctness of the rules and its
specification. The SOA model, obtained should be used as
an intermediate step when the final objective is to obtain
ESB artefacts (XSD7, BPEL, WSDL8, etc.), needed to
configure an ESB solution according to a given BPMN
collaborative process. EBM WebSourcing (our industrial
partner) currently develops an ESB tool inside the OW2
open source community; the project is called PETALS (see
http://petals.objectweb.org).

We are aware that it is relatively uncommon to have
networks of organizations that are able to design a
collaborative process for their projected shared activities.
In (Rajsiri et al., 2007), we study the contribution of a
knowledge-based methodology to help in the process
model design using ontology based approach;

Collaborative processes may dynamically evolve and
the collaboration may also change with time. CIS
supporting the partnership should mirror such change.
Lastly, in order to improve the solution, we are also
involved in the ISyCri Project (French project: ANR/
CSOSG2006). The problem to solve concerns the develop-
ment of interoperability between actors in a crisis context.

References

Athena Consortium, 2004. Public document: ATHENA General descrip-
tion v10, /http://www.athena-ip.org/S.

Benguria, G., Larrucea, X., Elveseater, B., Neple, T., Beardsmore, A., Friess,
M., 2006. Platform Independent Model for Service Oriented Archi-
tectures. Enterprise Interoperability: New Challenges and Ap-
proaches. Springer, Berlin, pp. 23–32, ISBN-10: 1846287138.

Business Process Management Initiative (BPMI), 2004. Business Process
Modeling Notation (BPMN), Version 1.0.

Chen, D., Doumeingts, G., 2003. European initiatives to develop
interoperability of enterprise applications, basic concepts,
framework and roadmap. Annual Reviews in Control 27,
153–162.

Doumeingts, G., Vallespir, B., Chen, D., 1998. Decisional modelling GRAI
grid. In: Bernus, P., Mertins, K., Schmidt, G. (Eds.), International
Handbook on Information Systems. Springer, Berlin.

e-Gov, 2005. e-Government Unit, e-Government Interoperability frame-
work, Version 6.1, 2005.

EIF, 2004. European Interoperability Framework, White Paper, Brussels,
/http://www.comptia.orgS.

Grangel Seguer, R., Ben Salem, R., Bourey, J.-P., Daclin, N., Ducq, Y., 2007.
Transforming GRAI Extended Actigrams into UML Activity Diagrams:
A First Step to Model Driven Interoperability, Enterprise Interoper-
ability: New Challenges and Approaches II. Springer, Berlin, pp.
447–458, ISBN: 978-1-84628-857-9.

IDEAS, 2003. A Gap Analysis–Required activities in Research, Technology
and Standardisation to Close the RTS Gap—Roadmaps and Recom-
mendations on RTS Activites, IDEAS Deliverables.

IEC, 2005. IEC TC 65/290/DC, Common automation device. Device Profile
Guideline, TC65: Industrial Process Measurement and Control, IEC,
Geneva, Switzerland.

IEEE, 1990. IEEE: Standard Computer Dictionary—A Compilation of IEEE
Standard Computer Glossaries.

INTEROP, 2007. Interoperability Research for Networked Enterprises
Applications and Software NoE (IST-2003-508011), /http://www.
interop-noe.orgS.

ISO/DIS 19440.2., 2005. Enterprise Integration—Constructs for Enterprise
Modeling. ISO, Genève.

Jouault, F., Kurtev, I., 2006. On the Architectural Alignment of ATL and
QVT. In: Proceedings of the 2006 ACM Symposium on Applied
Computing (SAC 06), Chapter Model transformation (MT 2006), ACM
Press, Dijon, France, pp. 1188–1195.

Kosanke K., 2005. ISO standards for interoperability: a comparison. In:
Proceedings of the First International Conference on Interoperability
of Enterprise Software and Applications INTEROP-ESA’05 (IFIP/ACM
SIGAPP INTEROP-ESA’2005). Springer, Berlin, pp. 55–64, ISBN
1-84628-151-2.

Maamar, Z., Kouadri Mostefaoui, S,. Mahmoud, Q.H., 2005. On
personalizing web services using context. International Journal
of E-Business Research 1(3), Special Issue on E-Services, The Idea
Group Inc.

Missikoff, M., Taglino, F., 2006. Ontologies for interoperability: a
systematic overview. In: Lecture in ECI Workshop, Paris.

OASIS, 2003. Technical Committee: OASIS Web Services Business Process
Execution Language. /http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=wsbpelS.

OMG, 2003a. MDA Guide Version 1.0.1. Object Management Group.
Document number: omg/2003-06-01 edn.

OMG, 2003b. OMG Unified Modeling Language Specification, version 1.5.
Object Management Group. formal/03-03-01 edn.

Ouyang, C., Van Der Aalst, W., Dumas, M., Hofstede, A., 2006. Translating
BPMN to BPEL. Technical Report, BPM group of Queensland
University of Technology Brisbane (QUTB).

Rajsiri, V., Lorré, J.-P., Bénaben, F., Pingaud H., 2007. Cartography for
Designing Collaborative Process, Enterprise Interoperability: New
challenges and approaches II, Springer, Berlin, ISBN: 978-1-84628-
857-9.

Touzi, J., 2007. Aide à la conception de système d’information
collaboratif, support de l’interopérabilité des entreprises. Ph.D.
Thesis, Ecole des Mines d’Albi Carmaux, France.

Vernadat, F., 2006. Interoperable enterprise systems: architecture and
methods. In: Plenary Lecture, IFAC/INCOM Conference, Saint-Etienne,
France.

http://petals.objectweb.org
http://www.athena-ip.org/
http://www.comptia.org
http://www.interop-noe.org
http://www.interop-noe.org
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

	A model-driven approach for collaborative service-oriented architecture design
	Introduction
	Overview of approaches and architectures for interoperability
	Model-driven architecture
	Service-oriented architecture

	Model-driven approach for collaborative service-oriented architecture design
	Collaborative business process modelling
	Collaborative service-oriented architecture modelling
	Feasibility of the BPMN-UML transformation
	Meta-models definition and formalization
	Collaborative process meta-model
	Collaborative SOA meta-model

	Transformation rules
	Preliminary assumptions
	Basic generation rules
	Binding rules

	Prototype development
	Example of transformation
	Conclusion and prospects
	References

