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1 Context

Any software-intensive system is configurable and subject to variations to fit
functional, performance, and security requirements. The ability to vary (vari-
ability) is thus crucial and must be handled from design to runtime. Software
systems usually offer a myriad of configuration options – a very general term
to refer to command line parameters, features, conditional compilation otpions,
feature toggles, configuration files, plugins, etc. Though variability is a long-
standing property of software systems, variable software is challenging developers
due to the combinatorial explosion of possible configurations. Final users have
also difficulties to fine-tune options. The fundamental reason is that developers
and users can hardly know all properties of all configurations: it is practically
not feasible to execute and measure all configurations in all possible conditions.
As a result, manually selecting the best or a good-enough software configuration
w.r.t. a performance criteria is known to be a hard task. Modern highly con-
figurable software systems such as operating systems, IoT/cloud environments,
robot embedded software, etc. provide thousands of options (15,000+ options
for the recent version of the Linux kernel [2]). At this scale, a large configuration
space is complex to be maintained, tested and configured by the developer/user.

Since it is not possible to entirely explore the whole configuration space and
relate each configuration to the proper non-functional and functional require-
ments, the idea of applying machine learning techniques is appealing and more
and more explored [3]. The basic principle is to train a learning model out of
observations of several software configurations (a sample). Machine learning can
be used to predict failures/performance of certain configurations or anticipat-
ing a configuration change depending on a previously-encountered context [8,
4]. It is thus a way to e.g., predict the properties of any configuration, identify
influential options, ensure non-regression or select the “best” configuration.

However, learning a model of a configurable system may be very costly. The
learning process is trained on a configuration sample whose metrics are measured
(e.g., a subset of the whole configuration space) and is then generalized to other
configurations [4, 9, 5]. The fact is that each configuration measure requires a
significant amount of time and resources while the measure itself is somehow
uncertain. Overall, learning a configuration space is a trade-off between cost and
accuracy. Hopefully, the investments realized to learn a software configuration
space pay off and generalize to all situations in which the software is deployed
and executed.
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2 The Multiple Dimensions of Configuration Spaces

Unfortunately, it might not be the case: other factors may break the learned
model and make it inaccurate, e.g., for performance prediction.

A first threat to learning generalization is software evolution (or variability in
time). Software systems, and highly configurable ones in particular, are meant to
evolve over time for multiple reasons: after a bug fix, to add a new functionality,
to support a new version, etc. In consequence, the configuration space of the
software evolves accordingly and the variability differs over time. Therefore, the
results obtained after performing a learning process over a certain configuration
space is more likely to not be valid anymore after evolving the software.That is,
one must learn multiple times from an evolving configuration space to ensure
a proper result (i.e. to ensure that the resulting map metrics/configuration is
correct). To comply with the evolving nature of configurations spaces, one thus
need to update the learning models accordingly on a regular basis.

Another threat is external factors of a configurable system, such as the op-
erating system or the hardware used to execute the software. This context in-
fluences the way the software varies, and affects both design time and run time
configuration spaces [9]. At design time, the configuration space varies whenever
the hardware supposed to host the deployed configuration changes. At run time,
the configuration space evolves simultaneously with its technical environment,
e.g., adding or removing a device in the network, unexpected workload or server
failure. The configuration space thus evolves for multiple reasons, in various con-
texts and in different periods. A general challenge is to update the learned
model of a configurable system in a cost-effective way.

Ideally, one does not need to measure all configurations for a new version
or for a new context: one can partly transfer configuration knowledge that has
been already synthesized. Our observation is that there are opportunities for
the learning process to adapt depending on when and where the configuration
space has evolved and what has evolved [7]. We observe that there exist different
configurations of the learning process for supporting this adaptation: one can
change the learning algorithm (e.g, linear regression vs decision tree vs neural
network), its hyperparameters; one can change the sampling strategy and the
software options that are measured, etc. Overall, the challenge is that not
only the software is configurable, but also the learning process that
should self-adapt to update learned software configuration models.

3 Self-Adaptive Learning of Configuration Spaces

Similarly to learning the configuration space of a software system and since the
learning process is itself configurable, it is possible to learn the configuration
space of the learning process. That is, one could learn what is the best configu-
ration of a learning process for a given software configuration space depending
on how this configuration space evolves. To address this concern, one could think
of a continuous, self-adaptive learning process that automatically updates the
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learning model when needs be in a cost-effective way. This process would recon-
figure the learning mechanism (with the right algorithm, the proper parameters,
etc.) for efficiently realizing the expected task.

But similarly to learning the best system configuration, learning the best
learning configuration is not a trivial task. As stated in previous sections, learn-
ing has (i) a high cost and (ii) can hardly generalize to any anticipated context
or to a new software evolution. One thus needs to tailor the learning process
to avoid restarting it from scratch. To put in practice such an abstract learning
layer, one has to define a solution which answers the following questions:

C1: When to learn the configuration space and update the prediction model?
C2: What configuration options and (interpretable) information should be learned?

Proposing such a solution is even more challenging when considering the
whole system life-cycle. Indeed, at both design and run time, something can
change that forces the learning process to re-learn the model to e.g., get the
best or optimal configuration.

Continuous Learning at Design Time. Learning variability model at de-
sign time have been intensively studied during the last years (e.g., [6, 1]). The
general idea in this context is to analyse the configuration space at design time
in terms of existing artefacts provided by the developers to infer variability mod-
els. As mentioned above, the artefacts can evolve at each commit/release and
the learned models should be revisited to consider these new design evolutions.
Such changes are typically tracked within a continuous integration system (e.g.,
in a devops context). Most of existing research works propose re-starting the
learning process to consider this situation. In this work we defend a radically
new vision where the learning process is self-configurable to follow the different
evolutions of the system at design time. Developers can thus continuously evolv-
ing the artefacts while keeping a clear view on the variability in the considered
configurable system.

Autonomous Learning at Run Time. The configuration space of the
software can evolve at run time (e.g., addition/removal of a device, evolving
workload, connectivity loss, etc.) and may imply to update the learning model.
But updating a model is costly, even more at run time with limited resources
and time. There is a need for a self-configurable learning process that would
learn from previous system evolution if and what region of the model has to be
updated. One thus need mechanisms to decide (at the learning level) if the system
evolution is relevant or significant enough to update the learning model (e.g.,
based on historical data of past evolution) and if so, optimize this update by only
changing parts or regions of the model impacted by the system’s changes. This
would result in a self-adaptive learning process in charge of properly configuring
the learning process of the evolving system’s configuration space. To the best of
our knowledge, there is no approach that suggests what, when and how to learn
from an evolving configuration space. By addressing these challenges, we believe
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that the next generation of learning processes will be self-adaptive, either in a
completely autonomous manner or with possible supervisions of users/experts.

4 Conclusion and Research Directions

Learning a model for a highly configurable software system is a time and en-
ergy consuming process that most systems cannot afford to repeat over time
during their life-cycle. But since the configuration space of the system is likely
to evolve over time and over external factors, the model will have to be learned
again anyway to stay consistent with the system and its functional and perfor-
mance properties. To address this issue, we consider the learning process as a
configurable system, which can thus be fine-tuned with respect to what can be
learned, how it can be learned and when it can be learned. We would like to
investigate and propose a series of innovative tools and approaches to manage
such a configurable learning, both at design time in a continuous manner and at
run time in an autonomous manner.
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