
New Generation Debuggers

Défis GDRGPL 2020

Steven Costiou, Thomas Dupriez, Stéphane Ducasse
RMoD, Inria Lille - Nord Europe

December 13, 2019

Abstract

Debugging is a painful and costly practice, due to the nature of bugs,
of the debugged programs, or to tools limitations. We describe several
difficulties of debugging that present scientific challenges (i.e., we don’t
know how to do it) or technological challenges (i.e., we can’t do it). We
believe that addressing these challenges will lead to new generation de-
buggers that will significantly ease and lower the cost of debugging.

1 Bugs are ineluctable

Software systems are getting more and more complex. Changes happen more
and more dynamically. Many domains are complex by essence: e.g., a Siemens
robot machine to sculpt metal has 30 degrees of freedom and the program to
drive it has to handle such intrinsic complexity. Today, we see new programs
based on AI: in such systems the behavior may change based on provided sam-
ple and learning database. Bugs will always appear because building reliable
software systems is an extremely complex task. While formal proofs of pro-
grams help to catch bugs ahead of time, the cost of writing specifications, and
the complexity of modeling the domain of execution and its environment means
that it is no silver bullet and that bugs will continue to occur. In this context,
we need better and new debugging approaches.

2 Definition of bug and debugging

The literature describes very accurately what practitioners observe when de-
bugging programs [17]. The source of a bug is a defect, i.e., a piece of code that
produces a run-time infection. An infection is an inconsistent state or behavior
of the program that differs from what is expected, we may call that errors. This
infection may spread and produce other errors, in a cascade effect which ulti-
mately ends in an user-observable error: this is a failure. What we commonly
call bug is actually the whole chain from the defect to the failure.

Debugging is the activity of tracking and fixing bugs. It follows a set of
rigorous and systematic methods [15, 17, 14].
Reproducing the Failure. The first step is to make sure the failure can be
reproduced. This is critical: without this step, gathering information on the
bug is very difficult, and checking if a fix actually solves it is impossible.

1



Simplifying the Reproduction. After making the failure reproducible, the
goal is to simplify and shrink the conditions needed to reproduce it, to have a
simpler execution to inspect, and reduce the size of the suspect codebase.
Finding the Defect by using the Scientific Method. In order to reason
backward from the failure to the defect, the developer observes the flawed ex-
ecution, formulates a hypothesis as to what the defect is, tests this hypothesis
through experiments, and refines her hypothesis based on the result. This loop
continues until the developer finds the defect and why it caused the failure.
Fixing the Defect. The final step is fixing the defect, and checking that the
failure no longer happens.

3 Challenges of debugging

In this section, we list problems that slow down, limit or prevent debugging,
and formulate research questions to capture the inherent challenges they pose.

The symptom−source distance. This is one of the most common diffi-
culty reported by practitioners when debugging. It refers to the fact that an
observed failure (the symptom) does not occur at the same point in the code as
the defect that provokes it (the source). For example, a defect in a program may
produce an erratic value at some point, but the related failure is only observed
when this value is used in a distant part of the code, for example when displayed
in a GUI. This problem was first reported as a major difficulty in 1997 [7], but
recent studies report that it is still a problem 20 years after [11].

• How to design tools that help the developers overcome large
symptom−source distances, and what are the requirements to build
such tools?

Concurrency and parallelism. They represent the second most frequent
cause of today’s hard bugs [11]. Reproducing bugs in concurrent/parallel pro-
grams requires more than running the same code and inputs. In such systems,
processes and threads perform concurrent access to shared memory, and interact
with each others in ways that may depend on external factors.

Ways by which single-threaded programs can be stepped and analyzed with
existing debuggers cannot directly be applied to concurrent programs [10, 9].
Building adequate tools is hard, because we lack abstractions to express new
debugging operations targeting concurrency bugs (e.g., race conditions).

• Can we find ways to systematically reproduce bugs in concurrent programs?
If such ways do exist, what tools do we need to implement them and what
abstractions do we need to support these implementations?

• We believe the best moment to observe a bug is the moment it actually
appears and not in a post-mortem analysis. Could we debug a concur-
rent program on-the-fly [4], to catch and observe bugs at the moment they
appear? How would this capability improve debugging practices?

Bug Reproduction. Reproducing bugs is a vital step in understanding
faults and finding the defect from which they originate [17, 14]. Developers can
rerun the buggy program multiple times to better understand the bug, and test
that the bug is actually gone after they make changes to the source code.

2



However, some bugs are hard (or even impossible) to reproduce in a con-
trolled manner [12, 1, 17]. Bugs with non-deterministic aspects (e.g. concur-
rency) are notably hard to reproduce. Some bugs only happen after long execu-
tions and in specific conditions: those are materially inconvenient to reproduce.
A company reported a bug occurring on its servers only after 15 days of heavy
loads. Other bugs produce infections but then mask the faulty behavior or the
inconsistent state of the program. Symptoms are no longer observable, which
hinders bug reproduction and understanding.

• We believe that to ease bug reproduction, we need to capture and leverage
contextual run-time information. But how can we identify information
relevant with the investigated bug? In addition, the evolution of the pro-
gram state and execution path throughout an entire execution represents a
lot of data. How can we overcome this limitation?

• However, if there are bugs that truly cannot be reproduced in a controlled
manner, what alternative methodology can we use, and if it does not exist
can we define new ways of debugging these bugs?

Debugging the debugger. Debuggers are programs used to debug other
programs. So debuggers themselves can have bugs. But debuggers make use
of special techniques to monitor and control the execution of the programs
they debug. These techniques are geared towards normal executions, and not
executions using these techniques like debuggers. For example, Aspect-oriented
programming is unable to debug itself, as aspects cannot be added to other
aspects [16]. Kansas is a system able to debug itself [13]. It is a reflective
system where developers interact with objects in a world. When a Kansas world
is broken, another one is created from which the first world can be repaired. But
Kansas cannot be debugged from within itself when that ability to create new
worlds is broken. This illustrates a limit that seems impossible to overcome: a
system cannot debug itself when one of its core features is broken.

• Is it possible to design a debugger that cannot break, in the sense that it
can always be used to fix its own bugs? If not, what is the minimal set of
working debugging features required for the debugger to be able to debug
itself?

Designing usable debugging tools. In 1997, the debugging scandal[8]
was the observation that debugging tools had progressed very little over 30 years.
Recent studies [11, 2] show that new technologies have not significantly improved
the debugging experience. Tools implementing these technologies are hard to
understand and require considerable learning time, sometimes developers do not
know about their existence [11].

Another pitfall for tools is to be either too specific, in such a way that they
are almost never applicable in practice, or too generic, in such a way that they
are always usable but not helpful enough for the specific bug being encountered.
The challenge is to design tools that actually help the developers in the field, by
striking the right balance between genericity and specialization, and the right
balance between ease-of-use and feature-wealth [3, 5].

• Can we pinpoint what characteristics a tool needs to have to be easy to
pick-up by developers and powerful enough to help them?

• What is a debugger API that is powerful and versatile enough to allow
developers to perform many debugging tasks that would normally require
specific debugging tools or tedious manual operations?

3



4 New Generation Debuggers

We believe that tackling the challenges laid out in this paper is the key to unlock
new debugging capabilities, allowing the design and implementation of better
debugging strategies and tools: New Generation Debuggers!

We believe a good research direction would be to identify and study the
properties that programming languages and their infrastructure (i.e., virtual
machines) must exhibit to support debugging features that effectively help de-
bugging. We started this work in the last few years, and implemented debugger
prototypes [4, 5, 6], but there is still much to do.

References
[1] Agans, D. J. Debugging: The 9 indispensable rules for finding even the most elusive

software and hardware problems. Amacom, 2002.

[2] Beller, M., Spruit, N., Spinellis, D., and Zaidman, A. On the dichotomy of de-
bugging behavior among programmers. In Proceedings of ICSE 18: 40th International
Conference on Software Engineering (2018).

[3] Chiş, A., Gı̂rba, T., and Nierstrasz, O. The Moldable Debugger: A framework
for developing domain-specific debuggers. In Software Language Engineering (2014),
Springer, pp. 102–121.

[4] Costiou, S. Unanticipated behavior adaptation : application to the debugging of running
programs. Theses, Université de Bretagne occidentale - Brest, Nov. 2018.

[5] Dupriez, T., Polito, G., Costiou, S., Aranega, V., and Ducasse, S. Sindarin: A
versatile scripting api for the pharo debugger. In DLS’19, Dynamic Language Symposium
(2019).

[6] Dupriez, T., Polito, G., and Ducasse, S. Analysis and exploration for new generation
debuggers. In Proceedings of the 12th Edition of the International Workshop on Smalltalk
Technologies (New York, NY, USA, 2017), IWST ’17, ACM, pp. 5:1–5:6.

[7] Eisenstadt, M. My hairiest bug war stories. Commun. ACM 40, 4 (1997), 30–37.

[8] Lieberman, H. Introduction. Commun. ACM 40, 4 (Apr. 1997), 26–29.

[9] Lopez, C. T., Singh, R. G., Marr, S., Boix, E. G., and Scholliers, C. Multiverse de-
bugging: Non-deterministic debugging for non-deterministic programs. In 33rd European
Conference on Object-Oriented Programming (2019).

[10] Marr, S., Lopez, C., Aumayr, D., Gonzalez Boix, E., and Mossenbock, H. Kompos:
A platform for debugging complex concurrent applications. In Programming’17 (apr
2017), pp. 1–2.

[11] Perscheid, M., Siegmund, B., Taeumel, M., and Hirschfeld, R. Studying the ad-
vancement in debugging practice of professional software developers. Software Quality
Journal 25, 1 (2017), 83–110.

[12] Raymond, E. S., and Steele, G. L. The new hacker’s dictionary. Mit Press, 1996.

[13] Smith, R. B., Wolczko, M., and Ungar, D. From kansas to oz: collaborative debugging
when a shared world breaks. Commun. ACM 40, 4 (Apr. 1997), 72–78.

[14] Spinellis, D. Modern debugging: The art of finding a needle in a haystack. Commun.
ACM 61, 11 (Oct. 2018), 124–134.

[15] Telles, M., and Hsieh, Y. The science of debugging. Coriolis Group Books, 2001.

[16] Yin, H. Defusing the Debugging Scandal - Dedicated Debugging Technologies for Ad-
vanced Dispatching Languages. PhD thesis, University of Twente, Dec. 2013.

[17] Zeller, A. Why programs fail: a guide to systematic debugging. Elsevier, 2009.

4


	Bugs are ineluctable
	Definition of bug and debugging
	Challenges of debugging
	New Generation Debuggers

