
Variability Issues in the Evolution of Information System
Ecosystems

Hendrik Brummermann
Hochschul-Information-

System GmbH
Goseriede 9

30159 Hannover, Germany
brummermann@sse.uni-

hildesheim.de

Markus Keunecke
University Hildesheim
Institut fuer Informatik
Marienburger Platz 2

31141 Hildesheim, Germany
keunecke@sse.uni-

hildesheim.de

Klaus Schmid
University Hildesheim
Institut fuer Informatik
Marienburger Platz 2

31141 Hildesheim, Germany
schmid@sse.uni-

hildesheim.de

ABSTRACT
In a software ecosystem with open variability customers cre-
ate their own products based on a reuse infrastructure pro-
vided by a development company. While an open approach
has many benefits, it brings along a number of specific issues,
especially related to evolution. In this problem statement we
discuss some of the issues that arise in merging local vari-
abilities with evolved versions of the reuse infrastructure of
the development organization. In our discussion we focus on
information systems, inspired by the situation of a specific
company.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement];
D.2.13 [Reusable Software]: Reuse Models; H.3.5 [Online
Information Services]: Web-based services

General Terms
Design, Management, Experimentation

Keywords
Variability Modeling, Evolution, Software Product Lines,
Software Ecosystem, HIS

1. INTRODUCTION
Traditionally product line engineering focuses on the de-

velopment of software within a single company [2, 7]. More
recently, however, the relationship of software ecosystems
with product line engineering was pointed out [1]. This situ-
ation is more complex as software can be developed by mul-
tiple organizations and this happens to some extent with-
out explicit synchronization. In particular, a customizable
software platform may be built by one organization, while
another organization builds software on top of this [5].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VaMoS ’11, January 27-29, 2011 Namur, Belgium
Copyright 2011 ACM 978-1-4503-0570-9/01/11 ...$10.00.

Such a development approach, which relies on open vari-
ability is particularly common in the information systems
area. The approach, however, is accompanied by an addi-
tional level of complexity, which we will address in this pa-
per. Based on a case study of a company that supports such
a development model, the specific issues of variability man-
agement that are derived from such a development situation
are shown. More precisely we will discuss issues of vari-
ability management that are connected to open variability,
updating and evolution in such a situation, and information
systems variability.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the context. In the following section we
discuss the issues that arise in an open software ecosystem
before we conclude the paper in section 4.

2. STUDY CONTEXT
Many of the problems we will discuss in this paper are

of a generic nature, however, our discussion is inspired by
a specific company context: Hochschul-Informations System
GmbH. In this section, we will describe this context in order
for the reader to get a better understanding of the following
section. Thus, we will introduce the company, the software
it is developing and its approach towards interacting with
customers.

2.1 Company HIS
HIS Hochschul-Informations-System GmbH in Hanover is

market leader for university management software in Ger-
many. It was founded in 1969 as a non profit company. Its
main product was for many years a desktop-based system
which consisted actually of a set of different subsystems, that
could be installed independently and used at the customer
site. The various subsystems targeted different problem ar-
eas and work contexts like accounting, student management,
lectures, etc.

In 2007 the development of a new software generation
called HISinOne was started. As opposed to the earlier gen-
eration, HISinOne was conceived as a web based system and
organized around business processes which may cover mul-
tiple different work contexts. It provides a consistent user
interface which can also be customized for the different roles
of users such as administration, lecturer and students. Fig-
ure 1 gives a first impression of the University Management
System under discussion.

159

Figure 1: Customizations at the University of Flens-
burg and the University of Freiburg

2.2 Development Model
HISinOne installations are more than yet another system

in a system landscape. Actually HISinOne is at the core of
its own software ecosystem. While the central capabilities
are developed by HIS, any university is allowed to adapt
and extend HISinOne independently. Often customers also
contract the solution department of HIS and ask for specific
modifications and extensions, but even in this case further
extensions are often done by the customers. Third party ser-
vice providers and independent contractors offer solutions
based on HISinOne, thus augmenting the software ecosys-
tem with further capabilities. At the same time competitors
provide alternatives for specific modules of HISinOne capa-
bilities with which HISinOne must be able to cooperate in
customer installations.

HISinOne is developed as a highly customizable system.
This is due to the high diversity of usage contexts of the sys-
tem. This diversity stems from multiple sources: Germany
is divided in 16 regional states which a high degree of auton-
omy in terms of regulating their university system. Further,
different types of universities and schools exist (e.g., Uni-
versity vs. University of Applied Sciences vs. Art Academy).
All these differences lead to different requirements. Each
university can define its own organizational model within
certain bounds and also make its own decisions regarding
study programs, lecturers, and so forth. This demands a sig-
nificant level of customization for each university and entails
the need for high customizability of the HISinOne products.
However, customization does not stop at the site level, even
individual users may customize their way of using HISinOne.

Many different forms of customization are thus supported,
relating to look-and-feel, corporate design, supported busi-
ness processes and information managed, and so forth. Fig-
ure 1 shows two screenshots from the Universities of Flens-
burg and Freiburg. Both universities have adapted the soft-
ware to their corporate design and business processes on
their own. The University Flensburg uses objects such as
lectures and institutions as the top level navigation entries.
But the University Freiburg has organized the navigation
menu by tasks such as “Searching”.

While HIS provides support and consulting, customers are
free to do arbitrary changes on their own. Therefore HIS
does not know about all customer changes. But, it is very

Segment Functional Area
CS Identity Management (PSV)
CS Community (COM)
CS Business Intelligence (BIA)
CM Applicant Management (APP)
CM Students Management(STU)
CM Lecture & Tests (EXA)
CM Alumni Management (ALU)
RM Financial Accounting (FIA)
RM Financial Management (FIM)
RM Human Resources (HRM)
RT Research Management (YRM)
RT Technology Transfer (YRT)

Table 1: Functionalities covered by HISinOne

important that updates provided by HIS do not break ex-
isting adaptations at the customer side — or in case this is
not possible, these problems are minimized.

HISinOne is a special case of a software ecosystem because
customers and independent contractors develop customiza-
tions and extensions. Ommering discusses product popu-
lations as a reuse concept between related product families
that are developed by different suborganizations in [8]. Al-
though the approach of HIS is similar, it faces new chal-
lenges because the development is split across several orga-
nizations. An approach to partial instantiation of software
product lines with updates, feedback and cross-merges is de-
scribed by Krueger in [4]. Krueger sees cross merges between
products mostly as an interim solution before the changes
to common assets can be fed back to the reuse infrastruc-
ture. For HIS, however, it is a normal situation that there
is no complete feedback of customer modifications. This
means that there is no global, coordinated view on the com-
plete variability and decision models in the product line.
While Bosch describes what software ecosystems are in [1],
this paper discuses specific issues that arise in a specific but
common case.

2.3 Capabilities of HISinOne
HISinOne covers many functionalities important to uni-

versities as shown in Table 1. They are divided into four
segments:

• Core Segment (CS) provides common services such as
identity management and business intelligence.

• Campus Management (CM) deals with functionalities
specific to universities such as management of students
and lectures.

• Resource Management (RM) deals with resource plan-
ning, such as accounting and human resources.

• Research Management (RT) deals with the manage-
ment of research projects and technology transfer.

HISinOne aims to cover the whole range of functional-
ity relevant to management within a university, as Table 1
shows. We will illustrate this below by a brief discussion of
various functionalities.

160

Applications from prospective students are handled online
by Applicant Management (APP). This also supports appli-
cant selection based on locally relevant criteria. Once the
applicant is admitted he becomes a student and all man-
agement of fees, documents, grades is handled as part of
Students Management (STU). Further Identity Management
(PSV) is relevant to assign a unique ID to the student. PSV
also provides an identity for other objects such as rooms and
organizational units that are used in many different contexts.
As part of a study program students need to take exams to
prove their study success. Management of this is handled
by the Lecture & Tests functionality (EXA). This includes
scheduling the tests, collecting the results and grade calcu-
lation and documentation.

Depending on regional regulations students have to pay
study fees. This is also handled via Students Management
and the results are forwarded to the university’s Financial
Accounting (FIA). Fees and other income affect the uni-
versity budget, which is handled in the Financial Manage-
ment domain (FIM). More general information such as the
expected and actual numbers of applicants per course of
study are collected and aggregated in the Business Intel-
ligence Domain (BIA). People employed by the University
like lecturers or administrative staff are handled by Human
Resource Management (HRM).

HISinOne also addresses marketing towards alumni, which
is handled by the Alumni functionality (ALU). This set of
functionality also supports fund raising and public relations.
It is closely related to an online Community (COM) which
allows alumni to stay in contact with their fellow students.

An important part of university work is research and tech-
nology transfer. The functional areas of Research (YRM)
and Technology Transfer (YRT) cover this.

None of the above areas represents a single, mandatory
functionality, but all of them contain major variability. These
variabilities are resolved in the specific implementations of
each university. When new versions of HISinOne are re-
leased, it is the responsibilty of the customers to merge them
into their local products.

3. PROBLEMS
In this section, we will focus on a discussion of the various

kinds of variability that are relevant to information systems
and the kind of issues that arise with them from the combi-
nation of open variability and product line evolution. More
precisely we will structure our discussion based on the differ-
ent types of variability in information systems, going from
aspects that are close to the user towards more technical as-
pects. The different addressed areas are the user interface,
business rules, business processes and data. For each of these
areas we will then discuss different problems that arise with
respect to the evolution of variability and illustrate them, if
needed, using examples from the HISinOne-system.

3.1 User Interface
Customers can modify the user interface in HISinOne on

two levels: first they can make explicit code modifications
or they can modify configuration settings. Both types of
changes must be respected in case an update of the central
product line infrastructure is rolled out to the customer site.
In this section, we will mostly focus on the first kind of
modification, as the second will be addressed also in the
section regarding data.

Customers adjust the user interface in order to allow ef-
ficient working according to their local requirements. This
is done by hiding unused functions and input fields to re-
duce the risk of errors and number of support calls. In case
many input fields are hidden, the remaining fields may be
spread across several almost empty pages. Moving them to
a small number of pages improves usability by providing an
overview of the important data at a glance. Further, in case
data from paper forms is entered into the system, the in-
put speed can be increased by using the same order of input
fields in the system as on the paper forms.

Many customers also want to apply their corporate de-
sign to the university management system to have a coher-
ent look-and-feel throughout the various information sys-
tems and also some parts of the system are visible to the
outside.

These improvements of the user interface can incur sig-
nificant effort. Ideally, updates to the user interface would
preserve these kinds of changes, as far as possible. Of course,
in certain situations this is not easily possible, e.g., if new
fields are added due to new data that must be gathered
according to changed laws, this may lead to certain pages
growing again and thus to a need to split pages. For example
in 2010 a central German registration system for applicants
was introduced by law. As a result the web forms at the
universities have to provide an additional input field for the
central registration number.

A way of describing user interfaces — and their variabil-
ity — which allows for easy and context sensitive merging
is needed. It has to take into account different kinds of
changes: The composition of masks (web pages) may be
adjusted by adding, deleting or modifying fields and texts.
Additional functionality and specific ways of entering data
may be added to fields. Finally changes to the look-and-feel
(e.g., corporate design) need to be specified.

As this leads to very complicated interactions of adap-
tions, we see a problem with existing approaches like feature
modeling [3] or decision modeling [6] in terms of representing
this, even beyond the issues of evolution and open variabil-
ity.

3.2 Business Rules
Customers may change business rules, but changes that

are destructive to the system or violate common law should
be prevented. Updates of the HISinOne-platform that are
rolled out to the customers must preserve those changes
where applicable, but remove them when new regulations
must be enforced.

Business rules within HISinOne in the base configuration
can be categorized in two ways: first they can be categorized
as validation rules vs. computation rules. This means, some-
times they are used to enforce certain standards, while some-
times they are used to derive data values. Secondly they can
be categorized based on whether they are required by all in-
stallations (although they have a different form in them).
The format of registration numbers for students provides a
simple example of a business rule for validation. These may
be added as validation rules. While customers may define
the specific format, they are not allowed to remove the rule
altogether, as this field is required by law.

In addition to the mandatory rules that are based on law
or technical requirements, HIS provides a set of default rules
useful for most universities. Their existence can be con-

161

sidered a variability. For example the lecture number is
marked as mandatory in the default rule set because many
customers use it in their business processes. However, as
it is not required by the system this rule may be removed
by the customer. So from the point of view of variability it
actually provides a point of variability. In case a customer
removes it any update should not reintroduce any such rule.
It should be noted that we need to differentiate whether the
existence of a specific business rule is mandatory or the form
of a business rule is mandatory. In most cases we are actu-
ally concerned with a situation where only the existence is
mandatory.

In total we can differentiate the following cases when up-
dating a business rule:

• the category of a business rule remains the same (i.e.,
either mandatory or variable). In this case any adap-
tation made by the customer should be preserved. This
also means that any functionality required for this adap-
tation should be preserved as well.

• if the category changes from variable to mandatory and
the customer deselected the business rule, the update
must enforce the use of a rule (although the customer
may still determine the specific form).

• if the category changes from mandatory to optional,
this is no problem as the customer already has a rule
and it is still valid. However, in the future the customer
may remove the rule.

3.3 Business Processes
In information systems in general and university manage-

ment systems in particular online business process models
play an important role. Process models reflect business pro-
cesses from the real world in an information system. Exam-
ples for business processes are handling requests for leave or
planning lectures.

Business process models are commonly described by defin-
ing activities such as “Grant application for leave” and tran-
sitions. Activities are assigned to actors. Transitions link
activities and may have conditions attached. An activity
consists of all steps one person does within a business process
before forwarding the work to the next actor. The system
may support these steps by providing one or more business
functions.

The development organization provides a set of reference
business process models and activities that customers may
use as is or adapt to their needs. New versions of the reuse
infrastructure may contain changes of business process mod-
els and activities as well, leading to the need to look at sit-
uations concerning both activities and process models.

Adding new activities is the simple case because no con-
flicts can occur. The development company may want to
delete outdated activities. As it is desirable not to break
customer specific process models, those types are not deleted
but flagged as deprecated. If customers want to delete un-
used activities, a similar approach is useful because future
process models provided by the development organization
may use them. Activities may be evolved in the product
line infrastructure and those changes shall be applied to the
customer installations. But customers may want to modify
activities as well, for example an activity “inform students”
may be implemented by putting up a piece of paper on the

blackboard instead of sending emails. As long as an activ-
ity is only edited by one organization, those changes can be
applied. If both the customer and the development organi-
zation modify the same activities, manual merging may be
necessary.

Business process models can be added by both the devel-
opment organization and the customers without conflicts.
The development organization must not delete process mod-
els because there may be running process instances at the
customers’ sites. They need to be flagged as deprecated in
order to allow finishing of running instances. Customers
may delete process models if and only if there are no run-
ning instances. If the process model has been in production,
a similar deprecation mechanism is needed to prevent new
process instances from being started. In rare situations it
may be necessary to migrate running process instances to
new process model versions. While the development organi-
zation can provide migration logic for their process models,
it is not aware of models created by the customer. The refer-
ence process models provided by the development company
are often a good starting point for customizations. This may
lead to the desire to merge changes done by the development
organization into derived local models.

Furthermore even unchanged business process models may
break because of modifications to business functions: Con-
sider the following simple process model consisting of two
activities shown in Figure 2 a): “Apply for study” and “De-
cide application”. The first activity consists of several busi-
ness functions arranged in a wizard such as “provide school
leaving certificate”. An art academy may change the “Ap-
ply for study” activity to replace this business function with
“upload work sample” as seen in Figure 2 b). In the mean
time the development organization may modify a business
function used in “Decide application” so that it requires the
grade from the school leaving certificate (Figure 2 c). Fig-
ure 2 d) shows that a simple merge will result in inconsistent
process instance because of the missing but mandatory grade
although the process model itself was not modified.

Note that simple attempts to resolve the conflict are not
adequate: Reintroducing the deleted business function does
not comply with the desire business process of the art school.
But deleting the step of calculating statistics violates the
law.

Therefore an approach is needed that allows for automatic
detection of issues and easy conflict resolution of business
processes. It has to take into account changes to all layers
from process models over activities down to business func-
tions.

3.4 Data
Integration of data from the basic infrastructure (in this

case HISinOne) and the specific software developed on top
of this is also problematic. When looking at the HISinOne
situation, we can differentiate three different kinds of situa-
tions.

• The university manages its own operational data such
as students and lectures.

• HIS provides reference data like lists of postal codes,
bank identification numbers and other data common
across all customers.

• HIS provides default data, for example, types of hard-
ship that may result in preferred admissions of appli-

162

Apply for
Study

Provide school
certificate

Provide
contact info

Create
statistics

DecideApply for Study

Decide

require grade

Provide school
certificate

Create
statistics

Apply for
Study

Provide school
certificate

Provide
contact info

Create
statistics

DecideApply for Study

Decide

Apply for
Study

Provide
contact info

Create
statistics

DecideApply for Study

Decide

Create
statistics

Apply for
Study

Provide
contact info

Create
statistics

DecideApply for Study

Decide

Upload work
sample

Provide school
certificate

Upload work
sample

New:
use grade for
new statistic type

require grade New:
use grade for
new statistic type

Development Organization Customer

Version 1

Version 2

a b

c d

Required
grade

missing

Process

Activity

Function

Figure 2: Distributed evolution of activities and business functions a) Original version by the developing
company. b) Modifications by the customer. c) New version by the development organisation. d) Merge
Conflict.

cants. Customers may add to, delete from or modify
those lists.

All these forms of data can be regarded as variability as
well because from a conceptual point of view there is no
significant difference between a case where data controls a
generic algorithm or where we have explicitly realized algo-
rithm variations.

The first case in this list appears rather simple as the cus-
tomer data itself need not be modified by any updates. How-
ever, even for this data changes to the data structure may
occur. In HISinOne this may include adding attributes with
default values or splitting attributes across classes. In case
this happens update scripts take care of the data transfor-
mations. In cases where no change of the semantics happens,
this is actually rather simple.

Updates to reference data is also a rather simple situation,
as here no changes by the customer may occur. Thus, up-
dates replace the existing data with new data that use the
same object identifiers. Only in case of deletions special care
needs to be taken in order to prevent loss of information in
objects referring to the data in question. For example the
country Czechoslovakia was split into Czech Republic and
Slovakia. Therefore Czechoslovakia is not a valid option any-

more and can be deleted from the list of countries. But it is
desirable for people already stored in the system to keep the
information instead of losing the origin completely. There-
fore instead of actually deleting objects, they need to be
flagged as invalid. HIS provides tools to search for objects
that refer data marked as invalid.

The third case, however, is the most complicated. It re-
quires that data is merged on updates which results in the
following issues:

• The same attributes of the same object may have been
changed.

• Different attributes of the same objects may have been
updated by both the customer and the development
organization in a way which results in an inconsistent
state after merging.

• Objects may have been inserted by the customer that
are provided as default data in a newer version of
the product line infrastructure resulting in duplicated
data.

• Objects may have been deleted by the customer and
must not be added again on update.

163

A further issue comes from the way object references are
typically handled in a relational database. It is common
to use consecutive IDs to reference objects. For example,
HIS may add a new right “may view own grades” which gets
the next available id 42 assigned. Then it adds an entry in
the role-rights table saying that the role “student” owns the
right with id 42. In the mean time, however, a customer may
have added a right called “may upload documents to elearn-
ing platform” which got the same id. This makes merging of
updated variability information an extremely difficult pro-
cess, as semantic integration of the variation needs to be
ensured.

Merging of data requires a way to tell modified customer
data and default data apart so that local modification are
not reverted.

An approach is needed which allows for easy extension of
data structures. It has to support all layers from the user
interface to the data storage and allow validation against
data types including enumerations.

4. CONCLUSION
In this problem statement, we focused on a specific mix

of problems which has not yet received significant attention
in the variability management community.

Some of the issues we looked at were driven by the fact
that we took a closer look at information systems and dif-
ferentiated the various forms of variability that may occur
there. In particular, we looked at the individual difficulties
in merging variations in user interfaces, data, business rules
and processes.

Moreover, our analysis was driven by our specific case
study context. The main complexity of variability handling
is derived from the fact that updates are delivered to cus-
tomers who may make their own modifications and additions
in the mean time. This situation is typically referred to as
open variability and sometimes as software ecosystems.

Here, we focused in particular on complexities of variabil-
ity evolution that result from such a context.

This work is part of an ongoing effort to develop better
technical and conceptual support for open evolutionary de-
velopment of information system product lines.

5. REFERENCES
[1] J. Bosch. From software product lines to software

ecosystems. In Proceedings of the 13th International
Software Product Line Conference (SPLC’09), pages
111–119, 2009.

[2] P. Clements and L. Northrop. Software product lines:
Practices and patterns. Addison-Wesley, 2001.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21 ESD-90-TR-222, Software
Engineering Institute Carnegie Mellon University, 1990.

[4] C. Krueger. Towards a taxonomy for software product
lines. Software Product-Family Engineering, pages
323–331, 2004.

[5] K. Schmid. Variability modeling for distributed
development — a comparison with established practice.
In Proceedings of the 14th International Conference on
Software Product Line Engineering (SPLC’10), pages
155–165, 2010.

[6] K. Schmid and I. John. A customizable approach to
full-life cycle variability management. Science of
Computer Programming, 53(3):259–284, 2004.

[7] F. v. d. Linden, K. Schmid, and E. Rommes. Software
product lines in action: the best industrial practice in
product line engineering. Springer, 2007.

[8] R. van Ommering. Building product populations with
software components. Software Engineering,
International Conference on, 0:255, 2002.

164

	Introduction
	Study Context
	Company HIS
	Development Model
	Capabilities of HISinOne

	Problems
	User Interface
	Business Rules
	Business Processes
	Data

	Conclusion
	References

