©
=2
<
X
—
(O
p=
L
X
=
(C
—
LL

Eibe

lan H. Witten -

Practical Machine Learning Tools and Techniques

THIRD' EDITION

3

[| I'f,'

AY

Data Mining

Third Edition

This page intentionally left blank

Data Mining

Practical Machine Learning
Tools and Technigues

Third Edition

lan H. Witten
Eibe Frank

Mark A. Hall

AMSTERDAM ¢ BOSTON « HEIDELBERG « LONDON
NEW YORK ¢ OXFORD e PARIS « SAN DIEGO

=S SAN FRANCISCO ¢ SINGAPORE * SYDNEY « TOKYO

ELSEVIER Morgan Kaufmann Publishers is an imprint of Elsevier

Morgan Kaufmann Publishers is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.
Copyright © 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage
and retrieval system, without permission in writing from the publisher. Details on how to
seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright
by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional practices,
or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge
in evaluating and using any information, methods, compounds, or experiments described
herein. In using such information or methods they should be mindful of their own safety
and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or
editors, assume any liability for any injury and/or damage to persons or property as a
matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Witten, I. H. (Ian H.)
Data mining : practical machine learning tools and techniques.—3rd ed. /
Ian H. Witten, Frank Eibe, Mark A. Hall.
p- cm.—(The Morgan Kaufmann series in data management systems)
ISBN 978-0-12-374856-0 (pbk.)
1. Data mining. I. Hall, Mark A. II. Title.
QA76.9.D343W58 2011
006.3"12—dc22 2010039827

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Morgan Kaufmann publications, visit our
website at www.mkp.com or www.elsevierdirect.com

Printed in the United States
1112131415 10987 654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOORAID qihe Foundation

Contents

LIST OF FIGURESc.oouiiiiiiiiieietnetncenee ettt XV

LIST OF TABLES ...ttt Xix

PREFACE ..ottt sttt XXi

Updated and Revised CONLENL........ceeeriririrerirtintenienteieeeneeeeeee et XXV

Second EdItiON........ccuiviiiiiiiiniiiiinieenteeeeeeeee et XXV

Third Edition........cccooiiiiiiiiiiiiiii s XXVi

ACKNOWLEDGMENTScoiiiiiiiiitienieneenetse ettt XXiX

ABOUT THE AUTHORScociiiiiiiniincinieeeecetre et Xxxiii
PART | INTRODUCTION TO DATA MINING

CHAPTER 1 What's It All ADOUL?......cceeueeeeeeecceereresesasaeseseeesesasasasaesesesenenens 3

1.1 Data Mining and Machine Learningccccecevvervvererereeenienennnns 3

Describing Structural Patternscocceeeveeniniencnicnennicnecienens 5

Machine Learningc.ccoceveeienieiienieiieniencsteneeeesieeeesie e 7

Data MINING ..coveiiieieiiieieeieteees ettt 8

1.2 Simple Examples: The Weather Problem and Others.................... 9

The Weather Problemccccoocieiiiiiiiniiniiiiceceneces 9

Contact Lenses: An Idealized Problemccccceeinnnnn. 12

Irises: A Classic Numeric Datasetccccevveviciiciciiinnincnnne. 13

CPU Performance: Introducing Numeric Prediction.................... 15

Labor Negotiations: A More Realistic Examplecc.ccccoueeee. 15

Soybean Classification: A Classic Machine Learning Success.... 19

1.3 Fielded APPHCALIONSovvveveveuiieieieiiieieieieereeieiee st s 21

WED MINING.....iiiiiiiiiiie ettt sttt e 21

Decisions Involving Judgmentcccceevieniniininiencnncncnne. 22

Screening IMagescoeeeverieniiieninieeeesieeecee e 23

Load FOrecasting.........ceoueieerieriienieniieieeiieteeie et 24

DIAZNOSIS ...ttt ettt ettt ettt et 25

Marketing and Salesccccoveeiiiieiiiniieiicc e 26

Other APPLICALIONS ..eouveereeieiieriieeiie ettt 27

1.4 Machine Learning and StatiStiCsccecerveverveireinierinieerienennenes 28

1.5 Generalization as S€archc.c.ccccoovveeinneennnecnneeces 29

1.6 Data Mining and Ethicscccecvreiiriiriieieiieeieeeeeeeeenes 33

ReidentifiCationcevuerieriiiieieeieeee e 33

Using Personal Information..........c..cccceecveeinienineniiicncncncenne. 34

WIidEr ISSUES ..o 35

1.7 Further Readingc.ccoevveuivvieiiiiiiiiiiicieieeee et 36

vi Contents

CHAPTER 2
2.1
2.2

2.3
24

Preprocessing |

2.5

CHAPTER 3
3.1
3.2
33
34

3.5
3.6
3.7

CHAPTER 4
4.1

4.2

4.3

Input: Concepts, Instances, and Attributes..........cccccerruuncnnn. 39
What’s @ CONCEPL? ...c.veeiiiieiiiieieieteeere e 40
What’s in an EXample?........cccccceriiiiiiiiiinieieciceeeeeee e 42
REIAIONS. ..ottt 43
Other EXample TYPeS.....coouerieririeninienieeierieeesiceieseeee e 46
What’s in an Atribute?cccooieiiiieniiieieeeeeeee e 49
Preparing the INPputcooveiiiiiiieeeeeeee e 51
Gathering the Data Together...........cccceecveeiniiiinieniicnieencee. 51
ARFF FOrmat.......cccccoieiiiiiiiiiiiiiccececeecc e 52
SPArse DAteovieiiieiieeii e 56
AEIDULE TYPLS..nviiniiiiiiiiiieieeiieeeteeeeee e 56
MiSSING VAIULS ..ottt 58
Inaccurate ValUuescccocveerieriiinieeiiiiceceecceeee e 59
Getting to Know Your Data........c.cocoeeieieiiniininiiniiicncecnee, 60
Further Readingcccevvviiriiiiiinieeiiieecec e 60
Output: Knowledge Representationcceeceeccecmmeennnnnnnnnnn. 61
TADIES ..ot 61
Linear MOdelScooeriiriiiiiiiniiiicnicieeceeeete e 62
TIEES ettt ettt 64
RUIES ..o 67
Classification RuUIes.........ccceeruerieiiiieiieieceee e 69
Association Rules.........ccccoveviiiiiiiiiiiiicicecceecceceen 72
Rules with EXCEPLONSeovviiiiiiieeiiiiieeieeie e 73
More EXpressive RUIEscccoveverieiiiniciinicicicicecceence 75
Instance-Based Representationceceeeeeveneeiencniencniencnnne. 78
CTUSERIS ...ttt ettt et 81
Further Readingc..cceovevieiiinininininencceeceeeeeee e 83
Algorithms: The Basic Methods.......cccceeeveerrrvicieernrcccceeeenens 85
Inferring Rudimentary Rulescocoocerenineneniiienicicinenceee, 86
Missing Values and Numeric Attributes.........cceevveevvercieeniveneeenne. 87
DISCUSSION ..coeiiiiieiiiiiteicee ettt 89
Statistical Modelingccccoceeveriineniininiiniieieseeiceceeeee e 90
Missing Values and Numeric Attributescccceceeveenvencnnenne. 94
Naive Bayes for Document Classification...........ccccceceeererennenne. 97
DISCUSSION ..ottt 99
Divide-and-Conquer: Constructing Decision Trees 99
Calculating Informationccceeveevieenienieenienieeeesie e 103
Highly Branching Attributes.........ccccceeeviereenineenenieneniencnnens 105

DISCUSSION .ttt e e e e e e e e eeaaaeeeeeean 107

blay
Légende
Preprocessing

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11

CHAPTER 5
5.1
5.2
5.3
5.4

5.5
5.6

Contents
Covering Algorithms: Constructing Rulescc.ccoceveriencnnnens 108
Rules VErsus TIEEScevueriiriieieniieieniieieeicee et 109
A Simple Covering Algorithm..........cccoeverienirieniiereseeee 110
Rules versus Decision LiSts........cccueeveerierieriienienieenieeieeneene 115
Mining Association Rules..........ccccuevviiniiniieiniiniieiienicecenee 116
TEEIM SELS.c.niiiiiiiiieiect et 116
ASSOCIation RUIES.........coeiiiiiiiiiiiiiiiciceccececee 119
Generating Rules Efficiently.........ccccoceviniiiiineniieniiiecnes 122
DISCUSSION ...ttt ettt st s 123
Linear MOdelscooveeiiiiiiiiiiiiieieeceeeeeeeeee e 124
Numeric Prediction: Linear Regressionccccceecceevveeniennnne 124
Linear Classification: Logistic Regression........ccccccevveeveennnne 125
Linear Classification Using the Perceptron..........c.cccocevvencnnnene 127
Linear Classification Using Winnowccccceceeverienenienennns 129
Instance-Based Learning...........cccceeeveeienierienesceniesiene e 131
Distance FUNCHoNcoceeviiiiieniiniiiiceeeeeseeeesee e 131
Finding Nearest Neighbors Efficientlyc..cccooeeviiniinninnnnn. 132
DISCUSSION ...ttt 137
CIUSERIING ..ottt st 138
Iterative Distance-Based CluSteringcocceeeeevereenenienennens 139
Faster Distance Calculations...........ccceeeverienerienenienenieseeeens 139
DISCUSSION ...ttt 141
Multi-Instance Learning.........cocceevvereeenieniieenieenieeeenieeieeneens 141
Aggregating the INPUL.......cocveiiiiirieniiiiieeeeeee e 142
Aggregating the OULPULcc.eecveviriinieiinieieneeceeeeseeeens 142
DISCUSSION ...ttt 142
Further Readingooeviiiiiiiiiieieeeee e 143
Weka Implementations............cccceeeieeieiiinieiinienciee e 145
Credibility: Evaluating What's Been Learned............ccccereu.... 147
Training and TeStINGc..cevertieieriieieeiee e 148
Predicting Performance...........cccoccecevinininincncnenieniecieiecenns 150
Cross-Validation...........coeeveiiiiieniieienieieneee e 152
Other EStImMates.......coceevvirieniiienieieneeeneecsecteeeeeeeere e 154
Leave-One-Out Cross-Validation.........ccccceccevereenenieneniencnnens 154
The BOOTSIIAPcoueeiiiiieieiiieieeteteeeee et 155
Comparing Data Mining Schemes...........ccccoocevoieniniieneniencnnns 156
Predicting Probabilities........c..ccevveirinirininenenieicieeeeeceeenns 159
Quadratic Loss FUNCtion..........cccceeecvieeriiiieniie e 160
Informational Loss FUnCtion...........c.cececveveeniniincnicncnicncnnens 161

DISCUSSION ..ttt e e e e e e e eearaeeeeean 162

I
vii

viii Contents

5.7 Counting the COSt.....ccuvveirieririeieieieierieesiee et 163
Cost-Sensitive Classificationccceevevevinenienieiienienieieieeenes 166
Cost-Sensitive Learning.........cccuereeruereeriereenescenieeeeseseeseeeens 167
Lift ChartS ..oveeeeieeieeesieeee et 168
ROC CUIVES ..ttt 172
Recall-Precision CUIVESc..cccevivciireeiienieiinienceeeneereneenens 174
DISCUSSION ... 175
COSE CUTVES ..ttt sttt 177

5.8 Evaluating Numeric Prediction............ccovveerieinieenieenieeeeenen, 180

5.9 Minimum Description Length Principle..........cocooevrinireerreninennes 183

5.10 Applying the MDL Principle to Clustering...........c.cecevveeruenennee. 186

5.11 Further Readingccooveieiiiiiieiieiieieieieieeeee et 187

PART II

ADVANCED DATA MINING

CHAPTER 6
6.1

6.2

6.3

6.4

Implementations: Real Machine Learning Schemes.............. 191
DeCisSion TIEES......ccouirieriirieiieieiieiceceeecete st 192
NUMETIC AITDULES ..cvveniiririiieieieet et 193
MiSSING VAIULS ..c..eeuiiiiiiiniiiiieiieieeeeescee et 194
PIUNINE c.oooviiiiiiiiee e 195
Estimating Error Rates.........cccccvvirininininineneicicieeeieceeenes 197
Complexity of Decision Tree Inductionccccevevveveeeencnnens 199
From Trees to Rules.....c..cccooiiiiniiniiniiiiiciciceicecccees 200
C4.5: Choices and OPLioNScecveeveeriierieeerieenieerieenreesieenneens 201
Cost-Complexity Pruningcoceceeeeveneeninienenieneniencnnens 202
DISCUSSION ...ttt 202
Classification RUIes.........ccceeiuieieriiiiinieieeiee e 203
Criteria for Choosing Tests........cccecereririninenenenieieieieeeeeneas 203
Missing Values, Numeric Atributes........coceeveevieevieenieeneennenns 204
Generating Good RUIES..........cocuieriiriiiiiinieeiesieeeesie e 205
Using Global Optimization........c..cecueeeeviereenieneeneneenenienennens 208
Obtaining Rules from Partial Decision Trees..........ccccceceevuenene. 208
Rules with EXCEPLIONSceiuiiieriieiiriieieeiiee e 212
DISCUSSION ...ttt 215
Association Rules.........c..coceiiiiiniiiiniiiiiicccccces 216
Building a Frequent-Pattern Treeccoevveevieriieeneeniieicennns 216
Finding Large Item Setsccccceveeviirieiinieeniinienieneeiesieneeeens 219
DISCUSSION ...ttt sttt s 222
Extending Linear Modelsccccoeverieiinieniiieneeeeeeeee 223
Maximum-Margin Hyperplaneccccoovevviiniiniiiniinnienne. 224

Nonlinear Class Boundariesccocveeeeeeiiuveeeeeeniinieeeeeeeireeeeen. 226

6.5

6.6

6.7

6.8

Contents
Support Vector Regression...........oeceveererierenienecieieeeeeeeene 227
Kernel Ridge Regressionc.ceceveevenienicniecieniecienieieeeen 229
Kernel Perceptroncceevvienieeiieniieiieeiee et 231
Multilayer Perceptrons.........ceecvierveeiienieniieeniiesieeieesveesieenineens 232
Radial Basis Function Networksccccecevereeneneeneniienennens 241
Stochastic Gradient DesScent...........cooceeverierenienienieneeieeene 242
DISCUSSION ...ttt st 243
Instance-Based Learning............cocceceeeieviinieniiniencnieenenieneenns 244
Reducing the Number of Exemplarsc.ccceeceevvieevieniieneennenn. 245
Pruning Noisy EXemplars........cccoccveeiienieniieenienieeeesieeeeneens 245
Weighting AtIIDULEScoveviieniiiieriieieieeieeeeeeeeee e 246
Generalizing EXemplars..........cccooceeveniiiinieniieceeeeeee 247
Distance Functions for Generalized
EXEMPIATS...c..ooiiiiiiiiieieceeeeeeceee e 248
Generalized Distance Functionscc.ccecceeereencniencniencnnens 249
DISCUSSION ..c.eiiiieniiiiieiceit ettt 250
Numeric Prediction with Local Linear Models............c.cccoueee. 251
MOAE] TIEES ..cnveeeenieiiieieeieete ettt st 252
Building the TIeec..ccevveieiririiininereeteereeeeeeeeeeee e 253
Pruning the Tree.........ccooiviiiiiiiiiiiiiicceee e 253
Nominal AtIDULES ..c..eevverieiieieiieicieieeeec e 254
MISSING VAIUES ..ottt 254
Pseudocode for Model Tree Inductioncccceeevveneniencnnens 255
Rules from Model Treesoocuevieienieiienieiescee e 259
Locally Weighted Linear Regression..........cocceeevevvevveeeeecenennens 259
DISCUSSION ..ttt 261
Bayesian NetwWorksccocueerieiiienieniieiesecteseeeese e 261
Making PrediCtionscocecoeeieririenienieneeieneeieseene e 262
Learning Bayesian NetwWorks........cccceceeverieninienicniencnicncnnes 266
Specific AIZOrithms........cccoiviiiiriiiiiiieeeeeee e 268
Data Structures for Fast Learningccccceeceveeeneroienenoeneennns 270
DISCUSSION ..ottt 273
CIUSTETING .ottt ettt ettt ettt et e esaneens 273
Choosing the Number of CIUStersccoceevereencreencnienennens 274
Hierarchical CIUStEIINGcc.evveriiriieniiiinieie et 274
Example of Hierarchical Clusteringcocceeeeeverienenienennens 276
Incremental CIUSLEIING......cveuvruiriririinirienterenetereeeeeeeeeieeaeas 279
Category ULHILY ..coouevieniiiiiiieieieceeeeeeeee e 284
Probability-Based CIUStEIINGccvevvieriieniieiienieeieesieeieenieene 285
The EM AIZOrithm.......ccccocveiiiiiiniiiiniiiieciccececeseees 287

Extending the Mixture Modelcccecevieninienicniincnicncnnes 289

ix

|
X

Contents

6.9

6.10

6.11

CHAPTER 7
7.1

1.2

7.3

1.4

1.5

7.6

Bayesian CIUSLEIINGccvevveieiririniinenentenentesteeeteeeeeeeieeneas 290
DISCUSSION ..ottt 292
Semisupervised Learning..........cceceeveerieeneeniiienienieenieeieeneens 294
Clustering for Classificationcoceeevereeveneencneenenienennens 294
CO-TAINING «..veenveiienieitieieeet ettt ettt 296
EM and Co-traiNingcceoveeeereruinenenienienienieneereeeeeeeeeeeneas 297
DISCUSSION ...ttt ettt st e sae e 297
Multi-Instance Learning..........ccccoceecveeiecienieninienenieenenieneenens 298
Converting to Single-Instance Learning..........ccocceeeeevveenieennenn. 298
Upgrading Learning Algorithms.......c..cccceeveevinieneniencnicncnnens 300
Dedicated Multi-Instance Methods..........cccccceveviiiiecienieininnnnens 301
DISCUSSION ...ttt sttt st 302
Weka Implementations..........cccecceeeerenienienenienienieneeeeeeeeenenes 303
Data Transformations.........ccccecvvvmrvennsmnnsnssr e 305
ATribute SeleCtionc..cocvevuieieniieiiiniieieneeceeee e 307
Scheme-Independent Selection...........cocveveeviieneeeiieenieeiieneens 308
Searching the Attribute SPacecccceverieveniiienieienieieeene 311
Scheme-Specific Selection..........cceveveereriinenieienieeeeee 312
Discretizing Numeric Atributesccoeeeververvenienienieeeeneenens 314
Unsupervised DiSCretiZationc.ceeeceeeeerieneenieneenenieenennens 316
Entropy-Based DiSCretiZationcc.eevvereeenieenieenieenieeieennens 316
Other Discretization Methods..........c.ccecerieniniencniicninicicnean 320
Entropy-Based versus Error-Based Discretization..................... 320
Converting Discrete Attributes to Numeric Attributes............... 322
PrOJECtIONS. ...cviviieieicieeeteee e 322
Principal Components Analysis........ccceceeeevierienicrieenenienennens 324
Random Projections..........ccccueviierieniienienieeiesieceesie e 326
Partial Least-Squares Regressioncceceeveerieeneenieeneennenns 326
Text to Attribute VECOTS......c.ooveiiuiiiiiiriiriiienieicieieieeeeeeees 328
TIME SEIIES ..ottt 330
SAMPING .ottt 330
Reservoir Sampling...........ccccoeeveiiiiiininiinieineeeeeeceeeens 330
ClEANSING ... eeeuiieiie ettt ettt e ens 331
Improving Decision Trees........ccceevveeeuierieriieeniieiieeieenieeieeninens 332
RODbUSt REZIESSION ...ouvieniiiiiiiiieiieieicece e 333
Detecting ANOMAlI@Sc..eevveuieieniieieniieie e 334
One-Class Learningcoceeevererrenienenienienienreeereeeeeeeeeeenens 335
Transforming Multiple Classes to Binary Ones...........cccccceeee. 338
Simple MethOodscooveeiieiiiiiieeieeiee e 338
Error-Correcting Output Codesceevverieeniienieenieenieeieennens 339

Ensembles of Nested DichOtOmi€scocvuvveeieevvvveeeeeiiireeeennn. 341

Contents
7.7 Calibrating Class Probabilitiescccoeevreirenirienieiieeienees 343
7.8 Further Readingcccevveuivieiinieiiieieieeeieeeieceieeeee e 346
7.9 Weka Implementations..........c.c.eveveerrverrreerereeereseereseeresseseseerenas 348
CHAPTER 8 Ensemble LEarningcccoceeeeeeeemsessssessesnsessessssessessssessenes 351
8.1 Combining Multiple MOdEIS..........oceueuirirereiiirieieiiiniseieeeeeees 351
8.2 BAZ@ING ..iiiiiieieieieee et ene e 352
Bias—Variance DecompoOSitionccc.eeveerveenienieenieenieeieennens 353
Bagging With COStS......cceviiriirieniiiieniieiencee et 355
8.3 RandomizZationccceceieueieieieieieieieesiee e 356
Randomization versus Baggingc.ccocceeeeiiiieninieneiienees 357
ROtation FOTESLSeevuiiiiiiiiiiiieiieecceeeeeeeeeeee e 357
8.4 BOOSHNG ..uvevievieiieiieieiieitet ettt ettt ettt eneas 358
AdABOOST ...ttt 358
The Power of BOOSHNGcceeieriiriiniiiiinieicnceiceeeseereeens 361
8.5 Additive RegresSion......ccovvueieverieriieieieiesieesieiesiee e 362
Numeric Predictionc.ccooieieiieiinieiecee e 362
Additive Logistic Regressionccecevieviiniencniiencniieneenens 364
8.6 Interpretable ENSembIEs........c.ccoevieviriirieriiieiesieieieeeeeeeneee e 365
OPUON TTEES ..veevveeutieriiieiteeiit ettt ettt sttt st siaeebeesaeeens 365
Logistic MOdel TIEESccverueeieriiriiniieienieeiesieeie st 368
8.7 StACKING....icviieeeiieiieieeete et 369
8.8 Further Readingcoeveveieieieieieieieeseeeeee e 371
8.9 Weka Implementations.ceeeerueueeerireeeeieirieeeieeseeeeeeeeneeeenas 372
Chapter 9 Moving on: Applications and Beyond...........cceceeeerueuercrcrcnens 375
9.1 Applying Data Mining.........cccecveieinrenrerieriesienieieieeeieseseneenens 375
9.2 Learning from Massive DatasetS..........ccoevevvevievieierieieeeneneenns 378
9.3 Data Stream Learning........cocecevveerieenieenieenieesieeeee e 380
9.4 Incorporating Domain Knowledgeccccevveireinieenieenienennen. 384
9.5 TeXt MINING..ccvoiiieeiiieieieieiet ettt 386
9.6 WED MINING.....ciieeeeeiieieteieeieiee ettt 389
9.7 Adversarial StUAtioNS.........ccvvveirveieieieenieeree e 393
9.8 Ubiquitous Data MINiNgccccoeeevirrerierrerierieieieieieeeeeneneenens 395
9.9 Further Readingccoeivieirieieiiieeseeeeeeee e 397
PART Il THE WEKA DATA MINING WORKBENCH
CHAPTER 10 Introduction t0 WEKaecrerererceeeeunssssereseseseseeeenaens 403
10.1 What’s in WeKa?coevvieiirieiiieiiieeiceeiet ettt 403
10.2 How DO YOU USE Tt? ..ottt 404
10.3 What Else Can You DO?......ccooeireireinieirieieeieeeeeeeieeeieas 405

10.4 How D0 YOU Get It?..cvviiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee e 406

I
Xi

Xii Contents

CHAPTER 11
1.1

11.2

11.3

11.4

11.5

11.6
11.7
11.8

The EXPIOFEr ... eeceeer s e e e ee s mmseee e e e e e e s e e s smmnnnnnens 407
Getting Startedcocveverieriieieieeeeeeeee e 407
Preparing the Datacccceevieiiienieniieieeeeeeseeeese e 407
Loading the Data into the EXplorer.........ccccoocevveniniencnicncnnens 408
Building a Decision Treecccoceevverierieneenienienienienesieneeeens 410
Examining the Outpul.........cccoeoieiieiinieiiniee e 411
Doing It AZAIN c..covevieiiiiiiieiiieeecerreee e 413
Working with MOdEIScocueriiiniiiiiiiiiiiecieseeeee e 414
When Things GO WIONZ.......ccecvierieriiiiienieeiiesie e 415
Exploring the EXPlOTercccocueiiriiniiiiiniiiincenicneenieceeneens 416
Loading and Filtering Filesc..ccccevieviniininiiniiiinciicncee 416
Training and Testing Learning Schemescccccocevenencnnen. 422
Do It Yourself: The User Classifier........cccceververerieneniienenenns 424
Using @ Metalearner..........covveviieniieniieniieeieeiee e 427
Clustering and Association Rules...........cceceevieniieinieniiencennenn. 429
Aribute SlECtioncoveviieriirieniiiiieiceieecee e 430
VASUAHZATION ...ttt 430
Filtering AIZOrithms..........ccoiiiiiiiiiinieecee e 432
Unsupervised Attribute Filters........c.ccoccverineneninienenieieinennns 432
Unsupervised Instance Filters.........coccoviervieriiiniieineinieiieneene 441
Supervised FIlters.......covviiriiinieniieiie e 443
Learning AIZOTIthmsc..cocvevuirieniiiiiniiienceiececeecc e 445
Bayesian Classiflersccceveeieririienieienieicsceneeeeseneeens 451
TEEES .ttt ettt 454
RUIES .ttt 457
FUNCHIONS ..o 459
Neural NetWorkss ...c..coceoiviirinieniniinieieneesccceeeseeeese s 469
Lazy ClIassiflers......ccueviiiiierieiiieriieeie ettt 472
Multi-Instance ClasSifiersccoeevverievereenienienienienenieneeeens 472
Miscellaneous Classifiers.ceveerierierierieneiierie e 474
Metalearning Algorithmsccceevieeieiinieiieiee e 474
Bagging and Randomization...........ccceeveeriernienienneenieeneeneens 474
BOOSHNG .ttt 476
Combining Classifiers.........coeeverirrienierieneeieneeneneereeeene s 477
Cost-Sensitive Learning.........cccueveeveneerieneeneneenieneeneseeseenens 477
Optimizing Performance..........ccocoeveviereniencnieeneeeeee 478
Retargeting Classifiers for Different Tasksccccocevveviecinennens 479
Clustering AIgOTIthMSoouiiieiiiiiiinieiineeeceeeeeeees 480
Association-Rule Learners.........cocoeceeeeevineeniniencniencnienennens 485
AribUte SEIECtioN ...c...ovveviiiiiieieniieiceiciercete e 487

Attribute Subset Evaluatorsccoovveeiiieiiveeeiieiieeeeeeeeiieeeeenn 488

Contents xiii

Single-Attribute Evaluatorsccooceeveiieieiienienieeeece 490

Search MethodsS........ceecvieiiiiieeiie et e 492

CHAPTER 12 The Knowledge FIow INtErfaceccceeveeeeerresnsessesnssessenns 495
12.1 Getting Startedoeueueeirieeeeeieieieee et 495

12.2 COMPONENLS.vevieiiieteiiieieteteeeteieieeee ettt eee e seeeenas 498

12.3 Configuring and Connecting the Componentscccccueuene. 500

12.4 Incremental Learning.........cccccecveieieiiieieieesieseeieeeeeeeeeneenas 502
CHAPTER 13 The EXPEriMEnterccceeeereruerersrsesersssesessssessssssessssssenssns 505
13.1 Getting Startedocevveveieieieieieiee et eeeas 505

Running an EXperiment.........ccccvevveriienieniieeniienieeieesie e 506

Analyzing the ResultS.........cceeoieviriiniiiiniieceeeees 509

13.2 SIMPIE SEIUP .evvinieiieieteieteeieteiete ettt ettt 510

13.3 Advanced SEUPcevvveririeririeiirieeiereeeeiee ettt 511

13.4 The Analyze Panel...........ccocoeiinirieiiiireeeeeee e 512

13.5 Distributing Processing over Several Machines............cccccueu.... 515
CHAPTER 14 The Command-Line Interface..........ccceeueueercecrerererarescscscnens 519
14.1 Getting StArtedceoveveueeireeieieieieieei et 519

14.2 The Structure of WeKa........ccovveireirieiinieireseeeeeeeeee 519

Classes, Instances, and Packages...........ccoecueevieriieniieniiencennenns 520

The weka.core Package..........cccevevieviiiiniininiiniiiencsienees 520

The weka.classifiers Package..........cccocoeeevieniiiieniciieniiieces 523

Other Packages........cooviiviiniiiiiiiiiiiieececceeee et 525

Javadoc INAEXES ...ccuveeriiiiiiiiiiiiieitee e 525

14.3 Command-Line OPiOnS........c.ccveveieieeeierieeriesiesiesieieseneseeneas 526

GENETIC OPLIONS ..eivrieniieeiiieiieeiie et eteetteeteeteesbe et e sibeeseesineens 526
Scheme-Specific OPONScccveverieriirieniiieneeieeeeeeeeeeeeee 529

CHAPTER 15 Embedded Machine LEarningeeeeeeeeeeeereressnsnssnsesenens 531
15.1 A Simple Data Mining Application...........cceevevevveerreerieenienenas 531
MessageClasSIfier().....eouuueniininiiniiieeeeieeee et 536

UPAATEDATA() ..o 536
CLASSTIYMESSAGE() ettt 537

CHAPTER 16 Writing New Learning SCHEmMEScccveeeererreeessessesessensens 539
16.1 An Example Classifier........cocecerirrieueinininieeinireiecsesee e 539
DUTLACTASSIFIET ().t 540

TNAKETTCE() ... veeeeieeeiee ettt e rae et eaee e 540
COMPUIETRFOGATN() c.veenveieniieiieeiieeeee ettt 549

ClasSTYINSIANCE()..ccveereiiiiieiieeiieeieee ettt 549

Xiv Contents

FOSOUTCE() cuvvveeeneieeeeieeeeiiie ettt e et e e etae e eaae e e aaeeeensaeesnsaeesnnreens 550
FRAIN() oottt st st 553

16.2 Conventions for Implementing Classifiers..........cocoevereenienennee 555
Capabilities.....coueoeeriirieniiricieeteeec e 555
CHAPTER 17 Tutorial Exercises for the Weka EXpIOrer........cccouverueeereennne 559
17.1 Introduction to the Explorer Interface...........c.coceevnirieueenerinnnnes 559
Loading a Datasetcocueevieriieniienieeiieeieeite st 559

The Dataset EItOrcoccocveriiiieniriiinieiincecceicece e 560
APPLYINg @ Filter...c.coviiiiiiiiiiiiiiicccecec e 561

The Visualize Panelccoooeoiiiiiiiniiiiiieececece 562

The Classify Panelcccooiiiiiiiiiee e 562

17.2 Nearest-Neighbor Learning and Decision Treescccccoouee... 566
The Glass Datasetcoceecverieieniiecienieieneeeeeeie e 566
Aribute SIECtioncouevveriieieniieiiiieieicee e 567
Class Noise and Nearest-Neighbor Learning...........cc.cceceevueeneee 568
Varying the Amount of Training Data...........ccccceevevvevieinninnnnns 569
Interactive Decision Tree COnStructionc.cceveeeeereereenuennnens 569

17.3 Classification Boundaries...........cocecvrverrreiereiereieiseeeeeseeeenes 571
Visualizing TRcooiiiiiiiiiiiie et 571
Visualizing Nearest-Neighbor Learning..........ccocceevvevveereennenne 572
Visualizing Naive Bayes........ccccevirvieniiiiiniiniiieniciicnceiences 573
Visualizing Decision Trees and Rule Sets.........cccccoceveriencnnnens 573
Messing with the Dataocceiiriinieiiiie e 574

17.4 Preprocessing and Parameter TUNingccocevevevrereeueenerennnns 574
DISCIEtZAtION ...ttt sttt 574
More on DiSCretiZationc..ccceeeeevenueeieneenienieneneeneseeneenens 575
Automatic Attribute Selectioncc.eceveevirienienienienienennens 575
More on Automatic Attribute Selectionccocevcvererencnnnens 576
Automatic Parameter Tuning..........ccceceeveeeenirienenieneseseeens 577

17.5 Document Classificationcceeeerveriieesreiereieeeeeseevessevenes 578
Data with String AtribUutescoovevviiirienieiienieeeeseeeeee e 579
Classifying Actual DOCUMENLSccceeerieerieeniienieeiienieeicenieens 580
Exploring the StringToWordVector Filtercccccooevevencnnns 581

17.6 Mining Association RUIES.........ccoceirveiriecinieieieieeieeeeieeee 582
Association-Rule Mining..........ccoceeveeierenienenieneeeeeeseens 582
Mining a Real-World Dataset...........ccccocevievinieniiiencnieneenns 584
Market Basket Analysiscccoceevieriiiinieniieiiienieeeesieeeesee e 584
REFERENGES..........oiiiiee e 587

List of Figures

Figure 1.1 Rules for the contact lens data.
Figure 1.2 Decision tree for the contact lens data.
Figure 1.3 Decision trees for the labor negotiations data.

Figure 2.1 A family tree and two ways of expressing the sister-of relation.

Figure 2.2 ARFF file for the weather data.

Figure 2.3 Multi-instance ARFF file for the weather data.

Figure 3.1 A linear regression function for the CPU performance data.

Figure 3.2 A linear decision boundary separating Iris setosas from Iris
versicolors.

Figure 3.3 Constructing a decision tree interactively.

Figure 3.4 Models for the CPU performance data.

Figure 3.5 Decision tree for a simple disjunction.

Figure 3.6 The exclusive-or problem.

Figure 3.7 Decision tree with a replicated subtree.

Figure 3.8 Rules for the iris data.

Figure 3.9 The shapes problem.

Figure 3.10 Different ways of partitioning the instance space.

Figure 3.11 Different ways of representing clusters.

Figure 4.1 Pseudocode for 1R.

Figure 4.2 Tree stumps for the weather data.

Figure 4.3 Expanded tree stumps for the weather data.

Figure 4.4 Decision tree for the weather data.

Figure 4.5 Tree stump for the ID code attribute.

Figure 4.6 Covering algorithm.

Figure 4.7 The instance space during operation of a covering algorithm.

Figure 4.8 Pseudocode for a basic rule learner.

Figure 4.9 Logistic regression.

Figure 4.10 The perceptron.

Figure 4.11 The Winnow algorithm.

Figure 4.12 A kD-tree for four training instances.

Figure 4.13 Using a kD-tree to find the nearest neighbor of the star.

Figure 4.14 Ball tree for 16 training instances.

Figure 4.15 Ruling out an entire ball (gray) based on a target point
(star) and its current nearest neighbor.

Figure 4.16 A ball tree.

Figure 5.1 A hypothetical lift chart.

Figure 5.2 Analyzing the expected benefit of a mailing campaign.

Figure 5.3 A sample ROC curve.

Figure 5.4 ROC curves for two learning schemes.

Figure 5.5 Effect of varying the probability threshold.

Figure 6.1 Example of subtree raising.

12
13
18
43
53
55
62

63
66
68
69
70
71
74
76
80
82
86
100
102
103
105
109
110
114
127
129
130
133
134
136

137
141
170
171
173
174
178
196

XV

]
Xvi

List of Figures

Figure 6.2 Pruning the labor negotiations decision tree.

Figure 6.3 Algorithm for forming rules by incremental reduced-error
pruning.

Figure 6.4 RIPPER.

Figure 6.5 Algorithm for expanding examples into a partial tree.

Figure 6.6 Example of building a partial tree.

Figure 6.7 Rules with exceptions for the iris data.

Figure 6.8 Extended prefix trees for the weather data.

Figure 6.9 A maximum-margin hyperplane.

Figure 6.10 Support vector regression.

Figure 6.11 Example datasets and corresponding perceptrons.

Figure 6.12 Step versus sigmoid.

Figure 6.13 Gradient descent using the error function w? + 1.

Figure 6.14 Multilayer perceptron with a hidden layer.

Figure 6.15 Hinge, squared, and O — 1 loss functions.

Figure 6.16 A boundary between two rectangular classes.

Figure 6.17 Pseudocode for model tree induction.

Figure 6.18 Model tree for a dataset with nominal attributes.

Figure 6.19 A simple Bayesian network for the weather data.

Figure 6.20 Another Bayesian network for the weather data.

Figure 6.21 The weather data.

Figure 6.22 Hierarchical clustering displays.

Figure 6.23 Clustering the weather data.

Figure 6.24 Hierarchical clusterings of the iris data.

Figure 6.25 A two-class mixture model.

Figure 6.26 DensiTree showing possible hierarchical clusterings of a given
dataset.

Figure 7.1 Attribute space for the weather dataset.

Figure 7.2 Discretizing the temperature attribute using the entropy
method.

Figure 7.3 The result of discretizing the temperature attribute.

Figure 7.4 Class distribution for a two-class, two-attribute problem.

Figure 7.5 Principal components transform of a dataset.

Figure 7.6 Number of international phone calls from Belgium, 1950-1973.

Figure 7.7 Overoptimistic probability estimation for a two-class problem.

Figure 8.1 Algorithm for bagging.

Figure 8.2 Algorithm for boosting.

Figure 8.3 Algorithm for additive logistic regression.

Figure 8.4 Simple option tree for the weather data.

Figure 8.5 Alternating decision tree for the weather data.

Figure 9.1 A tangled “web.”

Figure 11.1 The Explorer interface.

Figure 11.2 Weather data.

Figure 11.3 The Weka Explorer.

200

207
209
210
211
213
220
225
228
233
240
240
241
242
248
255
256
262
264
270
276
279
281
285

291
311

318
318
321
325
333
344
355
359
365
366
367
391
408
409
410

List of Figures

Figure 11.4 Using J4.8.

Figure 11.5 Output from the J4.8 decision tree learner.
Figure 11.6 Visualizing the result of J4.8 on the iris dataset.
Figure 11.7 Generic Object Editor.

Figure 11.8 The SQLViewer tool.

Figure 11.9 Choosing a filter.

Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14

Classifier.
Figure 11.15
Figure 11.16
Figure 11.17
Figure 11.18
Figure 11.19
Figure 11.20

The weather data with two attributes removed.
Processing the CPU performance data with M5’.
Output from the M5’ program for numeric prediction.
Visualizing the errors.

Working on the segment-challenge data with the User

Configuring a metalearner for boosting decision stumps.
Output from the Apriori program for association rules.
Visualizing the iris dataset.

Using Weka’s metalearner for discretization.

Output of NaiveBayes on the weather data.

Visualizing a Bayesian network for the weather data

(nominal version).

Figure 11.21
Figure 11.22
Figure 11.23
Figure 11.24
data.
Figure 11.25
Figure 11.26
Figure 11.27
Figure 11.28
Figure 11.29
Figure 11.30
Figure 11.31
Figure 11.32
Figure 11.33
method.

Changing the parameters for J4.8.
Output of OneR on the labor negotiations data.
Output of PART for the labor negotiations data.

Output of SimpleLinearRegression for the CPU performance

Output of SMO on the iris data.

Output of SMO with a nonlinear kernel on the iris data.
Output of Logistic on the iris data.

Using Weka’s neural-network graphical user interface.
Output of SimpleKMeans on the weather data.

Output of EM on the weather data.

Clusters formed by DBScan on the iris data.

OPTICS visualization for the iris data.

Attribute selection: specifying an evaluator and a search

Figure 12.1 The Knowledge Flow interface.

Figure 12.2 Configuring a data source.

Figure 12.3 Status area after executing the configuration shown in
Figure 12.1.

Figure 12.4 Operations on the Knowledge Flow components.

Figure 12.5 A Knowledge Flow that operates incrementally.

Figure 13.1 An experiment.

Figure 13.2 Statistical test results for the experiment in Figure 13.1.

Figure 13.3 Setting up an experiment in advanced mode.

Figure 13.4 An experiment in clustering.

411
412
415
417
418
420
422
423
425
426

428
429
430
431
443
452

454
455
458
460

461
463
465
468
470
481
482
484
485

488
496
497

497
500
503
506
509
511
513

I
Xvii

Xviii

List of Figures

Figure 13.5 Rows and columns of Figure 13.2.
Figure 14.1 Using Javadoc.

Figure 14.2 DecisionStump, a class of the weka.classifiers.trees package.

Figure 15.1 Source code for the message classifier.

Figure 16.1 Source code for the ID3 decision tree learner.

Figure 16.2 Source code produced by weka.classifiers.trees.Id3 for the
weather data.

Figure 16.3 Javadoc for the Capability enumeration.

Figure 17.1 The data viewer.

Figure 17.2 Output after building and testing the classifier.

Figure 17.3 The decision tree that has been built.

514
521
524
532
541

551
556
560
564
565

List of Tables

Table 1.1 Contact Lens Data

Table 1.2 Weather Data

Table 1.3 Weather Data with Some Numeric Attributes
Table 1.4 Iris Data

Table 1.5 CPU Performance Data

Table 1.6 Labor Negotiations Data

Table 1.7 Soybean Data

Table 2.1 Iris Data as a Clustering Problem

Table 2.2 Weather Data with a Numeric Class

Table 2.3 Family Tree

Table 2.4 Sister-of Relation

Table 2.5 Another Relation

Table 3.1 New Iris Flower

Table 3.2 Training Data for the Shapes Problem

Table 4.1 Evaluating Attributes in the Weather Data
Table 4.2 Weather Data with Counts and Probabilities
Table 4.3 A New Day

Table 4.4 Numeric Weather Data with Summary Statistics
Table 4.5 Another New Day

Table 4.6 Weather Data with Identification Codes

Table 4.7 Gain Ratio Calculations for Figure 4.2 Tree Stumps
Table 4.8 Part of Contact Lens Data for which astigmatism = yes

Table 4.9 Part of Contact Lens Data for which astigmatism = yes and tear

production rate = normal

Table 4.10 Item Sets for Weather Data with Coverage 2 or Greater

Table 4.11 Association Rules for Weather Data

Table 5.1 Confidence Limits for Normal Distribution

Table 5.2 Confidence Limits for Student’s Distribution with 9 Degrees
of Freedom

Table 5.3 Different Outcomes of a Two-Class Prediction

Table 5.4 Different Outcomes of a Three-Class Prediction

Table 5.5 Default Cost Matrixes

Table 5.6 Data for a Lift Chart

Table 5.7 Different Measures Used to Evaluate the False Positive versus
False Negative Trade-Off

Table 5.8 Performance Measures for Numeric Prediction

Table 5.9 Performance Measures for Four Numeric Prediction Models

Table 6.1 Preparing Weather Data for Insertion into an FP-Tree

Table 6.2 Linear Models in the Model Tree

Table 7.1 First Five Instances from CPU Performance Data

Table 7.2 Transforming a Multiclass Problem into a Two-Class One

10
11
14
16
17
20
41
42
44
45
47
73
76
87
91
92
95
96

106

107

112

113
117
120
152

159
164
165
166
169

176
180
182
217
257
327
340

Xix

|
XX

List of Tables

Table 7.3 Nested Dichotomy in the Form of a Code Matrix

Table 9.1 Top 10 Algorithms in Data Mining

Table 11.1 Unsupervised Attribute Filters

Table 11.2 Unsupervised Instance Filters

Table 11.3 Supervised Attribute Filters

Table 11.4 Supervised Instance Filters

Table 11.5 Classifier Algorithms in Weka

Table 11.6 Metalearning Algorithms in Weka

Table 11.7 Clustering Algorithms

Table 11.8 Association-Rule Learners

Table 11.9 Attribute Evaluation Methods for Attribute Selection

Table 11.10 Search Methods for Attribute Selection

Table 12.1 Visualization and Evaluation Components

Table 14.1 Generic Options for Learning Schemes

Table 14.2 Scheme-Specific Options for the J4.8 Decision Tree Learner

Table 16.1 Simple Learning Schemes in Weka

Table 17.1 Accuracy Obtained Using IBk, for Different Attribute Subsets

Table 17.2 Effect of Class Noise on /Bk, for Different Neighborhood Sizes

Table 17.3 Effect of Training Set Size on IBk and J48

Table 17.4 Training Documents

Table 17.5 Test Documents

Table 17.6 Number of Rules for Different Values of Minimum Confidence
and Support

342
376
433
441
444
444
446
475
480
486
489
490
499
527
528
540
568
569
570
580
580

584

Preface

The convergence of computing and communication has produced a society that feeds
on information. Yet most of the information is in its raw form: data. If data is char-
acterized as recorded facts, then information is the set of patterns, or expectations,
that underlie the data. There is a huge amount of information locked up in data-
bases—information that is potentially important but has not yet been discovered or
articulated. Our mission is to bring it forth.

Data mining is the extraction of implicit, previously unknown, and potentially
useful information from data. The idea is to build computer programs that sift
through databases automatically, seeking regularities or patterns. Strong patterns, if
found, will likely generalize to make accurate predictions on future data. Of course,
there will be problems. Many patterns will be banal and uninteresting. Others will
be spurious, contingent on accidental coincidences in the particular dataset used.
And real data is imperfect: Some parts will be garbled, some missing. Anything that
is discovered will be inexact: There will be exceptions to every rule and cases not
covered by any rule. Algorithms need to be robust enough to cope with imperfect
data and to extract regularities that are inexact but useful.

Machine learning provides the technical basis of data mining. It is used to extract
information from the raw data in databases—information that is expressed in a
comprehensible form and can be used for a variety of purposes. The process is one
of abstraction: taking the data, warts and all, and inferring whatever structure under-
lies it. This book is about the tools and techniques of machine learning that are used
in practical data mining for finding, and describing, structural patterns in data.

As with any burgeoning new technology that enjoys intense commercial atten-
tion, the use of data mining is surrounded by a great deal of hype in the technical—
and sometimes the popular—press. Exaggerated reports appear of the secrets that
can be uncovered by setting learning algorithms loose on oceans of data. But there
is no magic in machine learning, no hidden power, no alchemy. Instead, there is an
identifiable body of simple and practical techniques that can often extract useful
information from raw data. This book describes these techniques and shows how
they work.

We interpret machine learning as the acquisition of structural descriptions from
examples. The kind of descriptions that are found can be used for prediction, expla-
nation, and understanding. Some data mining applications focus on prediction:
They forecast what will happen in new situations from data that describe what hap-
pened in the past, often by guessing the classification of new examples. But we are
equally—perhaps more—interested in applications where the result of “learning” is
an actual description of a structure that can be used to classify examples. This struc-
tural description supports explanation and understanding as well as prediction. In
our experience, insights gained by the user are of most interest in the majority of
practical data mining applications; indeed, this is one of machine learning’s major
advantages over classical statistical modeling.

XXi

XXii

Preface

The book explains a wide variety of machine learning methods. Some are peda-
gogically motivated: simple schemes that are designed to explain clearly how the
basic ideas work. Others are practical: real systems that are used in applications
today. Many are contemporary and have been developed only in the last few years.

A comprehensive software resource has been created to illustrate the ideas in this
book. Called the Waikato Environment for Knowledge Analysis, or Weka' for short,
it is available as Java source code at www.cs.waikato.ac.nz/ml/weka. It is a full,
industrial-strength implementation of essentially all the techniques that are covered
in this book. It includes illustrative code and working implementations of machine
learning methods. It offers clean, spare implementations of the simplest techniques,
designed to aid understanding of the mechanisms involved. It also provides a work-
bench that includes full, working, state-of-the-art implementations of many popular
learning schemes that can be used for practical data mining or for research. Finally,
it contains a framework, in the form of a Java class library, that supports applications
that use embedded machine learning and even the implementation of new learning
schemes.

The objective of this book is to introduce the tools and techniques for machine
learning that are used in data mining. After reading it, you will understand what
these techniques are and appreciate their strengths and applicability. If you wish to
experiment with your own data, you will be able to do this easily with the Weka
software.

The book spans the gulf between the intensely practical approach taken by trade
books that provide case studies on data mining and the more theoretical, principle-
driven exposition found in current textbooks on machine learning. (A brief descrip-
tion of these books appears in the Further Reading section at the end of Chapter 1.)
This gulf is rather wide. To apply machine learning techniques productively, you
need to understand something about how they work; this is not a technology that
you can apply blindly and expect to get good results. Different problems yield to
different techniques, but it is rarely obvious which techniques are suitable for a given
situation: You need to know something about the range of possible solutions. And
we cover an extremely wide range of techniques. We can do this because, unlike
many trade books, this volume does not promote any particular commercial software
or approach. We include a large number of examples, but they use illustrative data-
sets that are small enough to allow you to follow what is going on. Real datasets
are far too large to show this (and in any case are usually company confidential).
Our datasets are chosen not to illustrate actual large-scale practical problems but to
help you understand what the different techniques do, how they work, and what their
range of application is.

The book is aimed at the technically aware general reader who is interested in
the principles and ideas underlying the current practice of data mining. It will also

'Found only on the islands of New Zealand, the weka (pronounced to rhyme with “Mecca”) is a
flightless bird with an inquisitive nature.

Preface xxiii

be of interest to information professionals who need to become acquainted with this
new technology, and to all those who wish to gain a detailed technical understanding
of what machine learning involves. It is written for an eclectic audience of informa-
tion systems practitioners, programmers, consultants, developers, information tech-
nology managers, specification writers, patent examiners, and curious lay people, as
well as students and professors, who need an easy-to-read book with lots of illustra-
tions that describes what the major machine learning techniques are, what they do,
how they are used, and how they work. It is practically oriented, with a strong “how
to” flavor, and includes algorithms, code, and implementations. All those involved
in practical data mining will benefit directly from the techniques described. The book
is aimed at people who want to cut through to the reality that underlies the hype
about machine learning and who seek a practical, nonacademic, unpretentious
approach. We have avoided requiring any specific theoretical or mathematical
knowledge, except in some sections that are marked by a box around the text. These
contain optional material, often for the more technically or theoretically inclined
reader, and may be skipped without loss of continuity.

The book is organized in layers that make the ideas accessible to readers who
are interested in grasping the basics, as well as accessible to those who would like
more depth of treatment, along with full details on the techniques covered. We
believe that consumers of machine learning need to have some idea of how the
algorithms they use work. It is often observed that data models are only as good as
the person who interprets them, and that person needs to know something about how
the models are produced to appreciate the strengths, and limitations, of the technol-
ogy. However, it is not necessary for all users to have a deep understanding of the
finer details of the algorithms.

We address this situation by describing machine learning methods at successive
levels of detail. The book is divided into three parts. Part I is an introduction to data
mining. The reader will learn the basic ideas, the topmost level, by reading the first
three chapters. Chapter 1 describes, through examples, what machine learning is and
where it can be used; it also provides actual practical applications. Chapters 2 and
3 cover the different kinds of input and output, or knowledge representation, that
are involved—different kinds of output dictate different styles of algorithm. Chapter
4 describes the basic methods of machine learning, simplified to make them easy to
comprehend. Here, the principles involved are conveyed in a variety of algorithms
without getting involved in intricate details or tricky implementation issues. To make
progress in the application of machine learning techniques to particular data mining
problems, it is essential to be able to measure how well you are doing. Chapter 5,
which can be read out of sequence, equips the reader to evaluate the results that are
obtained from machine learning, addressing the sometimes complex issues involved
in performance evaluation.

Part II introduces advanced techniques of data mining. At the lowest and most
detailed level, Chapter 6 exposes in naked detail the nitty-gritty issues of implement-
ing a spectrum of machine learning algorithms, including the complexities that are
necessary for them to work well in practice (but omitting the heavy mathematical

XXiv

Preface

machinery that is required for a few of the algorithms). Although many readers may
want to ignore such detailed information, it is at this level that the full, working,
tested Java implementations of machine learning schemes are written. Chapter 7
describes practical topics involved with engineering the input and output to machine
learning—for example, selecting and discretizing attributes—while Chapter 8
covers techniques of “ensemble learning,” which combine the output from different
learning techniques. Chapter 9 looks to the future.

The book describes most methods used in practical machine learning. However,
it does not cover reinforcement learning because that is rarely applied in practical
data mining; nor does it cover genetic algorithm approache, because these are
really an optimization technique, or relational learning and inductive logic pro-
gramming because they are not very commonly used in mainstream data mining
applications.

Part III describes the Weka data mining workbench, which provides implementa-
tions of almost all of the ideas described in Parts I and II. We have done this in order
to clearly separate conceptual material from the practical aspects of how to use
Weka. At the end of each chapter in Parts I and II are pointers to related Weka
algorithms in Part III. You can ignore these, or look at them as you go along, or skip
directly to Part III if you are in a hurry to get on with analyzing your data and don’t
want to be bothered with the technical details of how the algorithms work.

Java has been chosen for the implementations of machine learning techniques
that accompany this book because, as an object-oriented programming language, it
allows a uniform interface to learning schemes and methods for pre- and postpro-
cessing. We chose it over other object-oriented languages because programs written
in Java can be run on almost any computer without having to be recompiled, having
to go through complicated installation procedures, or—worst of all—having to
change the code itself. A Java program is compiled into byte-code that can be
executed on any computer equipped with an appropriate interpreter. This interpreter
is called the Java virtual machine. Java virtual machines—and, for that matter, Java
compilers—are freely available for all important platforms.

Of all programming languages that are widely supported, standardized, and
extensively documented, Java seems to be the best choice for the purpose of this
book. However, executing a Java program is slower than running a corresponding
program written in languages like C or C4++ because the virtual machine has to
translate the byte-code into machine code before it can be executed. This penalty
used to be quite severe, but Java implementations have improved enormously over
the past two decades, and in our experience it is now less than a factor of two if the
virtual machine uses a just-in-time compiler. Instead of translating each byte-code
individually, a just-in-time compiler translates whole chunks of byte-code into
machine code, thereby achieving significant speedup. However, if this is still too
slow for your application, there are compilers that translate Java programs directly
into machine code, bypassing the byte-code step. Of course, this code cannot be
executed on other platforms, thereby sacrificing one of Java’s most important
advantages.

Preface XXV

UPDATED AND REVISED CONTENT

We finished writing the first edition of this book in 1999, the second edition in
early 2005, and now, in 2011, we are just polishing this third edition. How things
have changed over the past decade! While the basic core of material remains the
same, we have made the most opportunities to both update it and to add new
material. As a result the book has close to doubled in size to reflect the changes
that have taken place. Of course, there have also been errors to fix, errors that we
had accumulated in our publicly available errata file (available through the book’s
home page at http://www.cs.waikato.ac.nz/ml/weka/book.html).

Second Edition

The major change in the second edition of the book was a separate part at the end that
included all the material on the Weka machine learning workbench. This allowed the
main part of the book to stand alone, independent of the workbench, which we have
continued in this third edition. At that time, Weka, a widely used and popular feature
of the first edition, had just acquired a radical new look in the form of an interactive
graphical user interface—or, rather, three separate interactive interfaces—which
made it far easier to use. The primary one is the Explorer interface, which gives access
to all of Weka’s facilities using menu selection and form filling. The others are the
Knowledge Flow interface, which allows you to design configurations for streamed
data processing, and the Experimenter interface, with which you set up automated
experiments that run selected machine learning algorithms with different parameter
settings on a corpus of datasets, collect performance statistics, and perform signifi-
cance tests on the results. These interfaces lower the bar for becoming a practicing
data miner, and the second edition included a full description of how to use them.

It also contained much new material that we briefly mention here. We extended
the sections on rule learning and cost-sensitive evaluation. Bowing to popular
demand, we added information on neural networks: the perceptron and the closely
related Winnow algorithm, and the multilayer perceptron and the backpropagation
algorithm. Logistic regression was also included. We described how to implement
nonlinear decision boundaries using both the kernel perceptron and radial basis
function networks, and also included support vector machines for regression. We
incorporated a new section on Bayesian networks, again in response to readers’
requests and Weka’s new capabilities in this regard, with a description of how to
learn classifiers based on these networks and how to implement them efficiently
using AD-trees.

The previous five years (1999-2004) had seen great interest in data mining for
text, and this was reflected in the introduction of string attributes in Weka, multino-
mial Bayes for document classification, and text transformations. We also described
efficient data structures for searching the instance space: kD-trees and ball trees for
finding nearest neighbors efficiently and for accelerating distance-based clustering.
We described new attribute selection schemes, such as race search and the use of

XXvi

Preface

support vector machines, and new methods for combining models such as additive
regression, additive logistic regression, logistic model trees, and option trees. We
also covered recent developments in using unlabeled data to improve classification,
including the co-training and co-EM methods.

Third Edition

For this third edition, we thoroughly edited the second edition and brought it up to
date, including a great many new methods and algorithms. Our basic philosophy has
been to bring the book and the Weka software even closer together. Weka now
includes implementations of almost all the ideas described in Parts I and II, and vice
versa—pretty well everything currently in Weka is covered in this book. We have
also included far more references to the literature: This third edition practically
triples the number of references that were in the first edition.

As well as becoming far easier to use, Weka has grown beyond recognition over
the last decade, and has matured enormously in its data mining capabilities. It now
incorporates an unparalleled range of machine learning algorithms and related tech-
niques. This growth has been partly stimulated by recent developments in the field
and partly user-led and demand-driven. This puts us in a position where we know a
lot about what actual users of data mining want, and we have capitalized on this
experience when deciding what to include in this book.

As noted earlier, this new edition is split into three parts, which has involved a
certain amount of reorganization. More important, a lot of new material has been
added. Here are a few of the highlights.

Chapter 1 includes a section on web mining, and, under ethics, a discussion of
how individuals can often be “reidentified” from supposedly anonymized data. A
major addition describes techniques for multi-instance learning, in two new sections:
basic methods in Section 4.9 and more advanced algorithms in Section 6.10. Chapter
5 contains new material on interactive cost—benefit analysis. There have been a great
number of other additions to Chapter 6: cost-complexity pruning, advanced associ-
ation-rule algorithms that use extended prefix trees to store a compressed version of
the dataset in main memory, kernel ridge regression, stochastic gradient descent, and
hierarchical clustering methods. The old chapter Engineering the Input and Output
has been split into two: Chapter 7 on data transformations (which mostly concern
the input) and Chapter 8 on ensemble learning (the output). To the former we have
added information on partial least-squares regression, reservoir sampling, one-class
learning, decomposing multiclass classification problems into ensembles of nested
dichotomies, and calibrating class probabilities. To the latter we have added new
material on randomization versus bagging and rotation forests. New sections on data
stream learning and web mining have been added to the last chapter of Part II.

Part III, on the Weka data mining workbench, contains a lot of new information.
Weka includes many new filters, machine learning algorithms, and attribute selection
algorithms, and many new components such as converters for different file formats
and parameter optimization algorithms. Indeed, within each of these categories Weka

Preface xxvii

contains around 50% more algorithms than in the version described in the second
edition of this book. All these are documented here. In response to popular demand
we have given substantially more detail about the output of the different classifiers
and what it all means. One important change is the inclusion of a brand new Chapter
17 that gives several tutorial exercises for the Weka Explorer interface (some of
them quite challenging), which we advise new users to work though to get an idea
of what Weka can do.

This page intentionally left blank

Acknowledgments

Writing the acknowledgments is always the nicest part! A lot of people have helped
us, and we relish this opportunity to thank them. This book has arisen out of the
machine learning research project in the Computer Science Department at the Uni-
versity of Waikato, New Zealand. We received generous encouragement and assis-
tance from the academic staff members early on in that project: John Cleary, Sally
Jo Cunningham, Matt Humphrey, Lyn Hunt, Bob McQueen, Lloyd Smith, and Tony
Smith. Special thanks go to Geoff Holmes, the project leader and source of inspira-
tion, and Bernhard Pfahringer, both of whom also had significant input into many
different aspects of the Weka software. All who have worked on the machine learn-
ing project here have contributed to our thinking: We would particularly like to
mention early students Steve Garner, Stuart Inglis, and Craig Nevill-Manning for
helping us to get the project off the ground in the beginning, when success was less
certain and things were more difficult.

The Weka system that illustrates the ideas in this book forms a crucial component
of it. It was conceived by the authors and designed and implemented principally by
Eibe Frank, Mark Hall, Peter Reutemann, and Len Trigg, but many people in the
machine learning laboratory at Waikato made significant early contributions. Since
the first edition of this book, the Weka team has expanded considerably: So many
people have contributed that it is impossible to acknowledge everyone properly. We
are grateful to Remco Bouckaert for his Bayes net package and many other contribu-
tions, Lin Dong for her implementations of multi-instance learning methods, Dale
Fletcher for many database-related aspects, James Foulds for his work on multi-
instance filtering, Anna Huang for information bottleneck clustering, Martin Giitlein
for his work on feature selection, Kathryn Hempstalk for her one-class classifier,
Ashraf Kibriya and Richard Kirkby for contributions far too numerous to list, Niels
Landwehr for logistic model trees, Chi-Chung Lau for creating all the icons for the
Knowledge Flow interface, Abdelaziz Mahoui for the implementation of K*, Stefan
Mutter for association-rule mining, Malcolm Ware for numerous miscellaneous
contributions, Haijian Shi for his implementations of tree learners, Marc Sumner for
his work on speeding up logistic model trees, Tony Voyle for least-median-of-
squares regression, Yong Wang for Pace regression and the original implementation
of M5’, and Xin Xu for his multi-instance learning package, JRip, logistic regression,
and many other contributions. Our sincere thanks go to all these people for their
dedicated work, and also to the many contributors to Weka from outside our group
at Waikato.

Tucked away as we are in a remote (but very pretty) corner of the southern
hemisphere, we greatly appreciate the visitors to our department who play a crucial
role in acting as sounding boards and helping us to develop our thinking. We would
like to mention in particular Rob Holte, Carl Gutwin, and Russell Beale, each of
whom visited us for several months; David Aha, who although he only came for a
few days did so at an early and fragile stage of the project and performed a great

XXix

XXX

Acknowledgments

service by his enthusiasm and encouragement; and Kai Ming Ting, who worked with
us for two years on many of the topics described in Chapter 8 and helped to bring
us into the mainstream of machine learning. More recent visitors include Arie Ben-
David, Carla Brodley, and Stefan Kramer. We would particularly like to thank Albert
Bifet, who gave us detailed feedback on a draft version of the third edition, most of
which we have incorporated.

Students at Waikato have played a significant role in the development of the
project. Many of them are in the above list of Weka contributors, but they have also
contributed in other ways. In the early days, Jamie Littin worked on ripple-down
rules and relational learning. Brent Martin explored instance-based learning and
nested instance-based representations, Murray Fife slaved over relational learning,
and Nadeeka Madapathage investigated the use of functional languages for express-
ing machine learning algorithms. More recently, Kathryn Hempstalk worked on
one-class learning and her research informs part of Section 7.5; likewise, Richard
Kirkby’s research on data streams informs Section 9.3. Some of the exercises in
Chapter 17 were devised by Gabi Schmidberger, Richard Kirkby, and Geoff Holmes.
Other graduate students have influenced us in numerous ways, particularly Gordon
Paynter, YingYing Wen, and Zane Bray, who have worked with us on text mining,
and Quan Sun and Xiaofeng Yu. Colleagues Steve Jones and Malika Mahoui have
also made far-reaching contributions to these and other machine learning projects.
We have also learned much from our many visiting students from Freiburg, including
Nils Weidmann.

Ian Witten would like to acknowledge the formative role of his former students
at Calgary, particularly Brent Krawchuk, Dave Maulsby, Thong Phan, and Tanja
Mitrovic, all of whom helped him develop his early ideas in machine learning, as
did faculty members Bruce MacDonald, Brian Gaines, and David Hill at Calgary,
and John Andreae at the University of Canterbury.

Eibe Frank is indebted to his former supervisor at the University of Karlsruhe,
Klaus-Peter Huber, who infected him with the fascination of machines that learn.
On his travels, Eibe has benefited from interactions with Peter Turney, Joel Martin,
and Berry de Bruijn in Canada; Luc de Raedt, Christoph Helma, Kristian Kersting,
Stefan Kramer, Ulrich Riickert, and Ashwin Srinivasan in Germany.

Mark Hall thanks his former supervisor Lloyd Smith, now at Missouri State
University, who exhibited the patience of Job when his thesis drifted from its original
topic into the realms of machine learning. The many and varied people who have
been part of, or have visited, the machine learning group at the University of Waikato
over the years deserve a special thanks for their valuable insights and stimulating
discussions.

Rick Adams and David Bevans of Morgan Kaufmann have worked hard to shape
this book, and Marilyn Rash, our project manager, has made the process go very
smoothly. We would like to thank the librarians of the Repository of Machine Learn-
ing Databases at the University of California, Irvine, whose carefully collected
datasets have been invaluable in our research.

Acknowledgments xxxi

Our research has been funded by the New Zealand Foundation for Research,
Science, and Technology and the Royal Society of New Zealand Marsden Fund. The
Department of Computer Science at the University of Waikato has generously sup-
ported us in all sorts of ways, and we owe a particular debt of gratitude to Mark
Apperley for his enlightened leadership and warm encouragement. Part of the first
edition was written while both authors were visiting the University of Calgary,
Canada, and the support of the Computer Science department there is gratefully
acknowledged, as well as the positive and helpful attitude of the long-suffering
students in the machine learning course, on whom we experimented. Part of the
second edition was written at the University of Lethbridge in Southern Alberta on
a visit supported by Canada’s Informatics Circle of Research Excellence.

Last, and most of all, we are grateful to our families and partners. Pam, Anna,
and Nikki were all too well aware of the implications of having an author in the
house (“Not again!”), but let Ian go ahead and write the book anyway. Julie was
always supportive, even when Eibe had to burn the midnight oil in the machine
learning lab, and Immo and Ollig provided exciting diversions. Bernadette too was
very supportive, somehow managing to keep the combined noise output of Charlotte,
Luke, Zach, and Kyle to a level that allowed Mark to concentrate. Among us, we
hail from Canada, England, Germany, Ireland, New Zealand, and Samoa: New
Zealand has brought us together and provided an ideal, even idyllic, place to do this
work.

This page intentionally left blank

About the Authors

Ian H. Witten is a professor of computer science at the University of Waikato in
New Zealand. His research interests include language learning, information retrieval,
and machine learning. He has published widely, including several books: Managing
Gigabytes (1999), Data Mining (2005), Web Dragons (2007), and How to Build a
Digital Library (2003). He is a Fellow of the ACM and of the Royal Society of
New Zealand. He received the 2004 IFIP Namur Award, a biennial honor accorded
for “outstanding contribution with international impact to the awareness of social
implications of information and communication technology,” and (with the rest of
the Weka team) received the 2005 SIGKDD Service Award for “an outstanding
contribution to the data mining field.” In 2006, he received the Royal Society of
New Zealand Hector Medal for “an outstanding contribution to the advancement of
the mathematical and information sciences,” and in 2010 was officially inaugurated
as a “World Class New Zealander” in research, science, and technology.

Eibe Frank lives in New Zealand with his Samoan spouse and two lovely boys,
but originally hails from Germany, where he received his first degree in computer
science from the University of Karlsruhe. He moved to New Zealand to pursue his
Ph.D. in machine learning under the supervision of Ian H. Witten, and joined the
Department of Computer Science at the University of Waikato as a lecturer on
completion of his studies. He is now an associate professor at the same institution.
As an early adopter of the Java programming language, he laid the groundwork for
the Weka software described in this book. He has contributed a number of publica-
tions on machine learning and data mining to the literature and has refereed for
many conferences and journals in these areas.

Mark A. Hall was born in England but moved to New Zealand with his parents as
a young boy. He now lives with his wife and four young children in a small town
situated within a hour’s drive of the University of Waikato. He holds a bachelor’s
degree in computing and mathematical sciences and a Ph.D. in computer science,
both from the University of Waikato. Throughout his time at Waikato, as a student
and lecturer in computer science and more recently as a software developer and data
mining consultant for Pentaho, an open-source business intelligence software
company, Mark has been a core contributor to the Weka software described in this
book. He has published a number of articles on machine learning and data mining
and has refereed for conferences and journals in these areas.

XXXiii

This page intentionally left blank

PART

Introduction to
Data Mining

This page intentionally left blank

CHAPTER

What's It All About?

Human in vitro fertilization involves collecting several eggs from a woman’s ovaries,
which, after fertilization with partner or donor sperm, produce several embryos.
Some of these are selected and transferred to the woman’s uterus. The challenge is
to select the “best” embryos to use—the ones that are most likely to survive. Selec-
tion is based on around 60 recorded features of the embryos—characterizing their
morphology, oocyte, and follicle, and the sperm sample. The number of features is
large enough to make it difficult for an embryologist to assess them all simultane-
ously and correlate historical data with the crucial outcome of whether that embryo
did or did not result in a live child. In a research project in England, machine learn-
ing has been investigated as a technique for making the selection, using historical
records of embryos and their outcome as training data.

Every year, dairy farmers in New Zealand have to make a tough business deci-
sion: which cows to retain in their herd and which to sell off to an abattoir. Typically,
one-fifth of the cows in a dairy herd are culled each year near the end of the milking
season as feed reserves dwindle. Each cow’s breeding and milk production history
influences this decision. Other factors include age (a cow nears the end of its pro-
ductive life at eight years), health problems, history of difficult calving, undesirable
temperament traits (kicking or jumping fences), and not being pregnant with calf
for the following season. About 700 attributes for each of several million cows have
been recorded over the years. Machine learning has been investigated as a way of
ascertaining what factors are taken into account by successful farmers—not to
automate the decision but to propagate their skills and experience to others.

Life and death. From Europe to the Antipodes. Family and business. Machine
learning is a burgeoning new technology for mining knowledge from data, a
technology that a lot of people are starting to take seriously.

1.1 DATA MINING AND MACHINE LEARNING

We are overwhelmed with data. The amount of data in the world and in our lives
seems ever-increasing—and there’s no end in sight. Omnipresent computers make
it too easy to save things that previously we would have trashed. Inexpensive disks
and online storage make it too easy to postpone decisions about what to do with all

Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

4

CHAPTER 1 What's It All About?

this stuff—we simply get more memory and keep it all. Ubiquitous electronics
record our decisions, our choices in the supermarket, our financial habits, our
comings and goings. We swipe our way through the world, every swipe a record in
a database. The World Wide Web (WWW) overwhelms us with information; mean-
while, every choice we make is recorded. And all of these are just personal choices—
they have countless counterparts in the world of commerce and industry. We could
all testify to the growing gap between the generation of data and our understanding
of it. As the volume of data increases, inexorably, the proportion of it that people
understand decreases alarmingly. Lying hidden in all this data is information—
potentially useful information—that is rarely made explicit or taken advantage of.

This book is about looking for patterns in data. There is nothing new about this.
People have been seeking patterns in data ever since human life began. Hunters seek
patterns in animal migration behavior, farmers seek patterns in crop growth, politi-
cians seek patterns in voter opinion, and lovers seek patterns in their partners’
responses. A scientist’s job (like a baby’s) is to make sense of data, to discover the
patterns that govern how the physical world works and encapsulate them in theories
that can be used for predicting what will happen in new situations. The entrepre-
neur’s job is to identify opportunities—that is, patterns in behavior that can be turned
into a profitable business—and exploit them.

In data mining, the data is stored electronically and the search is automated—or
at least augmented—by computer. Even this is not particularly new. Economists,
statisticians, forecasters, and communication engineers have long worked with the
idea that patterns in data can be sought automatically, identified, validated, and used
for prediction. What is new is the staggering increase in opportunities for finding
patterns in data. The unbridled growth of databases in recent years, databases for
such everyday activities as customer choices, brings data mining to the forefront of
new business technologies. It has been estimated that the amount of data stored in
the world’s databases doubles every 20 months, and although it would surely be
difficult to justify this figure in any quantitative sense, we can all relate to the pace
of growth qualitatively. As the flood of data swells and machines that can undertake
the searching become commonplace, the opportunities for data mining increase. As
the world grows in complexity, overwhelming us with the data it generates, data
mining becomes our only hope for elucidating hidden patterns. Intelligently analyzed
data is a valuable resource. It can lead to new insights, and, in commercial settings,
to competitive advantages.

Data mining is about solving problems by analyzing data already present in
databases. Suppose, to take a well-worn example, the problem is fickle customer
loyalty in a highly competitive marketplace. A database of customer choices, along
with customer profiles, holds the key to this problem. Patterns of behavior of former
customers can be analyzed to identify distinguishing characteristics of those likely
to switch products and those likely to remain loyal. Once such characteristics are
found, they can be put to work to identify present customers who are likely to jump
ship. This group can be targeted for special treatment, treatment too costly to apply
to the customer base as a whole. More positively, the same techniques can be used

1.1 Data Mining and Machine Learning 5

to identify customers who might be attracted to another service the enterprise pro-
vides, one they are not presently enjoying, to target them for special offers that
promote this service. In today’s highly competitive, customer-centered, service-
oriented economy, data is the raw material that fuels business growth—if only it can
be mined.

Data mining is defined as the process of discovering patterns in data. The process
must be automatic or (more usually) semiautomatic. The patterns discovered must
be meaningful in that they lead to some advantage, usually an economic one. The
data is invariably present in substantial quantities.

And how are the patterns expressed? Useful patterns allow us to make nontrivial
predictions on new data. There are two extremes for the expression of a pattern: as
a black box whose innards are effectively incomprehensible, and as a transparent
box whose construction reveals the structure of the pattern. Both, we are assuming,
make good predictions. The difference is whether or not the patterns that are mined
are represented in terms of a structure that can be examined, reasoned about, and
used to inform future decisions. Such patterns we call structural because they
capture the decision structure in an explicit way. In other words, they help to explain
something about the data.

Now, again, we can say what this book is about: It is about techniques for finding
and describing structural patterns in data. Most of the techniques that we cover have
developed within a field known as machine learning. But first let us look at what
structural patterns are.

Describing Structural Patterns

What is meant by structural patterns? How do you describe them? And what form
does the input take? We will answer these questions by way of illustration rather
than by attempting formal, and ultimately sterile, definitions. There will be plenty
of examples later in this chapter, but let’s examine one right now to get a feeling
for what we’re talking about.

Look at the contact lens data in Table 1.1. It gives the conditions under which
an optician might want to prescribe soft contact lenses, hard contact lenses, or no
contact lenses at all; we will say more about what the individual features mean later.
Each line of the table is one of the examples. Part of a structural description of this
information might be as follows:

If tear production rate = reduced then recommendation = none
Otherwise, i1f age = young and astigmatic = no then
recommendation = soft

Structural descriptions need not necessarily be couched as rules such as these. Deci-
sion trees, which specify the sequences of decisions that need to be made along with
the resulting recommendation, are another popular means of expression.

This example is a very simplistic one. For a start, all combinations of possible
values are represented in the table. There are 24 rows, representing three possible

6 CHAPTER 1 What's It All About?

Table 1.1 Contact Lens Data

Spectacle Tear Production Recommended
Age Prescription Astigmatism Rate Lenses
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

values of age and two values each for spectacle prescription, astigmatism, and tear
production rate (3 X 2 X 2 X 2 = 24). The rules do not really generalize from the
data; they merely summarize it. In most learning situations, the set of examples given
as input is far from complete, and part of the job is to generalize to other, new
examples. You can imagine omitting some of the rows in the table for which the tear
production rate is reduced and still coming up with the rule

If tear production rate = reduced then recommendation = none

This would generalize to the missing rows and fill them in correctly. Second, values
are specified for all the features in all the examples. Real-life datasets invariably
contain examples in which the values of some features, for some reason or other,
are unknown—for example, measurements were not taken or were lost. Third, the

1.1 Data Mining and Machine Learning 7

preceding rules classify the examples correctly, whereas often, because of errors or
noise in the data, misclassifications occur even on the data that is used to create the
classifier.

Machine Learning

Now that we have some idea of the inputs and outputs, let’s turn to machine learn-
ing. What is learning, anyway? What is machine learning? These are philosophical
questions, and we will not be too concerned with philosophy in this book; our
emphasis is firmly on the practical. However, it is worth spending a few moments
at the outset on fundamental issues, just to see how tricky they are, before rolling
up our sleeves and looking at machine learning in practice.

Our dictionary defines “to learn” as

* To get knowledge of something by study, experience, or being taught.
* To become aware by information or from observation

* To commit to memory

e To be informed of or to ascertain

* To receive instruction

These meanings have some shortcomings when it comes to talking about computers.
For the first two, it is virtually impossible to test whether learning has been achieved
or not. How do you know whether a machine has got knowledge of something? You
probably can’t just ask it questions; even if you could, you wouldn’t be testing its
ability to learn but its ability to answer questions. How do you know whether it has
become aware of something? The whole question of whether computers can be
aware, or conscious, is a burning philosophical issue.

As for the last three meanings, although we can see what they denote in human
terms, merely committing to memory and receiving instruction seem to fall far short
of what we might mean by machine learning. They are too passive, and we know
that computers find these tasks trivial. Instead, we are interested in improvements
in performance, or at least in the potential for performance, in new situations. You
can commit something to memory or be informed of something by rote learning
without being able to apply the new knowledge to new situations. In other words,
you can receive instruction without benefiting from it at all.

Earlier we defined data mining operationally, as the process of discovering pat-
terns, automatically or semiautomatically, in large quantities of data—and the pat-
terns must be useful. An operational definition can be formulated in the same way
for learning:

* Things learn when they change their behavior in a way that makes them
perform better in the future

This ties learning to performance rather than knowledge. You can test learning by
observing present behavior and comparing it with past behavior. This is a much more
objective kind of definition and appears to be far more satisfactory.

8

CHAPTER 1 What's It All About?

But still there’s a problem. Learning is a rather slippery concept. Lots of things
change their behavior in ways that make them perform better in the future, yet we
wouldn’t want to say that they have actually learned. A good example is a comfort-
able slipper. Has it learned the shape of your foot? It has certainly changed its
behavior to make it perform better as a slipper! Yet we would hardly want to call
this learning. In everyday language, we often use the word fraining to denote a
mindless kind of learning. We train animals and even plants, although it would be
stretching the word a bit to talk of training objects such as slippers, which are not
in any sense alive. But learning is different. Learning implies thinking and purpose.
Something that learns has to do so intentionally. That is why we wouldn’t say that
a vine has learned to grow around a trellis in a vineyard—we’d say it has been
trained. Learning without purpose is merely training. Or, more to the point, in
learning the purpose is the learner’s, whereas in training it is the teacher’s.

Thus, on closer examination the second definition of learning, in operational,
performance-oriented terms, has its own problems when it comes to talking about
computers. To decide whether something has actually learned, you need to see
whether it intended to, whether there was any purpose involved. That makes the
concept moot when applied to machines because whether artifacts can behave pur-
posefully is unclear. Philosophical discussions of what is really meant by learning,
like discussions of what is really meant by intention or purpose, are fraught with
difficulty. Even courts of law find intention hard to grapple with.

Data Mining

Fortunately, the kind of learning techniques explained in this book do not present
these conceptual problems—they are called machine learning without really presup-
posing any particular philosophical stance about what learning actually is. Data
mining is a topic that involves learning in a practical, nontheoretical sense. We are
interested in techniques for finding and describing structural patterns in data, as a
tool for helping to explain that data and make predictions from it. The data will take
the form of a set of examples, such as customers who have switched loyalties, for
instance, or situations in which certain kinds of contact lenses can be prescribed.
The output takes the form of predictions about new examples—a prediction of
whether a particular customer will switch or a prediction of what kind of lens will
be prescribed under given circumstances. But because this book is about finding and
describing patterns in data, the output may also include an actual description of a
structure that can be used to classify unknown examples. As well as performance,
it is helpful to supply an explicit representation of the knowledge that is acquired.
In essence, this reflects both definitions of learning considered above: the acquisition
of knowledge and the ability to use it.

Many learning techniques look for structural descriptions of what is learned—
descriptions that can become fairly complex and are typically expressed as sets of
rules, such as the ones described previously or the decision trees described later in
this chapter. Because they can be understood by people, these descriptions serve to

1.2 Simple Examples: The Weather and Other Problems 9

explain what has been learned—in other words, to explain the basis for new predic-
tions. Experience shows that in many applications of machine learning to data
mining, the explicit knowledge structures that are acquired, the structural descrip-
tions, are at least as important as the ability to perform well on new examples. People
frequently use data mining to gain knowledge, not just predictions. Gaining knowl-
edge from data certainly sounds like a good idea if you can do it. To find out how,
read on!

1.2 SIMPLE EXAMPLES: THE WEATHER
AND OTHER PROBLEMS

We will be using a lot of examples in this book, which seems particularly appropriate
considering that the book is all about learning from examples! There are several
standard datasets that we will come back to repeatedly. Different datasets tend to
expose new issues and challenges, and it is interesting and instructive to have in
mind a variety of problems when considering learning methods. In fact, the need to
work with different datasets is so important that a corpus containing around 100
example problems has been gathered together so that different algorithms can be
tested and compared on the same set of problems.

The set of problems in this section are all unrealistically simple. Serious appli-
cation of data mining involves thousands, hundreds of thousands, or even millions
of individual cases. But when explaining what algorithms do and how they work,
we need simple examples that capture the essence of the problem but are small
enough to be comprehensible in every detail. We will be working with the datasets
in this section throughout the book, and they are intended to be “academic” in the
sense that they will help us to understand what is going on. Some actual fielded
applications of learning techniques are discussed in Section 1.3, and many more
are covered in the books mentioned in Section 1.7, Further reading, at the end of
the chapter.

Another problem with actual real-life datasets is that they are often proprietary.
No one is going to share their customer and product choice database with you so
that you can understand the details of their data mining application and how it works.
Corporate data is a valuable asset, the value of which has increased enormously with
the development of data mining techniques such as those described in this book.
Yet, we are concerned here with understanding how the methods used for data
mining work, and understanding the details of these methods so that we can trace
their operation on actual data. That is why our illustrative datasets are simple ones.
But they are not simplistic: They exhibit the features of real datasets.

The Weather Problem

The weather problem is a tiny dataset that we will use repeatedly to illustrate
machine learning methods. Entirely fictitious, it supposedly concerns the conditions

10

CHAPTER 1 What's It All About?

Table 1.2 Weather Data

Outlook Temperature Humidity Windy Play
Sunny hot high false no
Sunny hot high true no
Overcast hot high false yes
Rainy mild high false yes
Rainy cool normal false yes
Rainy cool normal true no
Overcast cool normal true yes
Sunny mild high false no
Sunny cool normal false yes
Rainy mild normal false yes
Sunny mild normal true yes
Overcast mild high true yes
Overcast hot normal false yes
Rainy mild high true no

that are suitable for playing some unspecified game. In general, instances in a dataset
are characterized by the values of features, or attributes, that measure different
aspects of the instance. In this case there are four attributes: outlook, temperature,
humidity, and windy. The outcome is whether to play or not.

In its simplest form, shown in Table 1.2, all four attributes have values that are
symbolic categories rather than numbers. Outlook can be sunny, overcast, or rainy;
temperature can be hot, mild, or cool; humidity can be high or normal; and windy
can be frue or false. This creates 36 possible combinations (3 X 3 X 2 X 2 = 36), of
which 14 are present in the set of input examples.

A set of rules learned from this information—not necessarily a very good one—
might look like this:

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = ves
If none of the above then play = vyes

These rules are meant to be interpreted in order: The first one; then, if it doesn’t
apply, the second; and so on. A set of rules that are intended to be interpreted in
sequence is called a decision list. Interpreted as a decision list, the rules correctly
classify all of the examples in the table, whereas taken individually, out of context,
some of the rules are incorrect. For example, the rule if humidity = normal then play
= yes gets one of the examples wrong (check which one). The meaning of a set of
rules depends on how it is interpreted—not surprisingly!

In the slightly more complex form shown in Table 1.3, two of the attributes—
temperature and humidity—have numeric values. This means that any learning

1.2 Simple Examples: The Weather and Other Problems

Table 1.3 Weather Data with Some Numeric Attributes

Outlook Temperature = Humidity Windy Play
Sunny 85 85 false no
Sunny 80 90 true no
Overcast 83 86 false yes
Rainy 70 96 false yes
Rainy 68 80 false yes
Rainy 65 70 true no
Overcast 64 65 true yes
Sunny 72 95 false no
Sunny 69 70 false yes
Rainy 75 80 false yes
Sunny 75 70 true yes
Overcast 72 90 true yes
Overcast 81 75 false yes
Rainy 71 91 true no

scheme must create inequalities involving these attributes rather than simple
equality tests as in the former case. This is called a numeric-attribute problem—in
this case, a mixed-attribute problem because not all attributes are numeric.

Now the first rule given earlier might take the form

If outlook = sunny and humidity > 83 then play = no

A slightly more complex process is required to come up with rules that involve
numeric tests.

The rules we have seen so far are classification rules: They predict the classifica-
tion of the example in terms of whether to play or not. It is equally possible to
disregard the classification and just look for any rules that strongly associate different
attribute values. These are called association rules. Many association rules can be
derived from the weather data in Table 1.2. Some good ones are

If temperature = cool then humidity = normal
If humidity = normal and windy = false then play = ves

If outlook = sunny and play = no then humidity = high

If windy = false and play = no then outlook = sunny and

humidity = high
All these rules are 100% correct on the given data; they make no false predic-
tions. The first two apply to four examples in the dataset, the third to three examples,
and the fourth to two examples. And there are many other rules. In fact, nearly 60
association rules can be found that apply to two or more examples of the weather
data and are completely correct on this data. And if you look for rules that are less
than 100% correct, then you will find many more. There are so many because, unlike

.
11

12

CHAPTER 1 What's It All About?

classification rules, association rules can “predict” any of the attributes, not just a
specified class, and can even predict more than one thing. For example, the fourth
rule predicts both that outlook will be sunny and that humidity will be high.

Contact Lenses: An Idealized Problem

The contact lens data introduced earlier tells you the kind of contact lens to prescribe,
given certain information about a patient. Note that this example is intended for
illustration only: It grossly oversimplifies the problem and should certainly not be
used for diagnostic purposes!

The first column of Table 1.1 gives the age of the patient. In case you’re wonder-
ing, presbyopia is a form of longsightedness that accompanies the onset of middle
age. The second gives the spectacle prescription: Myope means shortsighted and
hypermetrope means longsighted. The third shows whether the patient is astigmatic,
while the fourth relates to the rate of tear production, which is important in this
context because tears lubricate contact lenses. The final column shows which kind
of lenses to prescribe, whether hard, soft, or none. All possible combinations of the
attribute values are represented in the table.

A sample set of rules learned from this information is shown in Figure 1.1. This
is a rather large set of rules, but they do correctly classify all the examples. These
rules are complete and deterministic: They give a unique prescription for every
conceivable example. Generally this is not the case. Sometimes there are situations
in which no rule applies; other times more than one rule may apply, resulting in

If tear production rate = reduced then recommendation = none.

If age = young and astigmatic = no and tear production rate = normal
then recommendation = soft

If age = pre-presbyopic and astigmatic = no and tear production
rate = normal then recommendation = soft

If age = presbyopic and spectacle prescription = myope and
astigmatic = no then recommendation = none

If spectacle prescription = hypermetrope and astigmatic = no and
tear production rate = normal then recommendation = soft

If spectacle prescription = myope and astigmatic = yes and
tear production rate = normal then recommendation = hard

If age = young and astigmatic = yes and tear production rate = normal
then recommendation = hard

If age = pre-presbyopic and spectacle prescription = hypermetrope
and astigmatic = yes then recommendation = none

If age = presbyopic and spectacle prescription = hypermetrope
and astigmatic = yes then recommendation = none

FIGURE 1.1

Rules for the contact lens data.

1.2 Simple Examples: The Weather and Other Problems 13

conflicting recommendations. Sometimes probabilities or weights may be associated
with the rules themselves to indicate that some are more important, or more reliable,
than others.

You might be wondering whether there is a smaller rule set that performs as well.
If so, would you be better off using the smaller rule set, and, if so, why? These are
exactly the kinds of questions that will occupy us in this book. Because the examples
form a complete set for the problem space, the rules do no more than summarize all
the information that is given, expressing it in a different and more concise way. Even
though it involves no generalization, this is often a very useful thing to do! People
frequently use machine learning techniques to gain insight into the structure of their
data rather than to make predictions for new cases. In fact, a prominent and success-
ful line of research in machine learning began as an attempt to compress a huge
database of possible chess endgames and their outcomes into a data structure of
reasonable size. The data structure chosen for this enterprise was not a set of rules
but a decision tree.

Figure 1.2 shows a structural description for the contact lens data in the form of
a decision tree, which for many purposes is a more concise and perspicuous repre-
sentation of the rules and has the advantage that it can be visualized more easily.
(However, this decision tree, in contrast to the rule set given in Figure 1.1, classifies
two examples incorrectly.) The tree calls first for a test on the tear production rate,
and the first two branches correspond to the two possible outcomes. If the fear
production rate is reduced (the left branch), the outcome is none. If it is normal
(the right branch), a second test is made, this time on astigmatism. Eventually,
whatever the outcome of the tests, a leaf of the tree is reached that dictates the
contact lens recommendation for that case. The question of what is the most natural
and easily understood format for
the output from a machine learning
scheme is one that we will return
to in Chapter 3.

tear production rate

normal

none astigmatism

Irises: A Classic
Numeric Dataset

The iris dataset, which dates back
to seminal work by the eminent
statistician R. A. Fisher in the mid-
1930s and is arguably the most
famous dataset used in data mining,
contains 50 examples of each of
three types of plant: Iris setosa,
Iris versicolor, and Iris virginica.
FIGURE 1.2 It is excerpted in Table 1.4. There
Decision tree for the contact lens data. are four attributes: sepal length,

yes

spectacle prescription

hypermetrope

soft

hard none

14

CH

APTER 1 What's It All About?

O~ WO N =

52
53
54
55
10
10
10

10
10

Table 1.4 Iris Data

Sepal Sepal Petal Petal
Length (cm) Width (cm) Length (cm) Width (cm) Type
5.1 3.5 1.4 0.2 Iris setosa
4.9 3.0 1.4 0.2 Iris setosa
4.7 3.2 1.3 0.2 Iris setosa
4.6 3.1 1.5 0.2 Iris setosa
5.0 3.6 1.4 0.2 Iris setosa
7.0 3.2 4.7 1.4 Iris versicolor
6.4 3.2 4.5 1.5 Iris versicolor
6.9 3.1 4.9 1.5 Iris versicolor
5.5 2.3 4.0 1.3 Iris versicolor
6.5 2.8 4.6 1.5 Iris versicolor
1 6.3 3.3 6.0 2.5 Iris virginica
2 5.8 2.7 5.1 1.9 Iris virginica
3 71 3.0 5.9 21 Iris virginica
4 6.3 2.9 5.6 1.8 Iris virginica
5 6.5 3.0 5.8 2.2 Iris virginica

sepal width, petal length, and petal width (all measured in centimeters). Unlike
previous datasets, all attributes have values that are numeric.

If
If
If
If
If
If
If

If

If
If

If

If
If
If
If

The following set of rules might be learned from this dataset:

petal-length < 2.45 then Iris-setosa

sepal-width < 2.10 then Iris-versicolor

sepal-width < 2.45 and petal-length < 4.55 then Iris-versicolor
sepal-width < 2.95 and petal-width < 1.35 then Iris-versicolor
petal-length 2 2.45 and petal-length < 4.45 then Iris-versicolor
sepal-length 2 5.85 and petal-length < 4.75 then Iris-versicolor
sepal-width < 2.55 and petal-length < 4.95 and

petal-width < 1.55 then Iris-versicolor

petal-length 2 2.45 and petal-length < 4.95 and

petal-width < 1.55 then Iris-versicolor

sepal-length 2 6.55 and petal-length < 5.05 then Iris-versicolor
sepal-width < 2.75 and petal-width < 1.65 and

sepal-length < 6.05 then Iris-versicolor

sepal-length 2 5.85 and sepal-length < 5.95 and

petal-length < 4.85 then Iris-versicolor

petal-length > 5.15 then Iris-virginica

petal-width
petal-width
petal-length 2>

1.85 then Iris-virginica
1.75 and sepal-width < 3.05 then Iris-virginica
4.95 and petal-width < 1.55 then Iris-virginica

v v

1.2 Simple Examples: The Weather and Other Problems 15

These rules are very cumbersome, and we will see in Chapter 3 how more compact
rules can be expressed that convey the same information.

CPU Performance: Introducing Numeric Prediction

Although the iris dataset involves numeric attributes, the outcome—the type of
iris—is a category, not a numeric value. Table 1.5 shows some data for which both
the outcome and the attributes are numeric. It concerns the relative performance of
computer processing power on the basis of a number of relevant attributes; each row
represents one of 209 different computer configurations.

The classic way of dealing with continuous prediction is to write the outcome
as a linear sum of the attribute values with appropriate weights, for example,

PRP =—55.9+0.0489 mycT + 0.0153 MMIN + 0.0056 MMAX
+0.6410 cacH—0.2700 cHMIN + 1.480 cHMAX

(The abbreviated variable names are given in the second row of the table.) This is
called a regression equation, and the process of determining the weights is called
regression, a well-known procedure in statistics that we will review in Chapter 4.
However, the basic regression method is incapable of discovering nonlinear relation-
ships (although variants do exist—indeed, one will be described in Section 6.4), and
in Chapter 3 we will examine different representations that can be used for predicting
numeric quantities.

In the iris and central processing unit (CPU) performance data, all the attributes
have numeric values. Practical situations frequently present a mixture of numeric
and nonnumeric attributes.

Labor Negotiations: A More Realistic Example

The labor negotiations dataset in Table 1.6 summarizes the outcome of Canadian
contract negotiations in 1987 and 1988. It includes all collective agreements reached
in the business and personal services sector for organizations with at least 500
members (teachers, nurses, university staff, police, etc.). Each case concerns one
contract, and the outcome is whether the contract is deemed acceptable or unaccept-
able. The acceptable contracts are ones in which agreements were accepted by both
labor and management. The unacceptable ones are either known offers that fell
through because one party would not accept them or acceptable contracts that had
been significantly perturbed to the extent that, in the view of experts, they would
not have been accepted.

There are 40 examples in the dataset (plus another 17 that are normally reserved
for test purposes). Unlike the other tables here, Table 1.6 presents the examples
as columns rather than as rows; otherwise, it would have to be stretched over
several pages. Many of the values are unknown or missing, as indicated by ques-
tion marks. This is a much more realistic dataset than the others we have seen.

16

gy
/9
cs

49"
cLl
0ce
692
86}

ddd
@ouewLIOMad

o

9l
43
4%
43
8¢l

XVYIWHO
Xepy

sjpuuey)

o

43

N
o

43
[43)
43

O 0O

9l 9G¢

NIWHO HOVO

uin (ax)
ayoen

000Y
0008
0008

0009+
000°2e
000°ce
000°2e
0009

XYW
Xepy

(ax) Aowsy ureiy

000+
45
000¢

0008
0008
0008
0008
9G¢

NINWN
uin

08y
08y
act

6¢
6¢
6¢
6¢
gcl

1OAN
(su) swny
9J9AD

60¢
80¢
120¢

- AN M W0

eleQ @ouBWIOLRd NdD S'T 2|9el

17

poob
ey
sok
[N}
Sok
Bne
clL

ov
auou

(087
gy

ov

poob
N}

N}

usb

ueb
Gl

%S
%E

ge
491

%S
%

peq
auou
ou
auou
ou
Bne
LE
soh

auou

8¢
auou

{peq ‘poof}
{Ins ‘yrey ‘euou}
{ou ‘seA}

{In} “4rey *euou}
{ou ‘sah}

{ueb ‘Bae ‘Bre-mojeq}
(sAep 1o Joquinu)

{ou ‘seA}

abejusolad

abeiusoled

{nuo-jdwe ‘mje-184 ‘@uou}
(sinoy Jo Jequinuy)

{01 ‘J01 ‘euou}

abejusoled

abejusoled

abejueolad

(sseak Jo Jequunu)

adA)

10BJIUO0D JO AYjigeldeooe
uonNguUuod ueld yiesy
90UB]SISSE JUslUBABBISq
uonNguUuod ueld [ejusp
aoue)sIsse Alljigesip wJel-Buol
uoljeoeA

skepijoy Aloinyels
90UBMO|[E UoI}eoNpa
Juswis|ddns som-yiys
Aed Agpuels

uoisuad

Meem Jad sinoy Buiom
uswisnipe BulAl-}J0-1S00
Jesk pig asealoul sbem
Jeah pug esealoul abem
Jeak 1s| asealoul sbem
uoneinp

nqLUuy

eleQ suoljeljosaN Joge] 9T 3|qel

18 CHAPTER 1 What's It All About?

wage increase 1st year wage increase 1st year

<2.5 >2.5 2.5 >2.5
>10 <10 >10 <10
@rease@
<4

working hours per week
>36

bad good
< >4
o] o] [m] [3] o]
(@) (b)

FIGURE 1.3

Decision trees for the labor negotiations data.

It contains many missing values, and it seems unlikely that an exact classification
can be obtained.

Figure 1.3 shows two decision trees that represent the dataset. Figure 1.3(a) is
simple and approximate—it doesn’t represent the data exactly. For example, it will
predict bad for some contracts that are actually marked good. However, it does make
intuitive sense: A contract is bad (for the employee!) if the wage increase in the first
year is too small (less than 2.5%). If the first-year wage increase is larger than this,
it is good if there are lots of statutory holidays (more than 10 days). Even if there
are fewer statutory holidays, it is good if the first-year wage increase is large enough
(more than 4%).

Figure 1.3(b) is a more complex decision tree that represents the same dataset.
Take a detailed look down the left branch. At first sight it doesn’t seem to make
sense intuitively that, if the working hours exceed 36, a contract is bad if there is
no health-plan contribution or a full health-plan contribution, but is good if there is
a half health-plan contribution. It is certainly reasonable that the health-plan contri-
bution plays a role in the decision, but it seems anomalous that half is good and both
full and none are bad. However, on reflection this could make sense after all, because
“good” contracts are ones that have been accepted by both parties: labor and man-
agement. Perhaps this structure reflects compromises that had to be made to reach
agreement. This kind of detailed reasoning about what parts of decision trees mean
is a good way of getting to know your data and thinking about the underlying
problem.

In fact, Figure 1.3(b) is a more accurate representation of the training dataset
than Figure 1.3(a). But it is not necessarily a more accurate representation of the
underlying concept of good versus bad contracts. Although it is more accurate on
the data that was used to train the classifier, it may perform less well on an inde-
pendent set of test data. It may be “overfitted” to the training data—following it too

1.2 Simple Examples: The Weather and Other Problems 19

slavishly. The tree in Figure 1.3(a) is obtained from the one in Figure 1.3(b) by a
process of pruning, which we will learn more about in Chapter 6.

Soybean Classification: A Classic Machine Learning Success

An often quoted early success story in the application of machine learning to practi-
cal problems is the identification of rules for diagnosing soybean diseases. The data
is taken from questionnaires describing plant diseases. There are about 680 exam-
ples, each representing a diseased plant. Plants were measured on 35 attributes, each
one having a small set of possible values. Examples are labeled with the diagnosis
of an expert in plant biology: There are 19 disease categories altogether—horrible-
sounding diseases such as diaporthe stem canker, rhizoctonia root rot, and bacterial
blight, to mention just a few.

Table 1.7 gives the attributes, the number of different values that each can have,
and a sample record for one particular plant. The attributes are placed in different
categories just to make them easier to read.

Here are two example rules, learned from this data:

If leaf condition = normal and
stem condition = abnormal and
stem cankers = below soil line and
canker lesion color = brown

then

diagnosis is rhizoctonia root rot

If leaf malformation = absent and
stem condition = abnormal and
stem cankers = below soil line and
canker lesion color = brown

then

diagnosis is rhizoctonia root rot

These rules nicely illustrate the potential role of prior knowledge—often called
domain knowledge—in machine learning, for in fact the only difference between the
two descriptions is leaf condition is normal versus leaf malformation is absent. Now,
in this domain, if the leaf condition is normal then leaf malformation is necessarily
absent, so one of these conditions happens to be a special case of the other. Thus,
if the first rule is true, the second is necessarily true as well. The only time the second
rule comes into play is when leaf malformation is absent but leaf condition is not
normal—that is, when something other than malformation is wrong with the leaf.
This is certainly not apparent from a casual reading of the rules.

Research on this problem in the late 1970s found that these diagnostic rules could
be generated by a machine learning algorithm, along with rules for every other
disease category, from about 300 training examples. These training examples were
carefully selected from the corpus of cases as being quite different from one
another—*“far apart” in the example space. At the same time, the plant pathologist
who had produced the diagnoses was interviewed, and his expertise was translated

20 CHAPTER 1 What's It All About?

Table 1.7 Soybean Data
Number
Attribute of Values Sample Value
environment time of occurrence 7 July
precipitation 3 above normal
temperature 3 normal
cropping history 4 same as last year
hail damage 2 yes
damaged area 4 scattered
severity 3 severe
plant height 2 normal
plant growth 2 abnormal
seed treatment 3 fungicide
germination 3 less than 80%
seed condition 2 normal
mold growth 2 absent
discoloration 2 absent
size 2 normal
shriveling 2 absent
fruit condition of fruit pods 3 normal
fruit spots 5 —
leaves condition 2 abnormal
leaf spot size 3 —
yellow leaf spot halo 3 absent
leaf spot margins 3 —
shredding 2 absent
leaf malformation 2 absent
leaf mildew growth 3 absent
stem condition 2 abnormal
stem lodging 2 yes
stem cankers 4 above soil line
canker lesion color 3 —
fruiting bodies on stems 2 present
external decay of stem 3 firm and dry
mycelium on stem 2 absent
internal discoloration 3 none
sclerotia 2 absent
roots condition 3 normal
diagnosis 19 diaporthe stem canker

1.3 Fielded Applications 21

into diagnostic rules. Surprisingly, the computer-generated rules outperformed the
expert-derived rules on the remaining test examples. The correct disease was ranked
at the top 97.5% of the time compared with only 72% for the expert-derived rules.
Furthermore, not only did the learning algorithm find rules that outperformed
those of the expert collaborator, but the same expert was so impressed that he
allegedly adopted the discovered rules in place of his own!

1.3 FIELDED APPLICATIONS

The examples that we opened with are speculative research projects, not production
systems. And the previous figures are toy problems: They are deliberately chosen to
be small so that we can use them to work through algorithms later in the book.
Where’s the beef? Here are some applications of machine learning that have actually
been put into use.

Being fielded applications, the examples that follow tend to stress the use of
learning in performance situations, in which the emphasis is on the ability to perform
well on new examples. This book also describes the use of learning systems to gain
knowledge from decision structures that are inferred from the data. We believe that
this is as important—probably even more important in the long run—a use of the
technology as making high-performance predictions. Still, it will tend to be under-
represented in fielded applications because when learning techniques are used to
gain insight, the result is not normally a system that is put to work as an application
in its own right. Nevertheless, in three of the following examples, the fact that the
decision structure is comprehensible is a key feature in the successful adoption of
the application.

Web Mining

Mining information on the World Wide Web is an exploding growth area. Search
engine companies examine the hyperlinks in web pages to come up with a measure
of “prestige” for each web page and web site. Dictionaries define prestige as “high
standing achieved through success or influence.” A metric called PageRank, intro-
duced by Google’s founders and also used in various guises by other search engine
developers, attempts to measure the standing of a web page. The more pages that
link to your web site, the higher its prestige, especially if the pages that link in have
high prestige themselves. The definition sounds circular, but it can be made to work.
Search engines use PageRank (among other things) to sort web pages into order
before displaying the results of your search.

Another way in which search engines tackle the problem of how to rank web
pages is to use machine learning based on a training set of example queries—
documents that contain the terms in the query and human judgments about how
relevant the documents are to that query. Then a learning algorithm analyzes this
training data and comes up with a way to predict the relevance judgment for any

22

CHAPTER 1 What's It All About?

document and query. For each document, a set of feature values is calculated that
depends on the query term—for example, whether it occurs in the title tag, whether
it occurs in the document’s URL, how often it occurs in the document itself, and
how often it appears in the anchor text of hyperlinks that point to the document. For
multiterm queries, features include how often two different terms appear close
together in the document, and so on. There are many possible features—typical
algorithms for learning ranks use hundreds or thousands of them.

Search engines mine the content of the Web. They also mine the content of your
queries—the terms you search for—to select advertisements that you might be
interested in. They have a strong incentive to do this accurately because they get
paid by advertisers only when users click on their links. Search engine companies
mine your clicks because knowledge of which results you click on can be used to
improve the search next time. Online booksellers mine the purchasing database to
come up with recommendations such as “users who bought this book also bought
these ones”; again, they have a strong incentive to present you with compelling,
personalized choices. Movie sites recommend movies based on your previous
choices and other people’s choices—they win if they make recommendations that
keep customers coming back to their web site.

And then there are social networks and other personal data. We live in the age
of self-revelation: People share their innermost thoughts in blogs and tweets; their
photographs, their music and movie tastes, their opinions of books, software,
gadgets, and hotels; their social life. They may believe they are doing this anony-
mously, or pseudonymously, but often they are incorrect (see Section 1.6). There is
huge commercial interest in making money by mining the Web.

Decisions Involving Judgment

When you apply for a loan, you have to fill out a questionnaire asking for relevant
financial and personal information. This information is used by the loan company
as the basis for its decision as to whether to lend you money. Such decisions are
typically made in two stages. First, statistical methods are used to determine clear
“accept” and “reject” cases. The remaining borderline cases are more difficult and
call for human judgment.

For example, one loan company uses a statistical decision procedure to calculate
a numeric parameter based on the information supplied in their questionnaire. Appli-
cants are accepted if this parameter exceeds a preset threshold and rejected if it falls
below a second threshold. This accounts for 90% of cases, and the remaining 10%
are referred to loan officers for a decision. On examining historical data on whether
applicants did indeed repay their loans, however, it turned out that half of the bor-
derline applicants who were granted loans actually defaulted. Although it would be
tempting simply to deny credit to borderline customers, credit industry professionals
point out that if only their repayment future could be reliably determined, it is pre-
cisely these customers whose business should be wooed; they tend to be active
customers of a credit institution because their finances remain in a chronically

1.3 Fielded Applications 23

volatile condition. A suitable compromise must be reached between the viewpoint
of a company accountant, who dislikes bad debt, and that of a sales executive, who
dislikes turning business away.

Enter machine learning. The input was 1000 training examples of borderline
cases for which a loan had been made that specified whether the borrower had finally
paid off or defaulted. For each training example, about 20 attributes were extracted
from the questionnaire, such as age, years with current employer, years at current
address, years with the bank, and other credit cards possessed. A machine learning
procedure was used to produce a small set of classification rules that made correct
predictions on two-thirds of the borderline cases in an independently chosen test set.
Not only did these rules improve the success rate of the loan decisions, but the
company also found them attractive because they could be used to explain to appli-
cants the reasons behind the decision. Although the project was an exploratory one
that took only a small development effort, the loan company was apparently so
pleased with the result that the rules were put into use immediately.

Screening Images

Since the early days of satellite technology, environmental scientists have been
trying to detect oil slicks from satellite images to give early warning of ecological
disasters and deter illegal dumping. Radar satellites provide an opportunity for
monitoring coastal waters day and night, regardless of weather conditions. Oil slicks
appear as dark regions in the image, the size and shape of which evolve depending
on weather and sea conditions. However, other look-alike dark regions can be caused
by local weather conditions such as high wind. Detecting oil slicks is an expensive
manual process requiring highly trained personnel who assess each region in the
image.

A hazard detection system has been developed to screen images for subsequent
manual processing. Intended to be marketed worldwide to a wide variety of users—
government agencies and companies—with different objectives, applications, and
geographical areas, this system needs to be highly customizable to individual cir-
cumstances. Machine learning allows the system to be trained on examples of spills
and nonspills supplied by the user and lets the user control the tradeoff between
undetected spills and false alarms. Unlike other machine learning applications,
which generate a classifier that is then deployed in the field, here it is the learning
scheme itself that will be deployed.

The input is a set of raw pixel images from a radar satellite, and the output is a
much smaller set of images with putative oil slicks marked by a colored border.
First, standard image-processing operations are applied to normalize the image.
Then suspicious dark regions are identified. Several dozen attributes are extracted
from each region, characterizing its size, shape, area, intensity, sharpness and jag-
gedness of the boundaries, proximity to other regions, and information about the
background in the vicinity of the region. Finally, standard learning techniques are
applied to the resulting attribute vectors.

24

CHAPTER 1 What's It All About?

Several interesting problems were encountered. One was the scarcity of training
data. Oil slicks are (fortunately) very rare, and manual classification is extremely
costly. Another was the unbalanced nature of the problem: Of the many dark regions
in the training data, only a very small fraction were actual oil slicks. A third is that
the examples grouped naturally into batches, with regions drawn from each image
forming a single batch, and background characteristics varied from one batch to
another. Finally, the performance task was to serve as a filter, and the user had to be
provided with a convenient means of varying the false-alarm rate.

Load Forecasting

In the electricity supply industry, it is important to determine future demand for
power as far in advance as possible. If accurate estimates can be made for the
maximum and minimum load for each hour, day, month, season, and year, utility
companies can make significant economies in areas such as setting the operating
reserve, maintenance scheduling, and fuel inventory management.

An automated load forecasting assistant has been operating at a major utility
supplier for more than a decade to generate hourly forecasts two days in advance.
The first step was to use data collected over the previous 15 years to create a sophis-
ticated load model manually. This model had three components: base load for the
year, load periodicity over the year, and the effect of holidays. To normalize for
the base load, the data for each previous year was standardized by subtracting the
average load for that year from each hourly reading and dividing by the standard
deviation over the year.

Electric load shows periodicity at three fundamental frequencies: diurnal, where
usage has an early morning minimum and midday and afternoon maxima; weekly,
where demand is lower at weekends; and seasonal, where increased demand during
winter and summer for heating and cooling, respectively, creates a yearly cycle.
Major holidays, such as Thanksgiving, Christmas, and New Year’s Day, show sig-
nificant variation from the normal load and are each modeled separately by averag-
ing hourly loads for that day over the past 15 years. Minor official holidays, such
as Columbus Day, are lumped together as school holidays and treated as an offset
to the normal diurnal pattern. All of these effects are incorporated by reconstructing
a year’s load as a sequence of typical days, fitting the holidays in their correct
position, and denormalizing the load to account for overall growth.

Thus far, the load model is a static one, constructed manually from historical
data, and it implicitly assumes “normal” climatic conditions over the year. The final
step was to take weather conditions into account by locating the previous day most
similar to the current circumstances and using the historical information from that
day as a predictor. The prediction is treated as an additive correction to the static
load model. To guard against outliers, the eight most similar days are located and
their additive corrections averaged. A database was constructed of temperature,
humidity, wind speed, and cloud cover at three local weather centers for each hour
of the 15-year historical record, along with the difference between the actual load

1.3 Fielded Applications 25

and that predicted by the static model. A linear regression analysis was performed
to determine the relative effects of these parameters on load, and the coefficients
were used to weight the distance function used to locate the most similar days.

The resulting system yielded the same performance as that of trained human
forecasters but was far quicker—taking seconds rather than hours to generate a daily
forecast. Human operators can analyze the forecast’s sensitivity to simulated changes
in weather and bring up for examination the “most similar” days that the system
used for weather adjustment.

Diagnosis

Diagnosis is one of the principal application areas of expert systems. Although the
handcrafted rules used in expert systems often perform well, machine learning can
be useful in situations in which producing rules manually is too labor intensive.

Preventative maintenance of electromechanical devices such as motors and gen-
erators can forestall failures that disrupt industrial processes. Technicians regularly
inspect each device, measuring vibrations at various points to determine whether the
device needs servicing. Typical faults include shaft misalignment, mechanical loos-
ening, faulty bearings, and unbalanced pumps. A particular chemical plant uses more
than 1000 different devices, ranging from small pumps to very large turbo-alternators,
which until recently were diagnosed by a human expert with 20 years or more of
experience. Faults are identified by measuring vibrations at different places on the
device’s mounting and using Fourier analysis to check the energy present in three
different directions at each harmonic of the basic rotation speed. This information,
which is very noisy because of limitations in the measurement and recording pro-
cedure, is studied by the expert to arrive at a diagnosis. Although handcrafted expert
system rules had been developed for some situations, the elicitation process would
have to be repeated several times for different types of machinery; so a learning
approach was investigated.

Six hundred faults, each comprising a set of measurements along with the
expert’s diagnosis, were available, representing 20 years of experience. About half
were unsatisfactory for various reasons and had to be discarded; the remainder were
used as training examples. The goal was not to determine whether or not a fault
existed but to diagnose the kind of fault, given that one was there. Thus, there was
no need to include fault-free cases in the training set. The measured attributes were
rather low level and had to be augmented by intermediate concepts—that is, func-
tions of basic attributes—which were defined in consultation with the expert and
embodied some causal domain knowledge. The derived attributes were run through
an induction algorithm to produce a set of diagnostic rules. Initially, the expert was
not satisfied with the rules because he could not relate them to his own knowledge
and experience. For him, mere statistical evidence was not, by itself, an adequate
explanation. Further background knowledge had to be used before satisfactory rules
were generated. Although the resulting rules were quite complex, the expert liked
them because he could justify them in light of his mechanical knowledge. He was

26

CHAPTER 1 What's It All About?

pleased that a third of the rules coincided with ones he used himself and was
delighted to gain new insight from some of the others.

Performance tests indicated that the learned rules were slightly superior to the
handcrafted ones that had previously been elicited from the expert, and this result
was confirmed by subsequent use in the chemical factory. It is interesting to note,
however, that the system was put into use not because of its good performance but
because the domain expert approved of the rules that had been learned.

Marketing and Sales

Some of the most active applications of data mining have been in the area of
marketing and sales. These are domains in which companies possess massive
volumes of precisely recorded data, which, it has only recently been realized, is
potentially extremely valuable. In these applications, predictions themselves are
the chief interest: The structure of how decisions are made is often completely
irrelevant.

We have already mentioned the problem of fickle customer loyalty and the chal-
lenge of detecting customers who are likely to defect so that they can be wooed back
into the fold by giving them special treatment. Banks were early adopters of data
mining technology because of their successes in the use of machine learning for
credit assessment. Data mining is now being used to reduce customer attrition by
detecting changes in individual banking patterns that may herald a change of bank,
or even life changes, such as a move to another city, that can result in a different
bank being chosen. It may reveal, for example, a group of customers with above-
average attrition rate who do most of their banking by phone after hours when
telephone response is slow. Data mining may determine groups for whom new ser-
vices are appropriate, such as a cluster of profitable, reliable customers who rarely
get cash advances from their credit cards except in November and December, when
they are prepared to pay exorbitant interest rates to see them through the holiday
season.

In another domain, cellular phone companies fight churn by detecting patterns
of behavior that could benefit from new services, and then advertise such services
to retain their customer base. Incentives provided specifically to retain existing
customers can be expensive, and successful data mining allows them to be precisely
targeted to those customers who are likely to yield maximum benefit.

Market basket analysis is the use of association techniques to find groups of items
that tend to occur together in transactions, typically supermarket checkout data. For
many retailers this is the only source of sales information that is available for data
mining. For example, automated analysis of checkout data may uncover the fact that
customers who buy beer also buy chips, a discovery that could be significant from
the supermarket operator’s point of view (although rather an obvious one that prob-
ably does not need a data mining exercise to discover). Or analysis may come up
with the fact that on Thursdays customers often purchase diapers and beer together,
an initially surprising result that, on reflection, makes some sense as young parents

1.3 Fielded Applications 27

stock up for a weekend at home. Such information could be used for many purposes:
planning store layouts, limiting special discounts to just one of a set of items that
tend to be purchased together, offering coupons for a matching product when one of
them is sold alone, and so on.

There is enormous added value in being able to identify individual customer’s
sales histories. Discount or “loyalty” cards let retailers identify all the purchases that
each individual customer makes. This personal data is far more valuable than the
cash value of the discount. Identification of individual customers not only allows
historical analysis of purchasing patterns but also permits precisely targeted special
offers to be mailed out to prospective customers—or perhaps personalized coupons
can be printed in real time at the checkout for use during the next grocery run.
Supermarkets want you to feel that although we may live in a world of inexorably
rising prices, they don’t increase so much for you because the bargains offered by
personalized coupons make it attractive for you to stock up on things that you
wouldn’t normally have bought.

Direct marketing is another popular domain for data mining. Bulk-mail promo-
tional offers are expensive and have a low—but highly profitable—response rate.
Anything that helps focus promotions, achieving the same or nearly the same
response from a smaller sample, is valuable. Commercially available databases
containing demographic information that characterizes neighborhoods based on zip
codes can be correlated with information on existing customers to predict what kind
of people might buy which items. This model can be trialed on information gained
in response to an initial mailout, where people send back a response card or call an
800 number for more information, to predict likely future customers. Unlike
shopping-mall retailers, direct-mail companies have complete purchasing histories
for each individual customer and can use data mining to determine those likely to
respond to special offers. Targeted campaigns save money by directing offers only
to those likely to want the product.

Other Applications

There are countless other applications of machine learning. We briefly mention a
few more areas to illustrate the breadth of what has been done.

Sophisticated manufacturing processes often involve tweaking control parame-
ters. Separating crude oil from natural gas is an essential prerequisite to oil refine-
ment, and controlling the separation process is a tricky job. British Petroleum used
machine learning to create rules for setting the parameters. This now takes just 10
minutes, whereas previously human experts took more than a day. Westinghouse
faced problems in their process for manufacturing nuclear fuel pellets and used
machine learning to create rules to control the process. This was reported to have
saved them more than $10 million per year (in 1984). The Tennessee printing
company R. R. Donnelly applied the same idea to control rotogravure printing
presses to reduce artifacts caused by inappropriate parameter settings, reducing the
number of artifacts from more than 500 each year to less than 30.

28

CHAPTER 1 What's It All About?

In the realm of customer support and service, we have already described adju-
dicating loans and marketing and sales applications. Another example arises when
a customer reports a telephone problem and the company must decide what kind of
technician to assign to the job. An expert system developed by Bell Atlantic in 1991
to make this decision was replaced in 1999 by a set of rules developed using machine
learning, which saved more than $10 million per year by making fewer incorrect
decisions.

There are many scientific applications. In biology, machine learning is used to
help identify the thousands of genes within each new genome. In biomedicine, it is
used to predict drug activity by analyzing not just the chemical properties of drugs
but also their three-dimensional structure. This accelerates drug discovery and
reduces its cost. In astronomy, machine learning has been used to develop a fully
automatic cataloging system for celestial objects that are too faint to be seen by
visual inspection. In chemistry, it has been used to predict the structure of certain
organic compounds from magnetic resonance spectra. In all of these applications,
machine learning techniques have attained levels of performance—or should we say
skill?—that rival or surpass those of human experts.

Automation is especially welcome in situations involving continuous monitoring,
a job that is time consuming and exceptionally tedious for humans. Ecological
applications include the oil spill monitoring described earlier. Other applications
are rather less consequential—for example, machine learning is being used to predict
preferences for TV programs based on past choices and to advise viewers about
available channels. Still other applications may save lives. Intensive-care patients
may be monitored to detect changes in variables that cannot be explained by cir-
cadian rhythm, medication, and so on, raising an alarm when appropriate. Finally,
in a world that relies on vulnerable networked computer systems and is increasingly
concerned about cybersecurity, machine learning is used to detect intrusion by
recognizing unusual patterns of operation.

1.4 MACHINE LEARNING AND STATISTICS

What is the difference between machine learning and statistics? Cynics, looking
wryly at the explosion of commercial interest (and hype) in this area, equate
data mining to statistics plus marketing. In truth, you should not look for a
dividing line between machine learning and statistics because there is a continuum—
and a multidimensional one at that—of data analysis techniques. Some derive
from the skills taught in standard statistics courses, and others are more closely
associated with the kind of machine learning that has arisen out of computer
science. Historically, the two sides have had rather different traditions. If forced
to point to a single difference of emphasis, it might be that statistics has been
more concerned with testing hypotheses, whereas machine learning has been more
concerned with formulating the process of generalization as a search through
possible hypotheses. But this is a gross oversimplification: Statistics is far more

1.5 Generalization as Search 29

than just hypothesis testing, and many machine learning techniques do not involve
any searching at all.

In the past, very similar schemes have developed in parallel in machine learning
and statistics. One is decision tree induction. Four statisticians (Breiman et al.,
1984) published a book, Classification and regression trees, in the mid-1980s, and
throughout the 1970s and early 1980s a prominent machine learning researcher,
J. Ross Quinlan, was developing a system for inferring classification trees from
examples. These two independent projects produced quite similar schemes for
generating trees from examples, and the researchers only became aware of one
another’s work much later.

A second area where similar methods have arisen involves the use of nearest-
neighbor methods for classification. These are standard statistical techniques that
have been extensively adapted by machine learning researchers, both to improve
classification performance and to make the procedure more efficient computation-
ally. We will examine both decision tree induction and nearest-neighbor methods in
Chapter 4.

But now the two perspectives have converged. The techniques we will examine
in this book incorporate a great deal of statistical thinking. Right from the beginning,
when constructing and refining the initial example set, standard statistical methods
apply: visualization of data, selection of attributes, discarding outliers, and so on.
Most learning algorithms use statistical tests when constructing rules or trees and
for correcting models that are “overfitted” in that they depend too strongly on the
details of the particular examples used to produce them (we have already seen an
example of this in the two decision trees in Figure 1.3 for the labor negotiations
problem). Statistical tests are used to validate machine learning models and to evalu-
ate machine learning algorithms. In our study of practical techniques for data mining,
we will learn a great deal about statistics.

1.5 GENERALIZATION AS SEARCH

One way of visualizing the problem of learning—and one that distinguishes it from
statistical approaches—is to imagine a search through a space of possible concept
descriptions for one that fits the data. Although the idea of generalization as search is
a powerful conceptual tool for thinking about machine learning, it is not essential for
understanding the practical schemes described in this book. That is why this section is
set apart (boxed), suggesting that it is optional.

Suppose, for definiteness, that concept descriptions—the result of learning—are
expressed as rules such as the ones given for the weather problem in Section 1.2
(although other concept description languages would do just as well). Suppose that we
list all possible sets of rules and then look for ones that satisfy a given set of examples.
A big job? Yes. An infinite job? At first glance it seems so because there is no limit to the
number of rules there might be. But actually the number of possible rule sets is finite.
Note first that each rule is no greater than a fixed maximum size, with at most one term
for each attribute: For the weather data of Table 1.2 this involves four terms in all.

30 CHAPTER 1 What's It All About?

Because the number of possible rules is finite, the number of possible rule sets is finite
too, although extremely large. However, we'd hardly be interested in sets that contained a
very large number of rules. In fact, we'd hardly be interested in sets that had more rules
than there are examples because it is difficult to imagine needing more than one rule for
each example. So if we were to restrict consideration to rule sets smaller than that, the
problem would be substantially reduced, although still very large.

The threat of an infinite number of possible concept descriptions seems more serious
for the second version of the weather problem in Table 1.3 because these rules contain
numbers. If they are real numbers, you can’'t enumerate them, even in principle. However,
on reflection the problem again disappears because the numbers really just represent
breakpoints in the numeric values that appear in the examples. For instance, consider the
temperature attribute in Table 1.3. It involves the numbers 64, 65, 68, 69, 70, 71, 72,
75, 80, 81, 83, and 85—12 different numbers. There are 13 possible places in which we
might want to put a breakpoint for a rule involving temperature. The problem isn't infinite
after all.

So the process of generalization can be regarded as a search through an enormous, but
finite, search space. In principle, the problem can be solved by enumerating descriptions
and striking out those that do not fit the examples presented. A positive example
eliminates all descriptions that it does not match, and a negative one eliminates those it
does match. With each example the set of remaining descriptions shrinks (or stays the
same). If only one is left, it is the target description—the target concept.

If several descriptions are left, they may still be used to classify unknown objects. An
unknown object that matches all remaining descriptions should be classified as matching
the target; if it fails to match any description it should be classified as being outside the
target concept. Only when it matches some descriptions but not others is there ambiguity.
In this case if the classification of the unknown object were revealed, it would cause the
set of remaining descriptions to shrink because rule sets that classified the object the
wrong way would be rejected.

Enumerating the Concept Space

Regarding it as search is a good way of looking at the learning process. However, the
search space, although finite, is extremely big, and it is generally quite impractical to
enumerate all possible descriptions and then see which ones fit. In the weather problem
there are 4 x 4 x 3 x 3 x 2 = 288 possibilities for each rule. There are four possibilities
for the outlook attribute: sunny, overcast, rainy, or it may not participate in the rule at all.
Similarly, there are four for temperature, three each for windy and humidity and two for
the class. If we restrict the rule set to contain no more than 14 rules (because there are
14 examples in the training set), there are around 2.7 x 10°* possible different rule sets.
That's a lot to enumerate, especially for such a patently trivial problem.

Although there are ways of making the enumeration procedure more feasible, a serious
problem remains: In practice, it is rare for the process to converge on a unique acceptable
description. Either many descriptions are still in the running after the examples are
processed or the descriptors are all eliminated. The first case arises when the examples
are not sufficiently comprehensive to eliminate all possible descriptions except for the
“correct” one. In practice, people often want a single “best” description, and it is
necessary to apply some other criteria to select the best one from the set of remaining
descriptions. The second problem arises either because the description language is not
expressive enough to capture the actual concept or because of noise in the examples.

If an example comes in with the “wrong” classification because of an error in some of the
attribute values or in the class that is assigned to it, this will likely eliminate the correct
description from the space. The result is that the set of remaining descriptions becomes
empty. This situation is very likely to happen if the examples contain any noise at all,
which inevitably they do except in artificial situations.

1.5 Generalization as Search

Another way of looking at generalization as search is to imagine it not as a process of
enumerating descriptions and striking out those that don’t apply but as a kind of
hill climbing in description space to find the description that best matches the set of
examples according to some prespecified matching criterion. This is the way that most
practical machine learning methods work. However, except in the most trivial cases, it is
impractical to search the whole space exhaustively; most practical algorithms involve
heuristic search and cannot guarantee to find the optimal description.
Bias
Viewing generalization as a search in a space of possible concepts makes it clear that the
most important decisions in a machine learning system are:

e The concept description language

The order in which the space is searched
The way that overfitting to the particular training data is avoided

These three properties are generally referred to as the bias of the search and are called
language bias, search bias, and overfitting-avoidance bias. You bias the learning scheme
by choosing a language in which to express concepts, by searching in a particular way for
an acceptable description, and by deciding when the concept has become so complex that
it needs to be simplified.

Language Bias

The most important question for language bias is whether the concept description
language is universal or whether it imposes constraints on what concepts can be learned.
If you consider the set of all possible examples, a concept is really just a division of that
set into subsets. In the weather example, if you were to enumerate all possible weather
conditions, the play concept is a subset of possible weather conditions. A “universal”
language is one that is capable of expressing every possible subset of examples. In
practice, the set of possible examples is generally huge, and in this respect our
perspective is a theoretical, not a practical, one.

If the concept description language permits statements involving logical or—that is,
disjunctions—then any subset can be represented. If the description language is rule-
based, disjunction can be achieved by using separate rules. For example, one possible
concept representation is just to enumerate the examples:

If outlook = overcast and temperature = hot and humidity = high
and windy = false then play = yes

If outlook = rainy and temperature = mild and humidity = high
and windy = false then play = yes

If outlook = rainy and temperature = cool and humidity = normal
and windy = false then play = vyes

If outlook = overcast and temperature = cool and humidity = normal
and windy = true then play = yes

If none of the above then play = no

This is not a particularly enlightening concept description: It simply records the positive
examples that have been observed and assumes that all the rest are negative. Each
positive example is given its own rule, and the concept is the disjunction of the rules.
Alternatively, you could imagine having individual rules for each of the negative examples,
too—an equally uninteresting concept. In either case, the concept description does not
perform any generalization; it simply records the original data.

On the other hand, if disjunction is not allowed, some possible concepts—sets of
examples—may not be able to be represented at all. In that case, a machine learning

31

scheme may simply be unable to achieve good performance.

32 CHAPTER 1 What's It All About?

Another kind of language bias is that obtained from knowledge of the particular
domain being used. For example, it may be that some combinations of attribute values
can never happen. This would be the case if one attribute implied another. We saw an
example of this when considering the rules for the soybean problem described in Section
1.2. Then it would be pointless to even consider concepts that involved redundant or
impossible combinations of attribute values. Domain knowledge can be used to cut down
the search space. Knowledge is power: A little goes a long way, and even a small hint can
reduce the search space dramatically.

Search Bias

In realistic data mining problems, there are many alternative concept descriptions that fit
the data, and the problem is to find the “best” one according to some criterion—usually
simplicity. We use the term fit in a statistical sense; we seek the best description that fits
the data reasonably well. Moreover, it is often computationally infeasible to search the
whole space and guarantee that the description found really is the best. Consequently, the
search procedure is heuristic, and no guarantees can be made about the optimality of the
final result. This leaves plenty of room for bias: Different search heuristics bias the search
in different ways.

For example, a learning algorithm might adopt a “greedy” search for rules by trying to
find the best rule at each stage and adding it to the rule set. However, it may be that the
best pair of rules is not just the two rules that are individually found best. Or when
building a decision tree, a commitment to split early on using a particular attribute might
turn out later to be ill-considered in light of how the tree develops below that node. To get
around these problems, a beam search could be used where irrevocable commitments are
not made but instead a set of several active alternatives—the number of which is the
beam width—are pursued in parallel. This will complicate the learning algorithm quite
considerably but has the potential to avoid the myopia associated with a greedy search. Of
course, if the beam width is not large enough, myopia may still occur. There are more
complex search strategies that help to overcome this problem.

A more general and higher-level kind of search bias concerns whether the search is
done by starting with a general description and refining it or by starting with a specific
example and generalizing it. The former is called a general-to-specific search bias; the
latter, a specific-to-general one. Many learning algorithms adopt the former policy, starting
with an empty decision tree, or a very general rule, and specializing it to fit the examples.
However, it is perfectly possible to work in the other direction. Instance-based methods
start with a particular example and see how it can be generalized to cover other nearby
examples in the same class.

Overfitting-Avoidance Bias

Overfitting-avoidance bias is often just another kind of search bias. However, because it
addresses a rather special problem, we treat it separately. Recall the disjunction problem
described previously. The problem is that if disjunction is allowed, useless concept
descriptions that merely summarize the data become possible, whereas if it is prohibited,
some concepts are unlearnable. To get around this problem, it is common to search the
concept space starting with the simplest concept descriptions and proceeding to more
complex ones: simplest-first ordering. This biases the search in favor of simple concept
descriptions.

Using a simplest-first search and stopping when a sufficiently complex concept
description is found is a good way of avoiding overfitting. It is sometimes called forward
pruning or prepruning because complex descriptions are pruned away before they are
reached. The alternative, backward pruning or postpruning, is also viable. Here, we first
find a description that fits the data well and then prune it back to a simpler description
that also fits the data. This is not as redundant as it sounds: Often the best way to arrive

1.6 Data Mining and Ethics 33

at a simple theory is to find a complex one and then simplify it. Forward and backward
pruning are both a kind of overfitting-avoidance bias.

In summary, although generalization as search is a nice way to think about the
learning problem, bias is the only way to make it feasible in practice. Different learning
algorithms correspond to different concept description spaces searched with different
biases. This is what makes it interesting: Different description languages and biases serve
some problems well and other problems badly. There is no universal “best” learning
method—as every teacher knows!

1.6 DATA MINING AND ETHICS

The use of data—particularly data about people—for data mining has serious ethical
implications, and practitioners of data mining techniques must act responsibly by
making themselves aware of the ethical issues that surround their particular
application.

When applied to people, data mining is frequently used to discriminate—who
gets the loan, who gets the special offer, and so on. Certain kinds of discrimination—
racial, sexual, religious, and so on—are not only unethical but also illegal. However,
the situation is complex: Everything depends on the application. Using sexual and
racial information for medical diagnosis is certainly ethical, but using the same infor-
mation when mining loan payment behavior is not. Even when sensitive information
is discarded, there is a risk that models will be built that rely on variables that can be
shown to substitute for racial or sexual characteristics. For example, people fre-
quently live in areas that are associated with particular ethnic identities, and so using
a zip code in a data mining study runs the risk of building models that are based on
race—even though racial information has been explicitly excluded from the data.

Reidentification

Recent work in what are being called reidentification techniques has provided
sobering insights into the difficulty of anonymizing data. It turns out, for example,
that over 85% of Americans can be identified from publicly available records using
just three pieces of information: five-digit zip code, birth date (including year), and
sex. Don’t know the zip code?—over half of Americans can be identified from
just city, birth date, and sex. When the Commonwealth of Massachusetts released
medical records summarizing every state employee’s hospital record in the mid-
1990s, the governor gave a public assurance that it had been anonymized by remov-
ing all identifying information such as name, address, and social security number.
He was surprised to receive his own health records (which included diagnoses and
prescriptions) in the mail.

Stories abound of companies releasing allegedly anonymous data in good faith,
only to find that many individuals are easily identifiable. In 2006, an Internet services
company released to the research community the records of 20 million user searches.

34

CHAPTER 1 What's It All About?

The records were anonymized by removing all personal information—or so the
company thought. But pretty soon journalists from The New York Times were able
to identify the actual person corresponding to user number 4417749 (they sought
her permission before exposing her). They did so by analyzing the search terms she
used, which included queries for landscapers in her hometown and for several people
with the same last name as hers, which reporters correlated with public databases.

Two months later, Netflix, an online movie rental service, released 100 million
records of movie ratings (from 1 to 5) with their dates. To their surprise, it turned
out to be quite easy to identify people in the database and thus discover all the movies
they had rated. For example, if you know approximately when (give or take two
weeks) a person in the database rated six movies and you know the ratings, you can
identify 99% of the people in the database. By knowing only two movies with their
ratings and dates, give or take three days, nearly 70% of people can be identified.
From just a little information about your friends (or enemies) you can determine all
the movies they have rated on Netflix.

The moral is that if you really do remove all possible identification information
from a database, you will probably be left with nothing useful.

Using Personal Information

It is widely accepted that before people make a decision to provide personal infor-
mation they need to know how it will be used and what it will be used for, what
steps will be taken to protect its confidentiality and integrity, what the consequences
of supplying or withholding the information are, and any rights of redress they may
have. Whenever such information is collected, individuals should be told these
things—not in legalistic small print but straightforwardly in plain language they can
understand.

The potential use of data mining techniques means that the ways in which a
repository of data can be used may stretch far beyond what was conceived when the
data was originally collected. This creates a serious problem: It is necessary to
determine the conditions under which the data was collected and for what purposes
it may be used. Does the ownership of data bestow the right to use it in ways other
than those purported when it was originally recorded? Clearly, in the case of explic-
itly collected personal data, it does not. But in general the situation is complex.

Surprising things emerge from data mining. For example, it has been reported
that one of the leading consumer groups in France has found that people with red
cars are more likely to default on their car loans. What is the status of such a “dis-
covery”’? What information is it based on? Under what conditions was that informa-
tion collected? In what ways is it ethical to use it? Clearly, insurance companies are
in the business of discriminating among people based on stereotypes—young males
pay heavily for automobile insurance—but such stereotypes are not based solely on
statistical correlations; they also draw on commonsense knowledge about the world
as well. Whether the preceding finding says something about the kind of person who
chooses a red car, or whether it should be discarded as an irrelevancy, is a matter

1.6 Data Mining and Ethics 35

for human judgment based on knowledge of the world rather than on purely statisti-
cal criteria.

When presented with data, you need to ask who is permitted to have access to
it, for what purpose it was collected, and what kind of conclusions are legitimate to
draw from it. The ethical dimension raises tough questions for those involved in
practical data mining. It is necessary to consider the norms of the community that
is used to dealing with the kind of data involved, standards that may have evolved
over decades or centuries but ones that may not be known to the information special-
ist. For example, did you know that in the library community it is taken for granted
that the privacy of readers is a right that is jealously protected? If you call your
university library and ask who has such-and-such a textbook out on loan, they will
not tell you. This prevents a student being subjected to pressure from an irate profes-
sor to yield access to a book that she desperately needs for her latest grant applica-
tion. It also prohibits enquiry into the dubious recreational reading tastes of the
university ethics committee chairperson. Those who build, say, digital libraries may
not be aware of these sensitivities and might incorporate data mining systems that
analyze and compare individuals’ reading habits to recommend new books—perhaps
even selling the results to publishers!

Wider Issues

In addition to various community standards for the use of data, logical and sci-
entific standards must be adhered to when drawing conclusions from it. If you
do come up with conclusions (e.g., red car owners being greater credit risks),
you need to attach caveats to them and back them up with arguments other than
purely statistical ones. The point is that data mining is just a tool in the whole
process. It is people who take the results, along with other knowledge, and decide
what action to apply.

Data mining prompts another question, which is really a political one concerning
the use to which society’s resources are being put. We mentioned earlier the applica-
tion of data mining to basket analysis, where supermarket checkout records are
analyzed to detect associations among items that people purchase. What use should
be made of the resulting information? Should the supermarket manager place the
beer and chips together, to make it easier for shoppers, or farther apart to make it
less convenient for them, to maximize their time in the store and therefore their
likelihood of being drawn into further purchases? Should the manager move the
most expensive, most profitable diapers near the beer, increasing sales to harried
fathers of a high-margin item, and add further luxury baby products nearby?

Of course, anyone who uses advanced technologies should consider the wisdom
of what they are doing. If data is characterized as recorded facts, then information
is the set of patterns, or expectations, that underlie the data. You could go on to
define knowledge as the accumulation of your set of expectations and wisdom as the
value attached to knowledge. Although we will not pursue it further here, this issue
is worth pondering.

36

CHAPTER 1 What's It All About?

As we saw at the very beginning of this chapter, the techniques described in this
book may be called upon to help make some of the most profound and intimate deci-
sions that life presents. Data mining is a technology that we need to take seriously.

1.7 FURTHER READING

To avoid breaking up the flow of the main text, all references are collected in a
section at the end of each chapter. This section describes papers, books, and other
resources relevant to the material covered in this chapter. The human in vitro fertil-
ization research mentioned in the opening was undertaken by the Oxford University
Computing Laboratory, and the research on cow culling was performed in the Com-
puter Science Department at Waikato University, New Zealand.

The weather problem is from Quinlan (1986) and has been widely used to explain
machine learning schemes. The corpus of example problems mentioned in the intro-
duction to Section 1.2 is available from Asuncion and Newman (2007). The contact
lens example is from Cendrowska (1987), who introduced the PRISM rule-learning
algorithm that we will encounter in Chapter 4. The iris dataset was described in a
classic early paper on statistical inference (Fisher, 1936). The labor negotiations data
is from the Collective Bargaining Review, a publication of Labour Canada issued
by the Industrial Relations Information Service (BLI 1988), and the soybean problem
was first described by Michalski and Chilausky (1980).

Some of the applications in Section 1.3 are covered in an excellent paper that
gives plenty of other applications of machine learning and rule induction (Langley
and Simon, 1995); another source of fielded applications is a special issue of the
Machine Learning Journal (Kohavi and Provost, 1998). Chakrabarti (2003) has
written an excellent and comprehensive book on techniques of web mining; another,
more recent, book is Liu’s Web data mining (2009). The loan company application
is described in more detail by Michie (1989), the oil slick detector is from Kubat
et al. (1998), the electric load forecasting work is by Jabbour et al. (1988), and the
application to preventative maintenance of electromechanical devices is from Saitta
and Neri (1998). Fuller descriptions of some of the other projects mentioned in
Section 1.3 (including the figures of dollar amounts saved and related literature refer-
ences) appear at the web site of the Alberta Ingenuity Centre for Machine Learning.
Luan (2002) describes applications for data mining in higher education. Dasu et al.
(2006) have some recommendations for successful data mining. Another special
issue of the Machine Learning Journal addresses the lessons that have been learned
from data mining applications and collaborative problem solving (Lavrac et al.,
2004).

The “diapers and beer” story is legendary. According to an article in London’s
Financial Times (February 7, 1996),

The oft-quoted example of what data mining can achieve is the case of a large
US supermarket chain which discovered a strong association for many customers

1.7 Further Reading 37

between a brand of babies’ nappies (diapers) and a brand of beer. Most customers
who bought the nappies also bought the beer. The best hypothesisers in the world
would find it difficult to propose this combination but data mining showed it
existed, and the retail outlet was able to exploit it by moving the products closer
together on the shelves.

However, it seems that it is just a legend after all; Power (2002) traces its history.

The book Classification and regression trees, mentioned in Section 1.4, is by
Breiman et al. (1984), and Quinlan’s independently derived but similar scheme was
described in a series of papers that eventually led to a book (Quinlan, 1993).

The first book on data mining was written by Piatetsky-Shapiro and Frawley
(1991)—a collection of papers presented at a workshop on knowledge discovery in
databases in the late 1980s. Another book from the same stable has appeared since
(Fayyad et al., 1996) from a 1994 workshop. There followed a rash of business-
oriented books on data mining, focusing mainly on practical aspects of how it can
be put into practice with only rather superficial descriptions of the technology that
underlies the methods used. They are valuable sources of applications and inspira-
tion. For example, Adriaans and Zantige (1996) from Syllogic, a European systems
and database consultancy, is an early introduction to data mining. Berry and Linoff
(1997), from a Pennsylvania-based firm specializing in data warehousing and data
mining, give an excellent and example-studded review of data mining techniques
for marketing, sales, and customer support. Cabena et al. (1998), written by people
from five international IBM laboratories, contains an overview of the data mining
process with many examples of real-world applications.

Dhar and Stein (1997) give a business perspective on data mining and include
broad-brush, popularized reviews of many of the technologies involved. Groth
(1998), working for a provider of data mining software, gives a brief introduction to
data mining and then a fairly extensive review of data mining software products; the
book includes a CD-ROM containing a demo version of his company’s product.
Weiss and Indurkhya (1998) look at a wide variety of statistical techniques for making
predictions from what they call “big data.” Han and Kamber (2006) cover data mining
from a database perspective, focusing on the discovery of knowledge in large corpo-
rate databases; they also discuss mining complex types of data. Hand et al. (2001)
produced an interdisciplinary book on data mining from an international group of
authors who are well respected in the field. Finally, Nisbet et al. (2009) have produced
a comprehensive handbook of statistical analysis and data mining applications.

Books on machine learning, on the other hand, tend to be academic texts suited
for use in university courses rather than as practical guides. Mitchell (1997) wrote
an excellent book that covers many techniques of machine learning, including
some—notably genetic algorithms and reinforcement learning—that are not covered
here. Langley (1996) offers another good text. Although the previously mentioned
book by Quinlan (1993) concentrates on a particular learning algorithm, C4.5, which
we will cover in detail in Chapters 4 and 6, it is a good introduction to some of the
problems and techniques of machine learning. An absolutely excellent book on

38

CHAPTER 1 What's It All About?

machine learning from a statistical perspective is Hastie et al. (2009). This is quite
a theoretically oriented work, and is beautifully produced with apt and telling figures.
Russell and Norvig’s Artificial intelligence: A modern approach (2009) is the third
edition of a classic text that includes a great deal of information on machine learning
and data mining.

Pattern recognition is a topic that is closely related to machine learning, and
many of the same techniques apply. Duda et al. (2001) is the second edition of
a classic and successful book on pattern recognition (Duda and Hart, 1973).
Ripley (1996) and Bishop (1995) describe the use of neural networks for pattern
recognition; Bishop has a more recent book, Pattern recognition and machine
learning (2006). Data mining with neural networks is the subject of a 1996 book
by Bigus of IBM, which features the IBM Neural Network Utility Product that
he developed.

There is a great deal of current interest in support vector machines. Cristianini
and Shawe-Taylor (2000) give a nice introduction, and a follow-up work generalizes
this to cover additional algorithms, kernels, and solutions with applications to pattern
discovery problems in fields such as bioinformatics, text analysis, and image analysis
(Shawe-Taylor and Cristianini, 2004). Scholkopf and Smola (2002) provide a com-
prehensive introduction to support vector machines and related kernel methods by
two young researchers who did their Ph.D. research in this rapidly developing area.

The emerging area of reidentification techniques is explored, along with its
implications for anonymization, by Ohm (2009).

CHAPTER

Input: Concepts, Instances,
and Attributes

Before delving into the question of how machine learning schemes operate, we begin
by looking at the different forms the input might take and, in Chapter 3, the different
kinds of output that might be produced. With any software system, understanding
what the inputs and outputs are is far more important than knowing what goes on
in between, and machine learning is no exception.

The input takes the form of concepts, instances, and attributes. We call the thing
that is to be learned a concept description. The idea of a concept, like the very idea
of learning in the first place, is hard to pin down precisely, and we won’t spend time
philosophizing about just what it is and isn’t. In a sense, what we are trying to
find—the result of the learning process—is a description of the concept that is intel-
ligible in that it can be understood, discussed, and disputed, and operational in that
it can be applied to actual examples. The next section explains some distinctions
among different kinds of learning problems—distinctions that are very concrete and
very important in practical data mining.

The information that the learner is given takes the form of a set of instances.
In the examples in Chapter 1, each instance was an individual, independent example
of the concept to be learned. Of course, there are many things you might like to
learn for which the raw data cannot be expressed as individual, independent
instances. Perhaps background knowledge should be taken into account as part of
the input. Perhaps the raw data is an agglomerated mass that cannot be fragmented
into individual instances. Perhaps it is a single sequence—say a time sequence—
that cannot meaningfully be cut into pieces. This book is about simple, practical
methods of data mining, and we focus on situations where the information can be
supplied in the form of individual examples. However, we do introduce one slightly
more complicated scenario where the examples for learning contain multiple
instances.

Each instance is characterized by the values of attributes that measure different
aspects of the instance. There are many different types of attributes, although
typical data mining schemes deal only with numeric and nominal, or categorical,
ones.

Finally, we examine the question of preparing input for data mining and introduce
a simple format—the one that is used by the Weka system that accompanies this
book—for representing the input information as a text file.

Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

39

40

CHAPTER 2 Input: Concepts, Instances, and Attributes

2.1 WHAT'S A CONCEPT?

Four basically different styles of learning appear in data mining applications. In
classification learning, the learning scheme is presented with a set of classified
examples from which it is expected to learn a way of classifying unseen examples.
In association learning, any association among features is sought, not just ones that
predict a particular class value. In clustering, groups of examples that belong
together are sought. In numeric prediction, the outcome to be predicted is not a
discrete class but a numeric quantity. Regardless of the type of learning involved,
we call the thing to be learned the concept and the output produced by a learning
scheme the concept description.

Most of the examples in Chapter 1 are classification problems. The weather data
(Tables 1.2 and 1.3) presents a set of days together with a decision for each as to
whether to play the game or not. The problem is to learn how to classify new days
as play or don’t play. Given the contact lens data (Table 1.1), the problem is to learn
how to determine a lens recommendation for a new patient—or more precisely, since
every possible combination of attributes is present in the data, the problem is to learn
a way of summarizing the given data. For the irises (Table 1.4), the problem is to
learn how to determine whether a new iris flower is setosa, versicolor, or virginica,
given its sepal length and width and petal length and width. For the labor negotia-
tions data (Table 1.6), the problem is to determine whether a new contract is accept-
able or not, on the basis of its duration; wage increase in the first, second, and third
years; cost of living adjustment; and so forth.

We assume throughout this book that each example belongs to one, and only
one, class. However, there exist classification scenarios in which individual exam-
ples may belong to multiple classes. In technical jargon, these are called multilabeled
instances. One simple way to deal with such situations is to treat them as several
different classification problems, one for each possible class, where the problem is
to determine whether instances belong to that class or not.

Classification learning is sometimes called supervised, because, in a sense, the
scheme operates under supervision by being provided with the actual outcome for
each of the training examples—the play or don’t play judgment, the lens recom-
mendation, the type of iris, the acceptability of the labor contract. This outcome is
called the class of the example. The success of classification learning can be judged
by trying out the concept description that is learned on an independent set of test
data for which the true classifications are known but not made available to the
machine. The success rate on test data gives an objective measure of how well the
concept has been learned. In many practical data mining applications, success is
measured more subjectively in terms of how acceptable the learned description—
such as the rules or decision tree—is to a human user.

Most of the examples in Chapter 1 can be used equally well for association
learning, in which there is no specified class. Here, the problem is to discover any
structure in the data that is “interesting.” Some association rules for the weather data
were given in Section 1.2. Association rules differ from classification rules in two

2.1 What's a Concept? 41

ways: They can “predict” any attribute, not just the class, and they can predict more
than one attribute’s value at a time. Because of this there are far more association
rules than classification rules, and the challenge is to avoid being swamped by them.
For this reason, association rules are often limited to those that apply to a certain
minimum number of examples—say 80% of the dataset—and have greater than a
certain minimum accuracy level—say 95% accurate. Even then, there are usually
lots of them, and they have to be examined manually to determine whether they are
meaningful or not. Association rules usually involve only nonnumeric attributes;
thus, you wouldn’t normally look for association rules in the iris dataset.

When there is no specified class, clustering is used to group items that seem to
fall naturally together. Imagine a version of the iris data in which the type of iris is
omitted, such as in Table 2.1. Then it is likely that the 150 instances fall into natural
clusters corresponding to the three iris types. The challenge is to find these clusters
and assign the instances to them—and to be able to assign new instances to the
clusters as well. It may be that one or more of the iris types splits naturally into
subtypes, in which case the data will exhibit more than three natural clusters. The
success of clustering is often measured subjectively in terms of how useful the result
appears to be to a human user. It may be followed by a second step of classification
learning in which rules are learned that give an intelligible description of how new
instances should be placed into the clusters.

Table 2.1 Iris Data as a Clustering Problem
Sepal Length Sepal Width Petal Length Petal Width

1 5.1 3.5 1.4 0.2
2 4.9 3.0 14 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
51 7.0 3.2 4.7 1.4
52 6.4 3.2 4.5 1.5
53 6.9 3.1 4.9 1.5
54 5.5 2.3 4.0 1.3
55 6.5 2.8 4.6 1.5
101 6.3 3.3 6.0 2.5
102 5.8 2.7 5.1 1.9
103 71 3.0 5.9 2.1
104 6.3 2.9 5.6 1.8
105 6.5 3.0 5.8 2.2

42 CHAPTER 2 Input: Concepts, Instances, and Attributes

Table 2.2 Weather Data with a Numeric Class

Outlook Temperature Humidity Windy Play Time
Sunny 85 85 false 5
Sunny 80 90 true 0
Overcast 83 86 false 55
Rainy 70 96 false 40
Rainy 68 80 false 65
Rainy 65 70 true 45
Overcast 64 65 true 60
Sunny 72 95 false 0
Sunny 69 70 false 70
Rainy 75 80 false 45
Sunny 75 70 true 50
Overcast 72 90 true 55
Overcast 81 75 false 75
Rainy 71 91 true 10

Numeric prediction is a variant of classification learning in which the outcome
is a numeric value rather than a category. The CPU performance problem is one
example. Another, shown in Table 2.2, is a version of the weather data in which
what is to be predicted is not play or don’t play but rather the time (in minutes) to
play. With numeric prediction problems, as with other machine learning situations,
the predicted value for new instances is often of less interest than the structure of
the description that is learned, expressed in terms of what the important attributes
are and how they relate to the numeric outcome.

2.2 WHAT'S IN AN EXAMPLE?

The input to a machine learning scheme is a set of instances. These instances are
the things that are to be classified or associated or clustered. Although until now
we have called them examples, henceforth we will generally use the more specific
term instances to refer to the input. In the standard scenario, each instance is an
individual, independent example of the concept to be learned. Instances are charac-
terized by the values of a set of predetermined attributes. This was the case in all of
the sample datasets described in Chapter 1 (i.e., the weather, the contact lens, the
iris, and the labor negotiations problems). Each dataset is represented as a matrix of
instances versus attributes, which in database terms is a single relation, or a flat file.

Expressing the input data as a set of independent instances is by far the most
common situation for practical data mining. However, it is a rather restrictive way of
formulating problems, and it is worth spending some time reviewing why. Problems
often involve relationships between objects rather than separate, independent

2.2 What's in an Example?

instances. Suppose, to take a specific situation, a family tree is given and we want to
learn the concept of sister. Imagine your own family tree, with your relatives (and
their genders) placed at the nodes. This tree is the input to the learning process, along
with a list of pairs of people and an indication of whether they are sisters or not.

Relations

Figure 2.1 shows part of a family tree, below which are two tables that each define
sisterhood in a slightly different way. A yes in the third column of the individual
tables means that the person in the second column is a sister of the person in the
first column (that’s just an arbitrary decision we’ve made in setting up this example).

The first thing to notice is that there are a lot of nos in the third column of the
table on the left, because there are 12 people and 12 x 12 = 144 pairs of people in
all, and most pairs of people aren’t sisters. The table on the right, which gives the
same information, records only the positive examples and assumes that all others
are negative. The idea of specifying only positive examples and adopting a standing
assumption that the rest are negative is called the closed-world assumption. It is
frequently assumed in theoretical studies; however, it is not of much practical use
in real-life problems because they rarely involve “closed” worlds in which you can
be certain that all cases are covered.

Peter = Peggy Grace = Ray
M F F M
Steven Graham Pam = lan Pippa Brian
M M F M F M
Anna Nikki
F F

First person Second person Sister of? First person Second person Sister of?
Peter Peggy no Steven Pam yes

Peter Steven no Graham Pam yes

lan Pippa yes
Steven Peter no Brian Pippa yes
Steven Graham no Anna Nikki yes
Steven Pam yes Nikki Anna yes
Steven Grace no all the rest no

lan Pippa yes

Anna Nikki yes

Nikki Anna yes

FIGURE 2.1

A family tree and two ways of expressing the sister-of relation.

43

44 CHAPTER 2 Input: Concepts, Instances, and Attributes

Table 2.3 Family Tree

Name Gender Parent 1 Parent 2
Peter male ? ?

Peggy female ? ?

Steven male Peter Peggy
Graham male Peter Peggy
Pam female Peter Peggy
lan male Grace Ray

Neither table in Figure 2.1 is of any use without the family tree itself. This tree
can also be expressed in the form of a table, part of which is shown in Table 2.3.
Now the problem is expressed in terms of two relationships, Parent 1 and Parent 2.
But these tables do not contain independent sets of instances because values in the
Name, Parent 1, and Parent 2 columns of the sister-of relation refer to rows of the
family tree relation. We can make them into a single set of instances by collapsing
the two tables into a single one, as shown in Table 2.4.

We have at last succeeded in transforming the original relational problem into
the form of instances, each of which is an individual, independent example of the
concept that is to be learned. Of course, the instances are not really independent—
there are plenty of relationships among different rows of the table!—but they are
independent as far as the concept of sisterhood is concerned. Most machine learning
schemes will still have trouble dealing with this kind of data, as we will see in
Section 3.4, but at least the problem has been recast into the right form. A simple
rule for the sister-of relation is

If second person’s gender = female
and first person’s parent 1 = second person’s parent 1
then sister-of = yes

This example shows how you can take a relationship between different nodes of a
tree and recast it into a set of independent instances. In database terms, you take two
relations and join them together to make one, a process of flattening that is techni-
cally called denormalization. It is always possible to do this with any (finite) set of
(finite) relations.

The structure of Table 2.4 can be used to describe any relationship between two
people—grandparenthood, second cousins twice removed, and so on. Relationships
among more people would require a larger table. Relationships in which the
maximum number of people is not specified in advance pose a more serious problem.
If we want to learn the concept of nuclear family (parents and their children), the
number of people involved depends on the size of the largest nuclear family, and
although we could guess at a reasonable maximum (10?, 207?), the actual number
can only be found by scanning the tree itself. Nevertheless, given a finite set of finite

45

ou
soh
sok
sak
soh
sah
sok

&40 J9sIs

ue|
ue|
Rey
Rey
ABBoad
ABbad

Z Wuaied

wed s[ews)
wed o[ews)
aoeln) o[ews)
aoelL) o[ews)
18194 o[ews)
Je1ed o[ews)

| juaied Japusy

uosI9d Puoodssg

BUUY
PMIN
eddiy
eddig
wed
wed

sweN

ue|
ue|
Rey
Rey
ABBod
Abbed

Z Wuaied

wed o[ews}
wed o[ews)
aoeID) orew
aoelD s[eW
Je184 slewW
Jerad afewW

| uaied Japuan

uosiad 1sii4

1884 841 I/
NN

'uUY
ueug

ue
weyeln
uonelg

aweN

uone|ay Jo-11sIS H°g alqel

46

CHAPTER 2 Input: Concepts, Instances, and Attributes

relations we could, at least in principle, form a new “superrelation” that contains
one row for every combination of people, and this would be enough to express any
relationship between people no matter how many were involved. The computational
and storage costs would, however, be prohibitive.

Another problem with denormalization is that it produces apparent regularities
in the data that are completely spurious and are in fact merely reflections of the
original database structure. For example, imagine a supermarket database with a
relation for customers and the products they buy, one for products and their suppli-
ers, and one for suppliers and their addresses. Denormalizing this will produce a flat
file that contains, for each instance, customer, product, supplier, and supplier address.
A data mining tool that seeks structure in the database may come up with the fact
that customers who buy beer also buy chips, a discovery that could be significant
from the supermarket manager’s point of view. However, it may also come up with
the fact that the supplier address can be predicted exactly from the supplier—a
“discovery” that will not impress the supermarket manager at all. This fact masquer-
ades as a significant discovery from the flat file but is present explicitly in the original
database structure.

Many abstract computational problems involve relations that are not finite,
although clearly any actual set of input examples must be finite. Concepts such as
ancestor-of involve arbitrarily long paths through a tree, and although the human
race, and hence its family tree, may be finite (although prodigiously large), many
artificial problems generate data that truly is infinite. Although it may sound abstruse,
this situation is the norm in areas such as list processing and logic programming,
and it is addressed in a subdiscipline of machine learning called inductive logic
programming. Computer scientists usually use recursion to deal with situations in
which the number of possible examples is infinite. For example,

If person 1 is a parent of person 2
then person 1 is an ancestor of person 2
If person 1 is a parent of person 2
and person 2 1is an ancestor of person 3
then person 1 is an ancestor of person 3

This represents a simple recursive definition of ancestor that works no matter how
distantly two people are related. Techniques of inductive logic programming can
learn recursive rules such as these from a finite set of instances such as those in
Table 2.5.

The real drawbacks of such techniques, however, are that they do not cope well
with noisy data, and they tend to be so slow as to be unusable on anything but small
artificial datasets. They are not covered in this book; see Bergadano and Gunetti
(1996) for a comprehensive treatment.

Other Example Types

As we have seen, general relations present substantial challenges, and this book will
deal with them no further. Structured examples such as graphs and trees can be

ou
sah
sok
sah
sak
sah
soh
soA
seh

¢10 J0}seoUyY

ue|
Rey
U1=]
ue|
ue|
ABBoad
ABBad

Z uaied

wed o[ews}
soBID e
wed o[ews}
wed s[ews}
wed o[ewa}
Jered olews)
Je184 sew

L Juated Japusy

uosiad puooseg

DPIN
ue|
PPIN
NNIN
=80\
wed
Uonalg

awepN

Z wuaied

1sé4 8yl ||

aley seiduwexs Jeyi0

i olews}
i olews)
Je1ed o[ews}
i Bl
¢ orew
i ofew
i eew

1 Juased Japusn

uosiad 1sii4

aoeln
soeln
wed
Je189d
Je1ed
Je184
Je19d

awepN

uore|ay Jaylouy Gz aJqer

47

48

CHAPTER 2 Input: Concepts, Instances, and Attributes

viewed as special cases of relations that are often mapped into independent instances
by extracting local or global features based on their structure and representing them
as attributes. Similarly, sequences of items may be treated by describing them, or
their individual items, in terms of a fixed set of properties represented by attributes.
Fortunately, most practical data mining problems can be expressed quite effectively
as a set of instances, each one being an example of the concept to be learned.

In some situations, instead of the individual instances being examples of the
concept, each individual example comprises a set of instances that are described by
the same attributes. This multi-instance setting covers some important real-world
applications. One concerns the inference of characteristics of active drug molecules,
where activity corresponds to how well a drug molecule bonds to a “bonding site”
on a target molecule. The problem is that the drug molecule can assume alternative
shapes by rotating its bonds. It is classed as positive if just one of these shapes actu-
ally binds to the site and has the desired effect—but it is not known which shape it
is. On the other hand, a drug molecule is negative if none of the shapes bind suc-
cessfully. In this case, a multiple instance is a set of shapes, and the entire set is
classified as positive or negative.

Multi-instance problems often also arise naturally when relations from a database
are joined—that is, when several rows from a secondary relation are associated with
the same row in the target relation. For example, we may want to classify computer
users as experts or novices based on descriptions of user sessions that are stored in
a secondary table. The target relation just has the classification and the user ID.
Joining the two tables creates a flat file. However, the rows pertaining to an indi-
vidual user are not independent. Classification is performed on a per-user basis, so
the set of session instances associated with the same user should be viewed as a
single example for learning.

The goal of multi-instance learning is still to produce a concept description, but
now the task is more difficult because the learning algorithm has to contend with
incomplete information about each training example. Rather than seeing each
example in terms of a single definitive attribute vector, the learning algorithm sees
each example as a set of attribute vectors. Things would be easy if only the algorithm
knew which member of the set was responsible for the example’s classification—
but it does not.

Several special learning algorithms have been developed to tackle the multi-
instance problem; we describe some of them in Chapter 6. It is also possible
to apply standard machine learning schemes by recasting the problem as a single
table comprising independent instances. Chapter 4 gives some ways of achieving
this.

In summary, the input to a data mining scheme is generally expressed as a table
of independent instances of the concept to be learned. Because of this it has been
suggested, disparagingly, that we should really talk of file mining rather than data-
base mining. Relational data is more complex than a flat file. A finite set of finite
relations can always be recast into a single table, although often at enormous cost
in space. Moreover, denormalization can generate spurious regularities in the data,

2.3 What's in an Attribute? 49

and it is essential to check the data for such artifacts before applying a learning
scheme. Potentially infinite concepts can be dealt with by learning rules that are
recursive, although that is beyond the scope of this book. Finally, some important
real-world problems are most naturally expressed in a multi-instance format, where
each example is actually a separate set of instances.

2.3 WHAT'S IN AN ATTRIBUTE?

Each instance that provides the input to machine learning is characterized by its
values on a fixed, predefined set of features or attributes. The instances are the rows
of the tables that we have shown for the weather, the contact lens, the iris, and the
CPU performance problems, and the attributes are the columns. (The labor negotia-
tions data was an exception: We presented this with instances in columns and attri-
butes in rows for space reasons.)

The use of a fixed set of features imposes another restriction on the kinds of
problems generally considered in practical data mining. What if different instances
have different features? If the instances were transportation vehicles, then number
of wheels is a feature that applies to many vehicles but not to ships, for example,
whereas number of masts might be a feature that applies to ships but not to land
vehicles. The standard workaround is to make each possible feature an attribute
and to use a special “irrelevant value” flag to indicate that a particular attribute
is not available for a particular case. A similar situation arises when the existence
of one feature (say, spouse’s name) depends on the value of another (married or
single).

The value of an attribute for a particular instance is a measurement of the quantity
to which the attribute refers. There is a broad distinction between quantities that are
numeric and ones that are nominal. Numeric attributes, sometimes called continuous
attributes, measure numbers—either real or integer valued. Note that the term con-
tinuous is routinely abused in this context; integer-valued attributes are certainly not
continuous in the mathematical sense. Nominal attributes take on values in a pre-
specified, finite set of possibilities and are sometimes called categorical. But there
are other possibilities. Statistics texts often introduce “levels of measurement” such
as nominal, ordinal, interval, and ratio.

Nominal quantities have values that are distinct symbols. The values themselves
serve just as labels or names—hence the term nominal, which comes from the Latin
word for name. For example, in the weather data the attribute outlook has the values
sunny, overcast, and rainy. No relation is implied among these three—no ordering
or distance measure. It certainly does not make sense to add the values together,
multiply them, or even compare their size. A rule using such an attribute can only
test for equality or inequality, as in
outlook: sunny - no

overcast — yes
rainy - yes

50

CHAPTER 2 Input: Concepts, Instances, and Attributes

Ordinal quantities are ones that make it possible to rank-order the categories.
However, although there is a notion of ordering, there is no notion of distance. For
example, in the weather data the attribute temperature has values hot, mild, and cool.
These are ordered. Whether you say that

hot > mild > cool or hot < mild < cool

is a matter of convention—it does not matter which is used as long as consistency is
maintained. What is important is that mild lies between the other two. Although it
makes sense to compare two values, it does not make sense to add or subtract them—
the difference between hot and mild cannot be compared with the difference between
mild and cool. A rule using such an attribute might involve a comparison, as in

temperature = hot — no
temperature < hot - yes

Notice that the distinction between nominal and ordinal quantities is not always
straightforward and obvious. Indeed, the very example of a nominal quantity that
we used before, outlook, is not completely clear: You might argue that the three
values do have an ordering—overcast being somehow intermediate between sunny
and rainy as weather turns from good to bad.

Interval quantities have values that are not only ordered but measured in fixed
and equal units. A good example is temperature, expressed in degrees (say, degrees
Fahrenheit) rather than on the nonnumeric scale implied by cool, mild, and hot. It
makes perfect sense to talk about the difference between two temperatures, say 46
and 48 degrees, and compare that with the difference between another two tempera-
tures, say 22 and 24 degrees. Another example is dates. You can talk about the
difference between the years 1939 and 1945 (six years) or even the average of the
years 1939 and 1945 (1942), but it doesn’t make much sense to consider the sum
of the years 1939 and 1945 (3884) or three times the year 1939 (5817) because the
starting point, year 0, is completely arbitrary—indeed, it has changed many times
throughout the course of history. (Children sometimes wonder what the year 300
BCE was called in 300 BCE.)

Ratio quantities are ones for which the measurement scheme inherently defines
a zero point. For example, when measuring the distance from one object to another,
the distance between the object and itself forms a natural zero. Ratio quantities are
treated as real numbers: Any mathematical operations are allowed. It certainly does
make sense to talk about three times the distance and even to multiply one distance
by another to get an area.

However, the question of whether there is an “inherently” defined zero point
depends on what our scientific knowledge is—it’s culture relative. For example,
Daniel Fahrenheit knew no lower limit to temperature, and his scale is an interval
one. Nowadays, however, we view temperature as a ratio scale based on absolute
zero. Measurement of time in years since some culturally defined zero, such as
AD 0, is not a ratio scale; years since the Big Bang are. Even the zero point of

2.4 Preparing the Input 51

money—where we are usually quite happy to say that something cost twice as
much as something else—may not be quite clearly defined for those who constantly
max out their credit cards.

Many practical data mining systems accommodate just two of these four levels
of measurement: nominal and ordinal. Nominal attributes are sometimes called
categorical, enumerated, or discrete. Enumerated is the standard term used in com-
puter science to denote a categorical data type; however, the strict definition of the
term—namely, to put into one-to-one correspondence with the natural numbers—
implies an ordering, which is specifically not implied in the machine learning
context. Discrete also has connotations of ordering because you often discretize a
continuous numeric quantity. Ordinal attributes are often coded as numeric data, or
perhaps continuous data, but without the implication of mathematical continuity. A
special case of the nominal scale is the dichotomy, which has only two members—
often designated as true and false or yes and no in the weather data. Such attributes
are sometimes called Boolean.

Machine learning systems can use a wide variety of other information about
attributes. For instance, dimensional considerations could be used to restrict the
search to expressions or comparisons that are dimensionally correct. Circular order-
ing could affect the kinds of tests that are considered. For example, in a temporal
context, tests on a day attribute could involve next day, previous day, next weekday,
or same day next week. Partial orderings—that is, generalization or specialization
relations—frequently occur in practical situations. Information of this kind is often
referred to as metadata, data about data. However, the kinds of practical schemes
used for data mining are rarely capable of taking metadata into account, although it
is likely that these capabilities will develop in the future.

2.4 PREPARING THE INPUT

Preparing input for a data mining investigation usually consumes the bulk of the
effort invested in the entire data mining process. While this book is not really about
the problems of data preparation, we want to give you a feeling for the issues
involved so that you can appreciate the complexities. Following that, we look at a
particular input file format, the attribute-relation file format (ARFF), that is used
in the Weka system described in Part III. Then we consider issues that arise when
converting datasets to such a format, because there are some simple practical points
to be aware of. Bitter experience shows that real data is often disappointingly low
in quality, and careful checking—a process that has become known as data
cleaning—pays off many times over.

Gathering the Data Together

When beginning work on a data mining problem, it is first necessary to bring all the
data together into a set of instances. We explained the need to denormalize relational

52

CHAPTER 2 Input: Concepts, Instances, and Attributes

data when describing the family tree example. Although it illustrates the basic issue,
this self-contained and rather artificial example does not really convey a feeling for
what the process will be like in practice. In a real business application, it will be
necessary to bring data together from different departments. For example, in a mar-
keting study data will be needed from the sales department, the customer billing
department, and the customer service department.

Integrating data from different sources usually presents many challenges—not
deep issues of principle but nasty realities of practice. Different departments will
use different styles of recordkeeping, different conventions, different time periods,
different degrees of data aggregation, and different primary keys, and will have dif-
ferent kinds of error. The data must be assembled, integrated, and cleaned up. The
idea of companywide database integration is known as data warehousing. Data
warehouses provide a single consistent point of access to corporate or organizational
data, transcending departmental divisions. They are the place where old data is
published in a way that can be used to inform business decisions. The movement
toward data warehousing is a recognition of the fact that the fragmented information
that an organization uses to support day-to-day operations at a departmental level
can have immense strategic value when brought together. Clearly, the presence of a
data warehouse is a very useful precursor to data mining, and if it is not available,
many of the steps involved in data warehousing will have to be undertaken to prepare
the data for mining.

Even a data warehouse may not contain all the necessary data, and you may have
to reach outside the organization to bring in data relevant to the problem at hand.
For example, weather data had to be obtained in the load forecasting example in
Chapter 1, and demographic data is needed for marketing and sales applications.
Sometimes called overlay data, this is not normally collected by an organization but
is clearly relevant to the data mining problem. It, too, must be cleaned up and inte-
grated with the other data that has been collected.

Another practical question when assembling the data is the degree of aggregation
that is appropriate. When a dairy farmer decides which cows to sell off, the milk
production records, which an automatic milking machine records twice a day, must
be aggregated. Similarly, raw telephone call data is not much use when telecom-
munications firms study their clients’ behavior—the data must be aggregated to the
customer level. But do you want usage by month or by quarter, and for how many
months or quarters back? Selecting the right type and level of aggregation is usually
critical for success.

Because so many different issues are involved, you can’t expect to get it right
the first time. This is why data assembly, integration, cleaning, aggregating, and
general preparation take so long.

ARFF Format

We now look at a standard way of representing datasets, called an ARFF file. We
describe the regular version, but there is also a version called XRFF, which, as the

2.4 Preparing the Input 53

name suggests, gives ARFF header and instance information in the eXstensible
Markup Language (XML).

Figure 2.2 shows an ARFF file for the weather data in Table 1.3, the version with
some numeric features. Lines beginning with a % sign are comments. Following the
comments at the beginning of the file are the name of the relation (weather) and a
block defining the attributes (outlook, temperature, humidity, windy, play?). Nominal
attributes are followed by the set of values they can take on, enclosed in curly braces.
Values can include spaces; if so, they must be placed within quotation marks.
Numeric values are followed by the keyword numeric.

Although the weather problem is to predict the class value play? from the values
of the other attributes, the class attribute is not distinguished in any way in the data
file. The ARFF format merely gives a dataset; it does not specify which of the attri-
butes is the one that is supposed to be predicted. This means that the same file can
be used for investigating how well each attribute can be predicted from the others,
or it can be used to find association rules or for clustering.

% ARFF file for the weather data with some numeric features

o

@relation weather

@attribute outlook { sunny, overcast, rainy }
Qattribute temperature numeric

Qattribute humidity numeric

Qattribute windy { true, false }

Qattribute play? { yes, no }

@data

o

% 14 instances

o

sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
rainy, 70, 96, false, yes
rainy, 68, 80, false, yes
rainy, 65, 70, true, no
overcast, 64, 65, true, yes
sunny, 72, 95, false, no
sunny, 69, 70, false, yes
rainy, 75, 80, false, yes
sunny, 75, 70, true, yes
overcast, 72, 90, true, yes
overcast, 81, 75, false, yes
rainy, 71, 91, true, no

FIGURE 2.2
ARFF file for the weather data.

54

CHAPTER 2 Input: Concepts, Instances, and Attributes

Following the attribute definitions is an @data line that signals the start of the
instances in the dataset. Instances are written one per line, with values for each
attribute in turn, separated by commas. If a value is missing, it is represented by a
single question mark (there are no missing values in this dataset). The attribute
specifications in ARFF files allow the dataset to be checked to ensure that it contains
legal values for all attributes, and programs that read ARFF files do this checking
automatically.

As well as nominal and numeric attributes, exemplified by the weather data, the
ARFF format has three further attribute types: string attributes, date attributes, and
relation-valued attributes. String attributes have values that are textual. Suppose you
have a string attribute that you want to call description. In the block defining the
attributes it is specified like this:

@attribute description string

Then, in the instance data, include any character string in quotation marks (to include
quotation marks in your string, use the standard convention of preceding each one
by a backslash, \). Strings are stored internally in a string table and represented by
their address in that table. Thus, two strings that contain the same characters will
have the same value.

String attributes can have values that are very long—even a whole document.
To be able to use string attributes for text mining, it is necessary to be able to
manipulate them. For example, a string attribute might be converted into many
numeric attributes, one for each word in the string, whose value is the number of
times that word appears. These transformations are described in Section 7.3.

Date attributes are strings with a special format and are introduced like this (for
an attribute called today):

@Qattribute today date

Weka uses the ISO-8601 combined date and time format yyyy-MM-dd’T’HH :mm:ss
with four digits for the year, two each for the month and day, then the letter T fol-
lowed by the time with two digits for each of hours, minutes, and seconds.' In the
data section of the file, dates are specified as the corresponding string representation
of the date and time—for example, 2004-04-03T12:00:00. Although they are speci-
fied as strings, dates are converted to numeric form when the input file is read. Dates
can also be converted internally to different formats, so you can have absolute time-
stamps in the data file and use transformations to forms such as time of day or day
of the week to detect periodic behavior.

Relation-valued attributes differ from the other types because they allow multi-
instance problems to be represented in ARFF format. The value of a relation attribute
is a separate set of instances. The attribute is defined with a name and the type

'Weka contains a mechanism for defining a date attribute to have a different format by including a
special string in the attribute definition.

2.4 Preparing the Input 55

relational, followed by a nested attribute block that gives the structure of the refer-
enced instances. For example, a relation-valued attribute called bag, with a value
that is a dataset that has the same structure as the weather data but without the play

attribute, can be specified like this:

@attribute bag relational

@Qattribute outlook { sunny, overcast,

@attribute temperature numeric
@Qattribute humidity numeric

@Qattribute windy { true, false }

@end bag

rainy }

The @end bag indicates the end of the nested attribute block. Figure 2.3 shows an
AREFF file for a multi-instance problem based on the weather data. In this case, each
example is made up of an identifier value, two consecutive instances from the origi-

nal weather data, and a class label.

Each value of the attribute is a string that encapsulates two weather instances
separated by the \n character (which represents an embedded new line). This might
be appropriate for a game that lasts two days. A similar dataset might be used for
games that last for an indeterminate number of days (e.g., first-class cricket takes
three to five days). Note, however, that in multi-instance learning the order in which

o

@relation weather
Qattribute bag relational

Qattribute temperature numeric
@Qattribute humidity numeric

@end bag
@attribute play? { yes, no }

, “overcast, 83, 86, false\nrainy,

, “overcast, 81, 75, false\nrainy,

% Multiple instance ARFF file for the weather data

@attribute bag ID { 1, 2, 3, 4, 5, 6,

@Qattribute outlook { sunny, overcast, rainy }

@attribute windy { true, false }

% seven “multiple instance” instances
, “sunny, 85, 85, false\nsunny, 80, true”, no
false”, yes
true”, yes
false”, yes
false”, yes
true”, vyes
true”, yes

1

2

3, “rainy, 68, 80, false\nrainy, 65,
4, “overcast, 64, 65, true\nsunny, 72,
5, “sunny, 69, 70, false\nrainy, 75,
6, “sunny, 75, 70, true\novercast, 72,
7

FIGURE 2.3

Multi-instance ARFF file for the weather data.

56

CHAPTER 2 Input: Concepts, Instances, and Attributes

the instances are given is generally considered unimportant. An algorithm might
learn that cricket can be played if none of the days are rainy and at least one is sunny,
but not that it can only be played in a certain sequence of weather events.

Sparse Data

Sometimes most attributes have a value of 0 for most of the instances. For example,
market basket data records purchases made by supermarket customers. No matter
how big the shopping expedition, customers never purchase more than a tiny portion
of the items a store offers. The market basket data contains the quantity of each item
that the customer purchases, and this is zero for almost all items in stock. The data
file can be viewed as a matrix, whose rows and columns represent customers and
stock items, and the matrix is “sparse”—nearly all its elements are zero. Another
example occurs in text mining, where the instances are documents. Here, the columns
and rows represent documents and words, and the numbers indicate how many times
a particular word appears in a particular document. Most documents have a rather
small vocabulary, so most entries are zero.

It can be impractical to represent each element of a sparse matrix explicitly.
Instead of representing each value in order, like this:

o, 0, 0, v, 0, 0, 0, “class A"
o, o, 0, w, 0, 0, 0, 0, 0, 0, “class B”

the nonzero attributes can be explicitly identified by the attribute number and their
value stated:

{1 X, 6 Y, 10 “class A"}
{3 W, 10 “class B"}

Each instance is enclosed in braces and contains the index number of each nonzero
attribute (indexes start from 0) and its value. Sparse data files have the same
@relation and @attribute tags, followed by an @data line, but the data section is
different and contains specifications in braces such as those shown previously. Note
that the omitted values have a value of 0—they are not “missing” values! If a value
is unknown, it must be explicitly represented with a question mark.

Attribute Types

The ARFF format accommodates the two basic data types, nominal and numeric.
String attributes and date attributes are effectively nominal and numeric, respec-
tively, although before they are used, strings are often converted into a numeric form
such as a word vector. Relation-valued attributes contain separate sets of instances
that have basic attributes, such as numeric and nominal ones. How the two basic
types are interpreted depends on the learning scheme being used. For example, many
schemes treat numeric attributes as ordinal scales and only use less-than and greater-
than comparisons between the values. However, some treat them as ratio scales and

2.4 Preparing the Input 57

use distance calculations. You need to understand how machine learning schemes
work before using them for data mining.

If a learning scheme treats numeric attributes as though they are measured
on ratio scales, the question of normalization arises. Attributes are often normal-
ized to lie in a fixed range—usually from O to 1—by dividing all of the values
by the maximum value encountered or by subtracting the minimum value and
dividing by the range between the maximum and minimum values. Another
normalization technique is to calculate the statistical mean and the standard
deviation of the attribute values, then subtract the mean from each value and
divide the result by the standard deviation. This process is called standardizing
a statistical variable and results in a set of values whose mean is 0 and the
standard deviation is 1.

Some learning schemes—for example, instance-based and regression methods—
deal only with ratio scales because they calculate the “distance” between two
instances based on the values of their attributes. If the actual scale is ordinal, a
numeric distance function must be defined. One way of doing this is to use a two-
level distance: 1 if the two values are different and O if they are the same. Any
nominal quantity can be treated as numeric by using this distance function. However,
it is a rather crude technique and conceals the true degree of variation between
instances. Another possibility is to generate several synthetic binary attributes for
each nominal attribute: We return to this in Section 6.6 when we look at the use of
trees for numeric prediction.

Sometimes there is a genuine mapping between nominal quantities and numeric
scales. For example, postal zip codes indicate areas that could be represented by
geographical coordinates; the leading digits of telephone numbers may do so too,
depending on where you live. The first two digits of a student’s identification number
may be the year in which she first enrolled.

It is very common for practical datasets to contain nominal values that are coded
as integers. For example, an integer identifier may be used as a code for an attribute
such as part number, yet such integers are not intended for use in less-than or greater-
than comparisons. If this is the case, it is important to specify that the attribute is
nominal rather than numeric.

It is quite possible to treat an ordinal quantity as though it were nominal.
Indeed, some machine learning schemes only deal with nominal elements. For
example, in the contact lens problem the age attribute is treated as nominal, and
the rules generated included these:

If age = young and astigmatic = no
and tear production rate = normal
then recommendation = soft
If age = pre-presbyopic and astigmatic = no
and tear production rate = normal
then recommendation = soft

But in fact age, specified in this way, is really an ordinal quantity for which the
following is true:

58

CHAPTER 2 Input: Concepts, Instances, and Attributes

young < pre-presbyopic < presbyopic

If it were treated as ordinal, the two rules could be collapsed into one:

If age < pre-presbyopic and astigmatic = no
and tear production rate = normal
then recommendation = soft

which is a more compact, and hence more satisfactory, way of saying the same thing.

Missing Values

Most datasets encountered in practice, such as the labor negotiations data in Table
1.6, contain missing values. Missing values are frequently indicated by out-of-range
entries; perhaps a negative number (e.g., —1) in a numeric field that is normally only
positive, or a 0 in a numeric field that can never normally be 0. For nominal attributes,
missing values may be indicated by blanks or dashes. Sometimes different kinds of
missing values are distinguished (e.g., unknown versus unrecorded versus irrelevant
values) and perhaps represented by different negative integers (e.g., —1, -2, etc.).

You have to think carefully about the significance of missing values. They may
occur for a number of reasons, such as malfunctioning measurement equipment,
changes in experimental design during data collection, and collation of several
similar but not identical datasets. Respondents in a survey may refuse to answer
certain questions such as age or income. In an archaeological study, a specimen such
as a skull may be damaged so that some variables cannot be measured. In a biologi-
cal study, plants or animals may die before all variables have been measured. What
do these things mean about the example under consideration? Might the skull
damage have some significance in itself, or is it just because of some random event?
Does a plant’s early death have some bearing on the case or not?

Most machine learning schemes make the implicit assumption that there is no
particular significance in the fact that a certain instance has an attribute value
missing: The value is simply not known. However, there may be a good reason why
the attribute’s value is unknown—perhaps a decision was taken, on the evidence
available, not to perform some particular test—and that might convey some informa-
tion about the instance other than the fact that the value is simply missing. If this is
the case, then it would be more appropriate to record not tested as another possible
value for this attribute or perhaps as another attribute in the dataset. As the preceding
examples illustrate, only someone familiar with the data can make an informed
judgment about whether a particular value being missing has some extra significance
or whether it should simply be coded as an ordinary missing value. Of course, if
there seem to be several types of missing values, that is prima facie evidence that
something is going on that needs to be investigated.

If missing values mean that an operator has decided not to make a particular
measurement, that may convey a great deal more than the mere fact that the value
is unknown. For example, people analyzing medical databases have noticed that

2.4 Preparing the Input 59

cases may, in some circumstances, be diagnosable simply from the tests that a doctor
decides to make regardless of the outcome of the tests. Then a record of which values
are “missing” is all that is needed for a complete diagnosis—the actual values can
be ignored completely!

Inaccurate Values

It is important to check data mining files carefully for rogue attributes and attribute
values. The data used for mining has almost certainly not been gathered expressly
for that purpose. When originally collected, many of the fields probably didn’t matter
and were left blank or unchecked. Provided it does not affect the original purpose
of the data, there is no incentive to correct this situation. However, when the same
database is used for mining, the errors and omissions suddenly start to assume great
significance. For example, banks do not really need to know the age of their custom-
ers, so their databases may contain many missing or incorrect values. But age may
be a very significant feature in mined rules.

Typographic errors in a dataset will obviously lead to incorrect values. Often the
value of a nominal attribute is misspelled, creating an extra possible value for that
attribute. Or perhaps it is not a misspelling but different names for the same thing,
such as Pepsi and Pepsi-Cola. Obviously, the point of a defined format such as ARFF
is to allow data files to be checked for internal consistency. However, errors that
occur in the original data file are often preserved through the conversion process
into the file that is used for data mining; thus, the list of possible values that each
attribute takes on should be examined carefully.

Typographical or measurement errors in numeric values generally cause outliers
that can be detected by graphing one variable at a time. Erroneous values often
deviate significantly from the pattern that is apparent in the remaining values. Some-
times, however, inaccurate values are hard to find, particularly without specialist
domain knowledge.

Duplicate data presents another source of error. Most machine learning tools will
produce different results if some of the instances in the data files are duplicated,
because repetition gives them more influence on the result.

People often make deliberate errors when entering personal data into databases.
They might make minor changes in the spelling of their street to try to identify
whether the information they have provided ends up being sold to advertising agen-
cies that burden them with junk mail. They might adjust the spelling of their name
when applying for insurance if they have had insurance refused in the past. Rigid
computerized data entry systems often impose restrictions that require imaginative
workarounds. One story tells of a foreigner renting a vehicle in the United States.
Being from abroad, he had no zip code, yet the computer insisted on one; in despera-
tion the operator suggested that he use the zip code of the rental agency. If this is
common practice, future data mining projects may notice a cluster of customers who
apparently live in the same district as the agency!

Similarly, a supermarket checkout operator sometimes uses his own frequent
buyer card when the customer does not supply one, either so that the customer can

60

CHAPTER 2 Input: Concepts, Instances, and Attributes

get a discount that would otherwise be unavailable or simply to accumulate credit
points in the cashier’s account. Only a deep semantic knowledge of what is going
on will be able to explain systematic data errors like these.

Finally, data goes stale. Many items in a database change as circumstances
change. For example, items in mailing lists (e.g., names, addresses, telephone
numbers, etc.) change frequently. You need to consider whether the data you are
mining is still current.

Getting to Know Your Data

There is no substitute for getting to know your data. Simple tools that show histo-
grams of the distribution of values of nominal attributes, and graphs of the values of
numeric attributes (perhaps sorted or simply graphed against instance number), are
very helpful. These graphical visualizations of the data make it easy to identify outli-
ers, which may well represent errors in the data file, or arcane conventions for coding
unusual situations, such as a missing year as 9999 or a missing weight as —1 kg, that
no one has thought to tell you about. Domain experts need to be consulted to explain
anomalies, missing values, the significance of integers that represent categories rather
than numeric quantities, and so on. Pairwise plots of one attribute against another,
or each attribute against the class value, can be extremely revealing.

Data cleaning is a time-consuming and labor-intensive procedure, but one that
is absolutely necessary for successful data mining. With a large dataset, people often
give up—how can they possibly check it all? Instead, you should sample a few
instances and examine them carefully. You’ll be surprised at what you find. Time
looking at your data is always well spent.

2.5 FURTHER READING

Pyle (1999) provides an extensive guide to data preparation for data mining. There
is also a great deal of current interest in data warehousing and the problems it
entails. Kimball and Ross (2002) present the best introduction to these that we
know of. Cabena et al. (1998) estimate that data preparation accounts for 60%
of the effort involved in a data mining application, and they write at some length
about the problems involved.

The area of inductive logic programming, which deals with finite and infinite
relations, is covered by Bergadano and Gunetti (1996). The different “levels of
measurement” for attributes were introduced by Stevens (1946) and are described
in detail in the manuals for statistical packages such as SPSS (Nie et al., 1970).

The multi-instance learning setting in its original, quite specific sense, and the
drug activity prediction problem that motivated it, was introduced by Dietterich et al.
(1997). The multilabeled instance problem, mentioned near the beginning of Section
2.1, is quite a different setting; Read et al. (2009) discuss some approaches for
tackling it using standard classification algorithms.

CHAPTER

Output: Knowledge
Representation

Most of the techniques in this book produce easily comprehensible descriptions of
the structural patterns in the data. Before looking at how these techniques work, we
have to see how structural patterns can be expressed. There are many different ways
for representing the patterns that can be discovered by machine learning, and each
one dictates the kind of technique that can be used to infer that output structure from
data. Once you understand how the output is represented, you have come a long way
toward understanding how it can be generated.

We saw many examples of data mining in Chapter 1. In these cases the output
took the form of decision trees and classification rules, which are basic knowledge
representation styles that many machine learning methods use. Knowledge is really
too imposing a word for a decision tree or a collection of rules, and by using it we
don’t mean to imply that these structures vie with the real kind of knowledge that
we carry in our heads—it’s just that we need some word to refer to the structures
that learning methods produce. There are more complex varieties of rules that allow
exceptions to be specified, and ones that can express relations among the values of
the attributes of different instances. Some problems have a numeric class, and—as
mentioned in Chapter 1—the classic way of dealing with these is to use linear
models. Linear models can also be adapted to deal with binary classification. More-
over, special forms of trees can be developed for numeric prediction. Instance-based
representations focus on the instances themselves rather than rules that govern their
attribute values. Finally, some learning schemes generate clusters of instances. These
different knowledge representation methods parallel the different kinds of learning
problems introduced in Chapter 2.

3.1 TABLES

The simplest, most rudimentary way of representing the output from machine learn-
ing is to make it just the same as the input—a frable. For example, Table 1.2 is a
decision table for the weather data: You just look up the appropriate conditions to
decide whether or not to play. Exactly the same process can be used for numeric
prediction too—in this case, the structure is sometimes referred to as a regression
table. Less trivially, creating a decision or regression table might involve selecting

Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

61

62

CHAPTER 3 Output: Knowledge Representation

some of the attributes. If temperature is irrelevant to the decision, for example, a
smaller, condensed table with that attribute missing would be a better guide. The
problem is, of course, to decide which attributes to leave out without affecting the
final decision.

3.2 LINEAR MODELS

Another simple style of representation is a linear model, the output of which is just
the sum of the attribute values, except that weights are applied to each attribute
before adding them together. The trick is to come up with good values for the
weights—ones that make the model’s output match the desired output. Here, the
output and the inputs—attribute values—are all numeric. Statisticians use the word
regression for the process of predicting a numeric quantity, and regression model is
another term for this kind of linear model. Unfortunately, this does not really relate
to the ordinary use of the word, which means to return to a previous state.

Linear models are easiest to visualize in two dimensions, where they are tanta-
mount to drawing a straight line through a set of data points. Figure 3.1 shows a
line fitted to the CPU performance data described in Chapter 1 (Table 1.5), where
only the cache attribute is used as input. The class attribute performance is shown
on the vertical axis, with cache on the horizontal axis; both are numeric. The straight
line represents the “best fit” prediction equation

PRP + 37.06 + 2.47 cacH

Given a test instance, a prediction can be produced by plugging the observed
value of cache into this expression to obtain a value for performance. Here, the

1250 T T e T T

1000 x 1
X

750

PRP

500

250 &

FIGURE 3.1

A linear regression function for the CPU performance data.

3.2 Linear Models

expression comprises a constant “bias” term (37.06) and a weight for the cache
attribute (2.47). Of course, linear models can be extended beyond a single attribute—
the trick is to come up with suitable values for each attribute’s weight, and a bias
term, that together give a good fit to the training data.

Linear models can also be applied to binary classification problems. In this case,
the line produced by the model separates the two classes: It defines where the deci-
sion changes from one class value to the other. Such a line is often referred to as
the decision boundary. Figure 3.2 shows a decision boundary for the iris data that
separates the Iris setosas from the Iris versicolors. In this case, the data is plotted
using two of the input attributes—petal length and petal width—and the straight line
defining the decision boundary is a function of these two attributes. Points lying on
the line are given by the equation

2.0—0.5 PETAL-LENGTH — 0.8 PETAL-WIDTH = 0

As before, given a test instance, a prediction is produced by plugging the observed
values of the attributes in question into the expression. But here we check the result
and predict one class if it is greater than or equal to O (in this case, Iris sefosa) and
the other if it is less than O (Iris versicolor). Again, the model can be extended to
multiple attributes, in which case the boundary becomes a high-dimensional plane,
or “hyperplane,” in the instance space. The task is to find values for the weights so
that the training data is correctly classified by the hyperplane.

In Figures 3.1 and 3.2, a different fit to the data could be obtained by changing
the position and orientation of the line—that is, by changing the weights. The
weights for Figure 3.1 were found by a method called least squares linear regres-
sion; those for Figure 3.2 were found by the perceptron training rule. Both methods
are described in Chapter 4.

2
X
X
X X X
15¢ X XXX X i
X X XXX
X OXXXXXXX
XX X X X
X XX
% 1F X X X XX B
s +
s
o (05} + R
A~ + o+
+++ +
+ A 4
+ o+t
0 L 4
05 ! ! ! ! !
1 2 3 4 5
Petal Length

FIGURE 3.2

A linear decision boundary separating Iris setosas from Iris versicolors.

.
63

64

CHAPTER 3 Output: Knowledge Representation

3.3 TREES

A “divide-and-conquer” approach to the problem of learning from a set of indepen-
dent instances leads naturally to a style of representation called a decision tree. We
have seen some examples of decision trees, for the contact lens (Figure 1.2) and
labor negotiations (Figure 1.3) datasets. Nodes in a decision tree involve testing a
particular attribute. Usually, the test compares an attribute value with a constant.
Leaf nodes give a classification that applies to all instances that reach the leaf, or a
set of classifications, or a probability distribution over all possible classifications.
To classify an unknown instance, it is routed down the tree according to the values
of the attributes tested in successive nodes, and when a leaf is reached the instance
is classified according to the class assigned to the leaf.

If the attribute that is tested at a node is a nominal one, the number of children
is usually the number of possible values of the attribute. In this case, because there
is one branch for each possible value, the same attribute will not be retested further
down the tree. Sometimes the attribute values are divided into two subsets, and the
tree branches just two ways depending on which subset the value lies in; in that
case, the attribute might be tested more than once in a path.

If the attribute is numeric, the test at a node usually determines whether its value
is greater or less than a predetermined constant, giving a two-way split. Alternatively,
a three-way split may be used, in which case there are several different possibilities.
If missing value is treated as an attribute value in its own right, that will create a
third branch. An alternative for an integer-valued attribute would be a three-way
split into less than, equal to, and greater than. An alternative for a real-valued attri-
bute, for which equal fo is not such a meaningful option, would be to test against
an interval rather than a single constant, again giving a three-way split: below,
within, and above. A numeric attribute is often tested several times in any given path
down the tree from root to leaf, each test involving a different constant. We return
to this when describing the handling of numeric attributes in Section 6.1.

Missing values pose an obvious problem: It is not clear which branch should
be taken when a node tests an attribute whose value is missing. Sometimes, as
described in Section 2.4, missing value is treated as an attribute value in its own
right. If this is not the case, missing values should be treated in a special way rather
than being considered as just another possible value that the attribute might take.
A simple solution is to record the number of elements in the training set that go
down each branch and to use the most popular branch if the value for a test instance
is missing.

A more sophisticated solution is to notionally split the instance into pieces and
send part of it down each branch, and from there right down to the leaves of the
subtrees involved. The split is accomplished using a numeric weight between 0 and
1, and the weight for a branch is chosen to be proportional to the number of training
instances going down that branch, all weights summing to 1. A weighted instance
may be further split at a lower node. Eventually, the various parts of the instance
will each reach a leaf node, and the decisions at these leaf nodes must be recombined

3.3 Trees 65

using the weights that have percolated down to the leaves. We return to this in
Section 6.1.

So far we’ve described decision trees that divide the data at a node by comparing
the value of some attribute with a constant. This is the most common approach. If
you visualize this with two input attributes in two dimensions, comparing the value
of one attribute with a constant splits the data parallel to that axis. However, there
are other possibilities. Some trees compare two attributes with one another, while
others compute some function of several attributes. For example, using a hyperplane
as described in the previous section results in an oblique split that is not parallel to
an axis. A functional tree can have oblique splits as well as linear models at the leaf
nodes, which are used for prediction. It is also possible for some nodes in the tree
to specify alternative splits on different attributes, as though the tree designer
couldn’t make up his or her mind which one to choose. This might be useful if the
attributes seem to be equally useful for classifying the data. Such nodes are called
option nodes, and when classifying an unknown instance, all branches leading from
an option node are followed. This means that the instance will end up in more than
one leaf, giving various alternative predictions, which are then combined in some
fashion—for example, using majority voting.

It is instructive and can even be entertaining to manually build a decision tree
for a dataset. To do so effectively, you need a good way of visualizing the data so
that you can decide which are likely to be the best attributes to test and what an
appropriate test might be. The Weka Explorer, described in Part III, has a User Clas-
sifier facility that allows users to construct a decision tree interactively. It presents
you with a scatter plot of the data against two selected attributes, which you choose.
When you find a pair of attributes that discriminates the classes well, you can create
a two-way split by drawing a polygon around the appropriate data points on the
scatter plot.

For example, in Figure 3.3(a) the user is operating on a dataset with three
classes, the iris dataset, and has found two attributes, petallength and petalwidth,
that do a good job of splitting up the classes. A rectangle has been drawn manu-
ally to separate out one of the classes (Iris versicolor). Then the user switches to
the decision tree view in Figure 3.3(b) to see the tree so far. The left leaf node
contains predominantly irises of one type (Iris versicolor, contaminated by only
two virginicas); the right one contains predominantly two types (Iris setosa and
virginica, contaminated by only two versicolors). The user will probably select
the right leaf and work on it next, splitting it further with another rectangle—
perhaps based on a different pair of attributes (although, from Figure 3.3(a), these
two look pretty good).

Section 11.2 explains how to use Weka’s User Classifier facility. Most people
enjoy making the first few decisions but rapidly lose interest thereafter, and one very
useful option is to select a machine learning scheme and let it take over at any point
in the decision tree. Manual construction of decision trees is a good way to get a
feel for the tedious business of evaluating different combinations of attributes to
split on.

66 CHAPTER 3 Output: Knowledge Representation

[Tree Visualizer ~ Data Visualizer |

[X: petallength (Num)] [v: petalwidth (Num) 4]
| Colour: class (Nom) 4 [Rectangle m
(Submit) (Clear) (Open) (Save) Jitter
r Plot: iris
Z2.5 '--i" ST
v
01 kA o
1 3.5s 6.9

~Class colour

Iris-setosa Iris-versicolor

4

(a)

l[-Trce--Visunliur | Data Visualizer |
 Tree View
True False

4

(b)

FIGURE 3.3

Constructing a decision tree interactively: (a) creating a rectangular test involving
petallength and petalwidth, and (b) the resulting (unfinished) decision tree.

3.4 Rules 67

The kind of decision trees we’ve been looking at are designed for predicting
categories rather than numeric quantities. When it comes to predicting numeric
quantities, as with the CPU performance data in Table 1.5, the same kind of tree can
be used, but each leaf would contain a numeric value that is the average of all the
training set values to which the leaf applies. Because a numeric quantity is what is
predicted, decision trees with averaged numeric values at the leaves are called
regression trees.

Figure 3.4(a) shows a regression equation for the CPU performance data, and
Figure 3.4(b) shows a regression tree. The leaves of the tree are numbers that rep-
resent the average outcome for instances that reach the leaf. The tree is much larger
and more complex than the regression equation, and if we calculate the average of
the absolute values of the errors between the predicted and actual CPU performance
measures, it turns out to be significantly less for the tree than for the regression
equation. The regression tree is more accurate because a simple linear model poorly
represents the data in this problem. However, the tree is cumbersome and difficult
to interpret because of its large size.

It is possible to combine regression equations with regression trees. Figure 3.4(c)
is a tree whose leaves contain linear expressions—that is, regression equations—
rather than single predicted values. This is called a model tree. Figure 3.4(c) contains
the six linear models that belong at the six leaves, labeled LM1 through LM6. The
model tree approximates continuous functions by linear “patches,” a more sophisti-
cated representation than either linear regression or regression trees. Although the
model tree is smaller and more comprehensible than the regression tree, the average
error values on the training data are lower. (However, we will see in Chapter 5 that
calculating the average error on the training set is not in general a good way of
assessing the performance of models.)

3.4 RULES

Rules are a popular alternative to decision trees, and we have already seen examples
in Section 1.2 for the weather (page 9), the contact lens (page 12), the iris (page
13), and the soybean (page 19) datasets. The antecedent, or precondition, of a
rule is a series of tests just like the tests at nodes in decision trees, while the
consequent, or conclusion, gives the class or classes that apply to instances covered
by that rule, or perhaps gives a probability distribution over the classes. Gener-
ally, the preconditions are logically ANDed together, and all the tests must succeed
if the rule is to fire. However, in some rule formulations the preconditions are
general logical expressions rather than simple conjunctions. We often think of the
individual rules as being effectively logically ORed together: If any one applies,
the class (or probability distribution) given in its conclusion is applied to the
instance. However, conflicts arise when several rules with different conclusions
apply; we return to this shortly.

68 CHAPTER 3 Output: Knowledge Representation

PRP =
—-56.1
+0.049 MYCT
+0.015 MMIN
+0.006 MMAX
+0.630 CACH
—0.270 CHMIN

+1.46 CHMAX @
(a)

(2500,4250] >58

19.3 (28/8.7%)

‘ 29.8 (37/8.18%)

@ ‘ 75.7 (10/24.6%)

‘ 133 (16/28.8%)

‘ 59.3 (24/16.9%)

‘281 (11/56%) ‘492 (7/53.9%)

>550

‘37.3 (19/11.3%)

‘ 18.3 (7/3.83%)

(b)

>28,000

‘ LMS5 (21/45.5%)

‘ LM6 (23/63.5%)

LM1 PRP = 8.29 + 0.004 MMAX +2.77 CHMIN
LM2 PRP =20.3 + 0.004 MMIN - 3.99 CHMIN + 0.946 CHMAX
LM3 PRP =38.1+0.012 MMIN
LM4 PRP = 19.5 + 0.002 MMAX + 0.698 CACH + 0.969 CHMAX
o LM5 PRP =285-146 MYCT + 1.02 CACH - 9.39 CHMIN
‘ LMD @H20) LM6 PRP = -65.8 +0.03 MMIN - 2.94 CHMIN +4.98 CHMAX
(©

‘ LM2 (26/6.37%)

FIGURE 3.4

Models for the CPU performance data: (a) linear regression, (b) regression tree, and
(c) model tree.

3.4 Rules

Classification Rules

It is easy to read a set of classification rules directly off a decision tree. One rule is
generated for each leaf. The antecedent of the rule includes a condition for every
node on the path from the root to that leaf, and the consequent of the rule is the class
assigned by the leaf. This procedure produces rules that are unambiguous in that the
order in which they are executed is irrelevant. However, in general, rules that are
read directly off a decision tree are far more complex than necessary, and rules
derived from trees are usually pruned to remove redundant tests.

Because decision trees cannot easily express the disjunction implied among the
different rules in a set, transforming a general set of rules into a tree is not quite so
straightforward. A good illustration of this occurs when the rules have the same
structure but different attributes, like

If a and b then x
If ¢ and d then x

Then it is necessary to break the symmetry and choose a single test for the root node.
If, for example, a is chosen, the second rule must, in effect, be repeated twice in the
tree, as shown in Figure 3.5. This is known as the replicated subtree problem.

yes \no

b c
yes [no yes \No

X c) (d
yes |no yes \J10

FIGURE 3.5

Decision tree for a simple disjunction.

.
69

70 CHAPTER 3 Output: Knowledge Representation

Ifx=1andy=0 thenclass=a
Ifx=0andy=1 thenclass=a
Ifx=0andy =0 then class = b
Ifx=1andy=1 then class =b

(2) (b)
FIGURE 3.6

The exclusive-or problem.

The replicated subtree problem is sufficiently important that it is worth looking
at a couple more examples. The left diagram of Figure 3.6 shows an exclusive-or
function for which the output is a if x = 1 or y = 1 but not both. To make this into
a tree, you have to split on one attribute first, leading to a structure like the one
shown in the center. In contrast, rules can faithfully reflect the true symmetry of the
problem with respect to the attributes, as shown on the right.

In this example the rules are not notably more compact than the tree. In fact,
they are just what you would get by reading rules off the tree in the obvious way.
But in other situations, rules are much more compact than trees, particularly if it
is possible to have a “default” rule that covers cases not specified by the other
rules. For example, to capture the effect of the rules in Figure 3.7—in which there
are four attributes, x, y, z, and w, which can each be 1, 2, or 3—requires the tree
shown on the right. Each of the three small gray triangles to the upper right should
actually contain the whole three-level subtree that is displayed in gray, a rather
extreme example of the replicated subtree problem. This is a distressingly complex
description of a rather simple concept.

One reason why rules are popular is that each rule seems to represent an inde-
pendent “nugget” of knowledge. New rules can be added to an existing rule set
without disturbing ones already there, whereas to add to a tree structure may require
reshaping the whole tree. However, this independence is something of an illusion
because it ignores the question of how the rule set is executed. We explained previ-
ously the fact that if rules are meant to be interpreted in order as a “decision list,”
some of them, taken individually and out of context, may be incorrect. On the other
hand, if the order of interpretation is supposed to be immaterial, then it is not clear
what to do when different rules lead to different conclusions for the same instance.
This situation cannot arise for rules that are read directly off a decision tree because

3.4 Rules 71

Ifx=1andy=1thenclass=a
Ifz=1and w =1 then class = a
Otherwise class = b

S
&

FIGURE 3.7

Decision tree with a replicated subtree.

the redundancy included in the structure of the rules prevents any ambiguity in
interpretation. But it does arise when rules are generated in other ways.

If a rule set gives multiple classifications for a particular example, one solution
is to give no conclusion at all. Another is to count how often each rule fires on the
training data and go with the most popular one. These strategies can lead to radically
different results. A different problem occurs when an instance is encountered that
the rules fail to classify at all. Again, this cannot occur with decision trees, or with
rules read directly off them, but it can easily happen with general rule sets. One way
of dealing with this situation is to decide not to classify such an example; another
is to choose the most frequently occurring class as a default. Again, radically differ-
ent results may be obtained for these strategies. Individual rules are simple, and sets
of rules seem deceptively simple—but given just a set of rules with no additional
information, it is not clear how it should be interpreted.

A particularly straightforward situation occurs when rules lead to a class that is
Boolean (say, yes and no), and when only rules leading to one outcome (say, yes)
are expressed. The assumption is that if a particular instance is not in class yes, then

72

CHAPTER 3 Output: Knowledge Representation

it must be in class no—a form of closed-world assumption. If this is the case, rules
cannot conflict and there is no ambiguity in rule interpretation: Any interpretation
strategy will give the same result. Such a set of rules can be written as a logic
expression in what is called disjunctive normal form: that is, as a disjunction (OR)
of conjunctive (AND) conditions.

It is this simple special case that seduces people into assuming that rules are very
easy to deal with, for here each rule really does operate as a new, independent piece
of information that contributes in a straightforward way to the disjunction. Unfor-
tunately, it only applies to Boolean outcomes and requires the closed-world assump-
tion, and both these constraints are unrealistic in most practical situations. Machine
learning algorithms that generate rules invariably produce ordered rule sets in multi-
class situations, and this sacrifices any possibility of modularity because the order
of execution is critical.

Association Rules

Association rules are no different from classification rules except that they can
predict any attribute, not just the class, and this gives them the freedom to predict
combinations of attributes too. Also, association rules are not intended to be used
together as a set, as classification rules are. Different association rules express dif-
ferent regularities that underlie the dataset, and they generally predict different
things.

Because so many different association rules can be derived from even a very
small dataset, interest is restricted to those that apply to a reasonably large number
of instances and have a reasonably high accuracy on the instances to which they
apply. The coverage of an association rule is the number of instances for which it
predicts correctly—this is often called its support. Its accuracy—often called
confidence—is the number of instances that it predicts correctly, expressed as a
proportion of all instances to which it applies. For example, with the rule

If temperature = cool then humidity = normal

the coverage is the number of days that are both cool and have normal humidity (4
in the data of Table 1.2), and the accuracy is the proportion of cool days that have
normal humidity (100% in this case).

It is usual to specify minimum coverage and accuracy values, and to seek only
those rules for which coverage and accuracy are both at least these specified minima.
In the weather data, for example, there are 58 rules with coverage and accuracy that
are at least 2 and 95%, respectively. (It may also be convenient to specify coverage
as a percentage of the total number of instances instead.)

Association rules that predict multiple consequences must be interpreted rather
carefully. For example, with the weather data in Table 1.2 we saw this rule:

If windy = false and play = no then outlook = sunny
and humidity = high

3.4 Rules 73

This is not just a shorthand expression for the two separate rules

If windy = false and play = no then outlook = sunny
If windy = false and play = no then humidity = high

It does indeed imply that these two rules exceed the minimum coverage and accuracy
figures—but it also implies more. The original rule means that the number of
examples that are nonwindy, nonplaying, with sunny outlook and high humidity, is
at least as great as the specified minimum coverage figure. It also means that the
number of such days, expressed as a proportion of nonwindy, nonplaying days, is
at least the specified minimum accuracy figure. This implies that the rule

If humidity = high and windy = false and play = no then outlook = sunny

also holds, because it has the same coverage as the original rule, and its accuracy
must be at least as high as the original rule’s because the number of high-humidity,
nonwindy, nonplaying days is necessarily less than that of nonwindy, nonplaying
days—which makes the accuracy greater.

As we have seen, there are relationships between particular association rules:
Some rules imply others. To reduce the number of rules that are produced, in cases
where several rules are related it makes sense to present only the strongest one to
the user. In the previous example, only the first rule should be printed.

Rules with Exceptions

Returning to classification rules, a natural extension is to allow them to have excep-
tions. Then incremental modifications can be made to a rule set by expressing
exceptions to existing rules rather than reengineering the entire set. For example,
consider the iris problem described earlier. Suppose a new flower was found with
the dimensions given in Table 3.1, and an expert declared it to be an instance of Iris
setosa. If this flower was classified by the rules given in Chapter 1 (see page 14) for
this problem, it would be misclassified by two of them:

If petal-length 2 2.45 and petal-length < 4.45 then Iris-versicolor
If petal-length 2 2.45 and petal-length < 4.95 and
petal-width < 1.55 then Iris-versicolor

These rules require modification so that the new instance can be treated correctly.
However, simply changing the bounds for the attribute—value tests in these rules
may not suffice because the instances used to create the rule set may then be mis-
classified. Fixing up a rule set is not as simple as it sounds.

Table 3.1 New Iris Flower
Sepal Length Sepal Width Petal Length Petal Width Type
5.1 3.5 2.6 0.2 ?

74

CHAPTER 3 Output: Knowledge Representation

Instead of changing the tests in the existing rules, an expert might be consulted
to explain why the new flower violates them, giving explanations that could be used
to extend the relevant rules only. For example, the first of these two rules misclas-
sifies the new Iris setosa as an instance of the genus Iris versicolor. Instead of
altering the bounds on any of the inequalities in the rule, an exception can be made
based on some other attribute:

If petal-length > 2.45 and petal-length < 4.45
then Iris-versicolor
EXCEPT if petal-width < 1.0 then Iris-setosa

This rule says that a flower is Iris versicolor if its petal length is between 2.45 cm
and 4.45 cm except when its petal width is less than 1.0 cm, in which case it is Iris
setosa.

Of course, we might have exceptions to the exceptions, exceptions to these, and
so on, giving the rule set something of the character of a tree. As well as being used
to make incremental changes to existing rule sets, rules with exceptions can be used
to represent the entire concept description in the first place.

Figure 3.8 shows a set of rules that correctly classify all examples in the iris
dataset given in Chapter 1. These rules are quite difficult to comprehend at first.
Let’s follow them through. A default outcome has been chosen, Iris setosa, and is
shown in the first line. For this dataset, the choice of default is rather arbitrary
because there are 50 examples of each type. Normally, the most frequent outcome
is chosen as the default.

Subsequent rules give exceptions to this default. The first if ... then, on lines 2
through 4, gives a condition that leads to the classification Iris versicolor. However,
there are two exceptions to this rule (lines 5-8), which we will deal with in a
moment. If the conditions on lines 2 and 3 fail, the else clause on line 9 is reached,
which essentially specifies a second exception to the original default. If the condition

Default: Iris-setosa
except if petal-length >= 2.45 and petal-length < 5.355
and petal-width < 1.75
then Iris-versicolor
except i1f petal-length >= 4.95 and petal-width < 1.55
then Iris-virginica
else if sepal-length < 4.95 and sepal-width >= 2.45
then Iris-virginica
else if petal-length >= 3.35
then Iris-virginica
except if petal-length < 4.85 and sepal-length < 5.95
then Iris-versicolor

3 o0 u b wN

o e
NP oW

FIGURE 3.8

Rules for the iris data.

3.4 Rules 75

on line 9 holds, the classification is Iris virginica (line 10). Again, there is an excep-
tion to this rule (on lines 11 and 12).

Now return to the exception on lines 5 through 8. This overrides the Iris versi-
color conclusion on line 4 if either of the tests on lines 5 and 7 holds. As it happens,
these two exceptions both lead to the same conclusion, Iris virginica (lines 6 and
8). The final exception is the one on lines 11 and 12, which overrides the Iris virgi-
nica conclusion on line 10 when the condition on line 11 is met, and leads to the
classification Iris versicolor.

You will probably need to ponder these rules for some minutes before it becomes
clear how they are intended to be read. Although it takes some time to get used to
reading them, sorting out the excepts and if ... then ... elses becomes easier with
familiarity. People often think of real problems in terms of rules, exceptions, and
exceptions to the exceptions, so it is often a good way to express a complex rule set.
But the main point in favor of this way of representing rules is that it scales up well.
Although the whole rule set is a little hard to comprehend, each individual conclusion,
each individual then statement, can be considered just in the context of the rules and
exceptions that lead to it, whereas with decision lists, all prior rules need to be
reviewed to determine the precise effect of an individual rule. This locality property
is crucial when trying to understand large rule sets. Psychologically, people familiar
with the data think of a particular set of cases, or kind of case, when looking at any
one conclusion in the exception structure, and when one of these cases turns out to
be an exception to the conclusion, it is easy to add an except clause to cater for it.

It is worth pointing out that the default ... except if ... then structure is logically
equivalenttoan if ... then ... else, where the else is unconditional and specifies exactly
what the default did. An unconditional else is, of course, a default. (Note that there
are no unconditional elses in the preceding rules.) Logically, the exception-based
rules can be very simply rewritten in terms of regular if ... then ... else clauses. What
is gained by the formulation in terms of exceptions is not logical but psychological.
We assume that the defaults and the tests that occur early on apply more widely than
the exceptions further down. If this is indeed true for the domain, and the user can
see that it is plausible, the expression in terms of (common) rules and (rare) excep-
tions will be easier to grasp than a different, but logically equivalent, structure.

More Expressive Rules

We have assumed implicitly that the conditions in rules involve testing an attribute
value against a constant. But this may not be ideal. Suppose, to take a concrete
example, we have the set of eight building blocks of the various shapes and sizes
illustrated in Figure 3.9, and we wish to learn the concept of standing up. This is a
classic two-class problem with classes standing and lying. The four shaded blocks
are positive (standing) examples of the concept, and the unshaded blocks are nega-
tive (lying) examples. The only information the learning algorithm will be given is
the width, height, and number of sides of each block. The training data is shown in
Table 3.2.

76 CHAPTER 3 Output: Knowledge Representation

A

FIGURE 3.9
The shapes problem: shaded = standing; unshaded = lying.

Table 3.2 Training Data for the Shapes Problem
Width Height Sides Class

standing
standing
lying
standing
lying
standing
lying
lying

= O N N NP>
N - © O 0 wWwo >
Wb PO Dd

A conventional rule set that might be produced for this data is

if width 2 3.5 and height < 7.0 then lying
if height > 3.5 then standing

In case you’re wondering, 3.5 is chosen as the breakpoint for width because it is
halfway between the width of the thinnest lying block, namely 4, and the width of
the fattest standing block whose height is less than 7, namely 3. Also, 7.0 is chosen
as the breakpoint for height because it is halfway between the height of the tallest
lying block, namely 6, and the shortest standing block whose width is greater than
3.5, namely 8. It is common to place numeric thresholds halfway between the values
that delimit the boundaries of a concept.

3.4 Rules 77

Although these two rules work well on the examples given, they are not very
good. Many new blocks would not be classified by either rule (e.g., one with width
1 and height 2), and it is easy to devise many legitimate blocks that the rules would
not fit.

A person classifying the eight blocks would probably notice that “standing blocks
are those that are taller than they are wide.” This rule does not compare attribute
values with constants; it compares attributes with one another:

if width > height then lying
if height > width then standing

The actual values of the height and width attributes are not important, just the result
of comparing the two.

Many machine learning schemes do not consider relations between attributes
because there is a considerable cost in doing so. One way of rectifying this is to add
extra, secondary attributes that say whether two primary attributes are equal or not,
or give the difference between them if they are numeric. For example, we might add
a binary attribute is width < height? to Table 3.2. Such attributes are often added as
part of the data engineering process.

With a seemingly rather small further enhancement, the expressive power of the
knowledge representation can be extended greatly. The trick is to express rules in a
way that makes the role of the instance explicit:

if width(block) > height (block) then lying(block)
if height(block) > width(block) then standing(block)

Although this may not seem like much of an extension, it is if instances can be
decomposed into parts. For example, if a fower is a pile of blocks, one on top of the
other, the fact that the topmost block of the tower is standing can be expressed by

if height (tower.top) > width(tower.top) then standing(tower.top)

Here, fower.top is used to refer to the topmost block. So far, nothing has been
gained. But if rower:rest refers to the rest of the tower, then the fact that the tower
is composed entirely of standing blocks can be expressed by the rules

if height (tower.top) > width(tower.top) and standing(tower.rest)
then standing (tower)

The apparently minor addition of the condition standing(tower.rest) is a recursive
expression that will turn out to be true only if the rest of the tower is composed of
standing blocks. That will be tested by a recursive application of the same rule. Of
course, it is necessary to ensure that the recursion “bottoms out” properly by adding
a further rule, such as

if tower=empty then standing (tower.top)

Sets of rules like this are called logic programs, and this area of machine learning
is called inductive logic programming. We will not be treating it further in this book.

78

CHAPTER 3 Output: Knowledge Representation

3.5 INSTANCE-BASED REPRESENTATION

The simplest form of learning is plain memorization, or rote learning. Once a set of
training instances has been memorized, on encountering a new instance the memory
is searched for the training instance that most strongly resembles the new one. The
only problem is how to interpret “resembles”—we will explain that shortly. First,
however, note that this is a completely different way of representing the “knowl-
edge” extracted from a set of instances: Just store the instances themselves and
operate by relating new instances whose class is unknown to existing ones whose
class is known. Instead of trying to create rules, work directly from the examples
themselves. This is known as instance-based learning. In a sense, all the other learn-
ing methods are instance-based too, because we always start with a set of instances
as the initial training information. But the instance-based knowledge representation
uses the instances themselves to represent what is learned, rather than inferring a
rule set or decision tree and storing it instead.

In instance-based learning, all the real work is done when the time comes to
classify a new instance rather than when the training set is processed. In a sense,
then, the difference between this method and the others that we have seen is the
time at which the “learning” takes place. Instance-based learning is lazy, deferring
the real work as long as possible, whereas other methods are eager, producing a
generalization as soon as the data has been seen. In instance-based classification,
each new instance is compared with existing ones using a distance metric, and the
closest existing instance is used to assign the class to the new one. This is called
the nearest-neighbor classification method. Sometimes more than one nearest neigh-
bor is used, and the majority class of the closest k neighbors (or the distance-
weighted average if the class is numeric) is assigned to the new instance. This is
termed the k-nearest-neighbor method.

Computing the distance between two examples is trivial when examples have
just one numeric attribute: It is just the difference between the two attribute values.
It is almost as straightforward when there are several numeric attributes: Generally,
the standard Euclidean distance is used. However, this assumes that the attributes
are normalized and are of equal importance, and one of the main problems in learn-
ing is to determine which are the important features.

When nominal attributes are present, it is necessary to come up with a “distance”
between different values of that attribute. What are the distances between, say, the
values red, green, and blue? Usually, a distance of zero is assigned if the values are
identical; otherwise, the distance is one. Thus, the distance between red and red is
zero but the distance between red and green is one. However, it may be desirable
to use a more sophisticated representation of the attributes. For example, with more
colors one could use a numeric measure of hue in color space, making yellow closer
to orange than it is to green and ocher closer still.

Some attributes will be more important than others, and this is usually reflected
in the distance metric by some kind of attribute weighting. Deriving suitable attri-
bute weights from the training set is a key problem in instance-based learning.

3.5 Instance-Based Representation 79

It may not be necessary, or desirable, to store all the training instances. For one
thing, this may make the nearest-neighbor calculation unbearably slow. For another,
it may consume unrealistic amounts of storage. Generally, some regions of attribute
space are more stable than others with regard to class, and just a few exemplars are
needed inside stable regions. For example, you might expect the required density of
exemplars that lie well inside class boundaries to be much less than the density that
is needed near class boundaries. Deciding which instances to save and which to
discard is another key problem in instance-based learning.

An apparent drawback to instance-based representations is that they do not make
explicit the structures that are learned. In a sense, this violates the notion of learning
that we presented at the beginning of this book; instances do not really “describe”
the patterns in data. However, the instances combine with the distance metric to
carve out boundaries in instance space that distinguish one class from another, and
this is a kind of explicit representation of knowledge. For example, given a single
instance of each of two classes, the nearest-neighbor rule effectively splits the
instance space along the perpendicular bisector of the line joining the instances.
Given several instances of each class, the space is divided by a set of lines that
represent the perpendicular bisectors of selected lines joining an instance of one
class to one of another class. Figure 3.10(a) illustrates a nine-sided polygon that
separates the filled-circle class from the open-circle class. This polygon is implicit
in the operation of the nearest-neighbor rule.

When training instances are discarded, the result is to save just a few critical
examples of each class. Figure 3.10(b) shows only the examples that actually get
used in nearest-neighbor decisions: The others (the light-gray ones) can be discarded
without affecting the result. These examples serve as a kind of explicit knowledge
representation.

Some instance-based representations go further and explicitly generalize the
instances. Typically, this is accomplished by creating rectangular regions that enclose
examples of the same class. Figure 3.10(c) shows the rectangular regions that might
be produced. Unknown examples that fall within one of the rectangles will be
assigned the corresponding class; ones that fall outside all rectangles will be subject
to the usual nearest-neighbor rule. Of course, this produces different decision bound-
aries from the straightforward nearest-neighbor rule, as can be seen by superimposing
the polygon in Figure 3.10(a) onto the rectangles. Any part of the polygon that lies
within a rectangle will be chopped off and replaced by the rectangle’s boundary.

Rectangular generalizations in instance space are just like rules with a special
form of condition, one that tests a numeric variable against an upper and lower bound
and selects the region in between. Different dimensions of the rectangle correspond
to tests on different attributes being ANDed together. Choosing snug-fitting rectan-
gular regions as tests leads to more conservative rules than those generally produced
by rule-based machine learning schemes, because for each boundary of the region,
there is an actual instance that lies on (or just inside) that boundary. Tests such as
x < a (where x is an attribute value and a is a constant) encompass an entire
half-space—they apply no matter how small x is as long as it is less than a.

|
80

CHAPTER 3 Output: Knowledge Representation

FIGURE 3.10

Different ways of partitioning the instance space.

When doing rectangular generalization in instance space you can afford to be
conservative, because if a new example is encountered that lies outside all regions,
you can fall back on the nearest-neighbor metric. With rule-based methods the
example cannot be classified, or receives just a default classification, if no rules
apply to it. The advantage of more conservative rules is that, although incomplete,
they may be more perspicuous than a complete set of rules that covers all cases.
Finally, ensuring that the regions do not overlap is tantamount to ensuring that at
most one rule can apply to an example, eliminating another of the difficulties of
rule-based systems—what to do when several rules apply.

A more complex kind of generalization is to permit rectangular regions to nest
one within another. Then a region that is basically all one class can contain an
inner region with a different class, as illustrated in Figure 3.10(d). It is possible

3.6 Clusters 81

to allow nesting within nesting so that the inner region can itself contain its own
inner region of a different class—perhaps the original class of the outer region.
This is analogous to allowing rules to have exceptions and exceptions to the
exceptions, as in Section 3.4.

It is worth pointing out a slight danger to the technique of visualizing instance-
based learning in terms of boundaries in example space: It makes the implicit
assumption that attributes are numeric rather than nominal. If the various values
that a nominal attribute can take on were laid out along a line, generalizations
involving a segment of that line would make no sense: Each test involves either
one value for the attribute or all values for it (or perhaps an arbitrary subset of
values). Although you can more or less easily imagine extending the examples in
Figure 3.10 to several dimensions, it is much harder to imagine how rules involving
nominal attributes will look in multidimensional instance space. Many machine
learning situations involve numerous attributes, and our intuitions tend to lead us
astray when extended to high-dimensional spaces.

3.6 CLUSTERS

When a cluster rather than a classifier is learned, the output takes the form of a
diagram that shows how the instances fall into clusters. In the simplest case this
involves associating a cluster number with each instance, which might be depicted
by laying the instances out in two dimensions and partitioning the space to show
each cluster, as illustrated in Figure 3.11(a).

Some clustering algorithms allow one instance to belong to more than one
cluster, so the diagram might lay the instances out in two dimensions and draw
overlapping subsets representing each cluster—a Venn diagram, as in Figure 3.11(b).
Some algorithms associate instances with clusters probabilistically rather than cat-
egorically. In this case, for every instance there is a probability or degree of mem-
bership with which it belongs to each of the clusters. This is shown in Figure 3.11(c).
This particular association is meant to be a probabilistic one, so the numbers for
each example sum to 1—although that is not always the case.

Other algorithms produce a hierarchical structure of clusters so that at the top
level the instance space divides into just a few clusters, each of which divides into
its own subcluster at the next level down, and so on. In this case a diagram such as
the one in Figure 3.11(d) is used, in which elements joined together at lower levels
are more tightly clustered than ones joined together at higher levels. Such diagrams
are called dendrograms. This term means just the same thing as tree diagrams (the
Greek word dendron means “tree”), but in clustering the more exotic version seems
to be preferred—perhaps because biological species are a prime application area for
clustering techniques, and ancient languages are often used for naming in biology.

Clustering is often followed by a stage in which a decision tree or rule set is
inferred that allocates each instance to the cluster in which it belongs. Then, the
clustering operation is just one step on the way to a structural description.

82

CHAPTER 3 Output: Knowledge Representation

g
(a) (b)
1 2 3
a 0.4 0.1 0.5
b 0.1 0.8 0.1
¢ 0.3 0.3 0.4
d 0.1 0.1 0.8
e 0.4 0.2 0.4
f 0.1 0.4 0.5
g 07 0.2 0.1
h 0.5 0.4 0.1
(c)
g a c i e d b f h
(d)
FIGURE 3.11

Different ways of representing clusters.

3.7 Further Reading 83

3.7 FURTHER READING

Knowledge representation is a key topic in classical artificial intelligence and
early work on it is well represented by a comprehensive series of papers edited
by Brachman and Levesque (1985). The area of inductive logic programming and
associated topics are covered in detail by de Raedt’s book, Logical and relational
learning (2008).

We mentioned the problem of dealing with conflict among different rules. Various
ways of doing this, called conflict resolution strategies, have been developed for use
with rule-based programming systems. These are described in books on rule-based
programming such as Brownstown et al. (1985). Again, however, they are designed
for use with handcrafted rule sets rather than ones that have been learned. The use
of handcrafted rules with exceptions for a large dataset has been studied by Gaines
and Compton (1995), and Richards and Compton (1998) describe their role as an
alternative to classic knowledge engineering.

Further information on the various styles of concept representation can be
found in the papers that describe machine learning methods for inferring concepts
from examples, and these are covered in Section 4.10, Further Reading, and the
Discussion sections of Chapter 6.

This page intentionally left blank

CHAPTER

Algorithms: The Basic
Methods

Now that we’ve seen how the inputs and outputs can be represented, it’s time to
look at the learning algorithms themselves. This chapter explains the basic ideas
behind the techniques that are used in practical data mining. We will not delve too
deeply into the trickier issues—advanced versions of the algorithms, optimizations
that are possible, complications that arise in practice. These topics are deferred to
Chapter 6, where we come to grips with real implementations of machine learning
schemes such as the ones included in data mining toolkits and used for real-world
applications. It is important to understand these more advanced issues so that you
know what is really going on when you analyze a particular dataset.

In this chapter we look at the basic ideas. One of the most instructive lessons is
that simple ideas often work very well, and we strongly recommend the adoption of
a “simplicity-first” methodology when analyzing practical datasets. There are many
different kinds of simple structure that datasets can exhibit. In one dataset, there
might be a single attribute that does all the work and the others are irrelevant or
redundant. In another dataset, the attributes might contribute independently and
equally to the final outcome. A third might have a simple logical structure, involving
just a few attributes, which can be captured by a decision tree. In a fourth, there may
be a few independent rules that govern the assignment of instances to different
classes. A fifth might exhibit dependencies among different subsets of attributes. A
sixth might involve linear dependence among numeric attributes, where what matters
is a weighted sum of attribute values with appropriately chosen weights. In a seventh,
classifications appropriate to particular regions of instance space might be governed
by the distances between the instances themselves. And in an eighth, it might be that
no class values are provided: The learning is unsupervised.

In the infinite variety of possible datasets there are many different kinds of
structures that can occur, and a data mining tool—no matter how capable—that is
looking for one class of structure may completely miss regularities of a different
kind, regardless of how rudimentary those may be. The result is a baroque and
opaque classification structure of one kind instead of a simple, elegant, immediately
comprehensible structure of another.

Each of the eight examples of different kinds of datasets just sketched leads to
a different machine learning scheme that is well suited to discovering the underlying
concept. The sections of this chapter look at each of these structures in turn. A final

Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

85

86

CHAPTER 4 Algorithms: The Basic Methods

section introduces simple ways of dealing with multi-instance problems, where each
example comprises several different instances.

4.1 INFERRING RUDIMENTARY RULES

Here’s an easy way to find very simple classification rules from a set of instances.
Called IR for I-rule, it generates a one-level decision tree expressed in the form
of a set of rules that all test one particular attribute. 1R is a simple, cheap
method that often comes up with quite good rules for characterizing the structure
in data. It turns out that simple rules frequently achieve surprisingly high accu-
racy. Perhaps this is because the structure underlying many real-world datasets
is quite rudimentary, and just one attribute is sufficient to determine the class
of an instance quite accurately. In any event, it is always a good plan to try the
simplest things first.

The idea is this: We make rules that test a single attribute and branch accord-
ingly. Each branch corresponds to a different value of the attribute. It is obvious
what is the best classification to give each branch: Use the class that occurs most
often in the training data. Then the error rate of the rules can easily be determined.
Just count the errors that occur on the training data—that is, the number of instances
that do not have the majority class.

Each attribute generates a different set of rules, one rule for every value of the
attribute. Evaluate the error rate for each attribute’s rule set and choose the best. It’s
that simple! Figure 4.1 shows the algorithm in the form of pseudocode.

To see the 1R method at work, consider the weather data of Table 1.2 on page 10
(we will encounter it many times again when looking at how learning algorithms
work). To classify on the final column, play, 1R considers four sets of rules, one for
each attribute. These rules are shown in Table 4.1. An asterisk indicates that a
random choice has been made between two equally likely outcomes. The number of
errors is given for each rule, along with the total number of errors for the rule set as
a whole. 1R chooses the attribute that produces rules with the smallest number of

For each attribute,
For each value of that attribute, make a rule as follows:
count how often each class appears
find the most frequent class
make the rule assign that class to this attribute value.
Calculate the error rate of the rules.
Choose the rules with the smallest error rate.

FIGURE 4.1

Pseudocode for 1R.

4.1 Inferring Rudimentary Rules

Table 4.1 Evaluating Attributes in the Weather Data
Attribute Rules Errors Total Errors

1 outlook sunny — no 2/5 4/14
overcast — yes 0/4
rainy — yes 2/5

2 temperature hot — no* 2/4 5/14
mild — yes 2/6
cool — yes 1/4

3 humidity high — no 3/7 4/14
normal — yes 1/7

4 windy false — yes 2/8 5/14
true — no* 3/6

*A random choice has been made between two equally likely outcomes.

errors—that is, the first and third rule sets. Arbitrarily breaking the tie between these
two rule sets gives

outlook: sunny = no
overcast — yes
rainy - yes

We noted at the outset that the game for the weather data is unspecified. Oddly
enough, it is apparently played when it is overcast or rainy but not when it is sunny.
Perhaps it’s an indoor pursuit.

Missing Values and Numeric Attributes

Although a very rudimentary learning scheme, 1R does accommodate both missing
values and numeric attributes. It deals with these in simple but effective ways.
Missing is treated as just another attribute value so that, for example, if the weather
data had contained missing values for the outlook attribute, a rule set formed on
outlook would specify four possible class values, one for each of sunny, overcast,
and rainy, and a fourth for missing.

We can convert numeric attributes into nominal ones using a simple discreti-
zation method. First, sort the training examples according to the values of the
numeric attribute. This produces a sequence of class values. For example, sorting
the numeric version of the weather data (Table 1.3, page 11) according to the
values of temperature produces the sequence

64 65 68 69 70 71 72 72 75 75 80 81 83 85
yes no yes yes yes no no yes yes yes no yes yes no

Discretization involves partitioning this sequence by placing breakpoints in it.
One possibility is to place breakpoints wherever the class changes, producing the
following eight categories:

87

88

CHAPTER 4 Algorithms: The Basic Methods

yes | no | yes yes yes | no no | yes yes yes | no | yes yes | no
Choosing breakpoints halfway between the examples on either side places them
at 64.5, 66.5, 70.5, 72, 77.5, 80.5, and 84. However, the two instances with
value 72 cause a problem because they have the same value of temperature but
fall into different classes. The simplest fix is to move the breakpoint at 72 up
one example, to 73.5, producing a mixed partition in which no is the majority
class.

A more serious problem is that this procedure tends to form an excessively
large number of categories. The 1R method will naturally gravitate toward choos-
ing an attribute that splits into many categories, because this will partition the
dataset into many pieces, making it more likely that instances will have the same
class as the majority in their partition. In fact, the limiting case is an attribute that
has a different value for each instance—that is, an identification code attribute that
pinpoints instances uniquely—and this will yield a zero error rate on the training
set because each partition contains just one instance. Of course, highly branching
attributes do not usually perform well on test examples; indeed, the identification
code attribute will never get any examples outside the training set correct. This
phenomenon is known as overfitting; we have already described overfitting-
avoidance bias in Chapter 1, and we will encounter this problem repeatedly in
subsequent chapters.

For IR, overfitting is likely to occur whenever an attribute has a large number
of possible values. Consequently, when discretizing a numeric attribute, a minimum
limit is imposed on the number of examples of the majority class in each partition.
Suppose that minimum is set at 3. This eliminates all but two of the preceding
partitions. Instead, the partitioning process begins

yes no yes yes | yes

ensuring that there are three occurrences of yes, the majority class, in the first parti-
tion. However, because the next example is also yes, we lose nothing by including
that in the first partition, too. This leads to a new division of

yes no yes yes yes | no no yes yes yes | no yes yes no

where each partition contains at least three instances of the majority class, except
the last one, which will usually have less. Partition boundaries always fall between
examples of different classes.

Whenever adjacent partitions have the same majority class, as do the first two
partitions above, they can be merged together without affecting the meaning of the
rule sets. Thus, the final discretization is

yes no yes yes yes no no yes yes yes | no yes yes no
which leads to the rule set

temperature: < 77.5 - yes
> 77.5 = no

4.1 Inferring Rudimentary Rules 89

The second rule involved an arbitrary choice; as it happens, no was chosen. If
yes had been chosen instead, there would be no need for any breakpoint at all—and
as this example illustrates, it might be better to use the adjacent categories to help
break ties. In fact, this rule generates five errors on the training set and so is less
effective than the preceding rule for outlook. However, the same procedure leads to
this rule for humidity:

< 82.5 - vyes
> 82.5 and < 95.5 = no
> 95.5 - yes

humidity:

This generates only three errors on the training set and is the best 1-rule for the data
in Table 1.3.

Finally, if a numeric attribute has missing values, an additional category is
created for them, and the discretization procedure is applied just to the instances for
which the attribute’s value is defined.

Discussion

In a seminal paper entitled “Very simple classification rules perform well on most
commonly used datasets” (Holte, 1993), a comprehensive study of the performance
of the 1R procedure was reported on 16 datasets frequently used by machine learning
researchers to evaluate their algorithms. Cross-validation, an evaluation technique
that we will explain in Chapter 5, was used to ensure that the results were the same
as would be obtained on independent test sets. After some experimentation, the
minimum number of examples in each partition of a numeric attribute was set at six,
not three as used in our illustration.

Surprisingly, despite its simplicity 1R did well in comparison with the state-
of-the-art learning schemes, and the rules it produced turned out to be just a few
percentage points less accurate, on almost all of the datasets, than the decision
trees produced by a state-of-the-art decision tree induction scheme. These trees
were, in general, considerably larger than 1R’s rules. Rules that test a single
attribute are often a viable alternative to more complex structures, and this strongly
encourages a simplicity-first methodology in which the baseline performance is
established using simple, rudimentary techniques before progressing to more sophis-
ticated learning schemes, which inevitably generate output that is harder for people
to interpret.

The 1R procedure learns a one-level decision tree whose leaves represent the
various different classes. A slightly more expressive technique is to use a different
rule for each class. Each rule is a conjunction of tests, one for each attribute. For
numeric attributes the test checks whether the value lies within a given interval;
for nominal ones it checks whether it is in a certain subset of that attribute’s values.
These two types of tests—that is, intervals and subsets—are learned from the
training data pertaining to each of the classes. For a numeric attribute, the end

90

CHAPTER 4 Algorithms: The Basic Methods

points of the interval are the minimum and the maximum values that occur in the
training data for that class. For a nominal one, the subset contains just those values
that occur for that attribute in the training data for the individual class. Rules
representing different classes usually overlap, and at prediction time the one with
the most matching tests is predicted. This simple technique often gives a useful
first impression of a dataset. It is extremely fast and can be applied to very large
quantities of data.

4.2 STATISTICAL MODELING

The 1R method uses a single attribute as the basis for its decisions and chooses the
one that works best. Another simple technique is to use all attributes and allow them
to make contributions to the decision that are equally important and independent of
one another, given the class. This is unrealistic, of course: What makes real-life
datasets interesting is that the attributes are certainly not equally important or inde-
pendent. But it leads to a simple scheme that, again, works surprisingly well in
practice.

Table 4.2 shows a summary of the weather data obtained by counting how many
times each attribute—value pair occurs with each value (yes and no) for play. For
example, you can see from Table 1.2 (page 10) that outlook is sunny for five
examples, two of which have play = yes and three of which have play = no. The
cells in the first row of the new table simply count these occurrences for all pos-
sible values of each attribute, and the play figure in the final column counts the
total number of occurrences of yes and no. The lower part of the table contains the
same information expressed as fractions, or observed probabilities. For example,
of the nine days that play is yes, outlook is sunny for two, yielding a fraction of
2/9. For play the fractions are different: They are the proportion of days that play
is yes and no, respectively.

Now suppose we encounter a new example with the values that are shown in
Table 4.3. We treat the five features in Table 4.2—outlook, temperature, humidity,
windy, and the overall likelihood that play is yes or no—as equally important, inde-
pendent pieces of evidence and multiply the corresponding fractions. Looking at the
outcome yes gives

Likelihood of yes =2/9x3/9x3/9x3/9%x9/14 = 0.0053

The fractions are taken from the yes entries in the table according to the values
of the attributes for the new day, and the final 9/14 is the overall fraction rep-
resenting the proportion of days on which play is yes. A similar calculation for
the outcome no leads to

Likelihood of no = 3/5x1/5x4/5x3/5x 5/14 = 0.0206

91

G/t 6/€ |002 G/c 6/¢ Aurel

G/e 6/¢ anJy G/L 6/9 lewlou g/c 6/v piw G/0 6/ 1SB0IBAO

7 1/S 71/6 G/c 6/9 os[e} 1747 6/¢ ybiy g/e 6/¢ 10y G/e 6/¢ Auuns

b 5 |005 14 [Aurel

e o) ani L 9 [euuou 2 ¥ pliw 0 ¥ 1SBOJOAO

S 6 I 9 os[e} 14 ¢ ybiy 4 4 0y) ¢ Auuns
ou sof ou sof ou saf ou sof ou sof
Reld Apuipp Apiwny ainjesadwa | yoono

$a1)1[1qeqOId PUE SJUNOD UM Bleq Jayledapm ' dlqeL

92 CHAPTER 4 Algorithms: The Basic Methods

Table 4.3 A New Day
Outlook Temperature = Humidity Windy Play

Sunny cool high true ?

This indicates that for the new day, no is more likely than yes—four times more
likely. The numbers can be turned into probabilities by normalizing them so that
they sum to 1:

0.0053

Probability of yes = —————————=20.5%
0.0053 +0.0206

Probability of 1o = — 20200 ___ 79 5,
0.0053 +0.0206

This simple and intuitive method is based on Bayes’ rule of conditional probability.
Bayes’ rule says that if you have a hypothesis H and evidence E that bears on that
hypothesis, then

_ PrEIH]Pr{H]

Pr{H | E] Pl E]

We use the notation that Pr[A] denotes the probability of an event A and Pr[A |
B] denotes the probability of A conditional on another event B. The hypothesis H is
that play will be, say, yes, and Pr[H | E] is going to turn out to be 20.5%, just as
determined previously. The evidence E is the particular combination of attribute
values for the new day—outlook = sunny, temperature = cool, humidity = high, and
windy = true. Let’s call these four pieces of evidence E|, E,, E3, and E,, respectively.
Assuming that these pieces of evidence are independent (given the class), their
combined probability is obtained by multiplying the probabilities:

Pr[E, | yes] X Pr[E, | yes] X Pr[E; | yes] X Pr[E, | yes] X Pr[yes]

Prlyes| E]= PrE]

Don’t worry about the denominator: We will ignore it and eliminate it in the
final normalizing step when we make the probabilities for yes and no sum to 1,
just as we did previously. The Pr[yes] at the end is the probability of a yes outcome
without knowing any of the evidence E—that is, without knowing anything about
the particular day in question—and it’s called the prior probability of the hypothesis
H. In this case, it’s just 9/14, because 9 of the 14 training examples had a yes

4.2 Statistical Modeling 93

value for play. Substituting the fractions in Table 4.2 for the appropriate evidence
probabilities leads to
2/9%3/9%x3/9%x3/9%x9/14

Pr[E]

Pryes| E]=

just as we calculated previously. Again, the Pr[E] in the denominator will disappear
when we normalize.

This method goes by the name of Naive Bayes because it’s based on Bayes’ rule
and “naively” assumes independence—it is only valid to multiply probabilities when
the events are independent. The assumption that attributes are independent (given
the class) in real life certainly is a simplistic one. But despite the disparaging name,
Naive Bayes works very effectively when tested on actual datasets, particularly when
combined with some of the attribute selection procedures, which are introduced in
Chapter 7, that eliminate redundant, and hence nonindependent, attributes.

Things go badly awry in Naive Bayes if a particular attribute value does not
occur in the training set in conjunction with every class value. Suppose that in the
training data the attribute value outlook = sunny was always associated with the
outcome no. Then the probability of outlook = sunny being given a yes—that is,
Prloutlook = sunny | yes]—would be zero, and because the other probabilities are
multiplied by this, the final probability of yes in the previous example would be zero
no matter how large they were. Probabilities that are zero hold a veto over the other
ones. This is not a good idea. But the bug is easily fixed by minor adjustments to
the method of calculating probabilities from frequencies.

For example, the upper part of Table 4.2 shows that for play = yes, outlook is
sunny for two examples, overcast for four, and rainy for three, and the lower part
gives these events probabilities of 2/9, 4/9, and 3/9, respectively. Instead, we could
add 1 to each numerator, and compensate by adding 3 to the denominator, giving
probabilities of 3/12, 5/12, and 4/12, respectively. This will ensure that an attribute
value that occurs zero times receives a probability which is nonzero, albeit small.
The strategy of adding 1 to each count is a standard technique called the Laplace
estimator after the great eighteenth-century French mathematician Pierre Laplace.
Although it works well in practice, there is no particular reason for adding 1 to the
counts: We could instead choose a small constant u and use

2+u/3 4+u/3 and3+y/3
9+u = 9+u 9+u

The value of u, which was set to 3 before, effectively provides a weight that
determines how influential the a priori values of 1/3, 1/3, and 1/3 are for each of the
three possible attribute values. A large u says that these priors are very important
compared with the new evidence coming in from the training set, whereas a small
one gives them less influence. Finally, there is no particular reason for dividing u
into three equal parts in the numerators: We could use

94

CHAPTER 4 Algorithms: The Basic Methods

2+up; 4+up, and3+up3
9+u 9+pu 9+u

instead, where p,, p,, and p; sum to 1. Effectively, these three numbers are a priori
probabilities of the values of the outlook attribute being sunny, overcast, and rainy,
respectively.

This is now a fully Bayesian formulation where prior probabilities have been
assigned to everything in sight. It has the advantage of being completely rigorous, but
the disadvantage that it is not usually clear just how these prior probabilities should
be assigned. In practice, the prior probabilities make little difference provided that
there are a reasonable number of training instances, and people generally just estimate
frequencies using the Laplace estimator by initializing all counts to 1 instead of 0.

Missing Values and Numeric Attributes

One of the really nice things about Naive Bayes is that missing values are no problem
at all. For example, if the value of outlook were missing in the example of Table
4.3, the calculation would simply omit this attribute, yielding

Likelihood of yes =3/9x3/9x3/9x9/14 =0.0238

Likelihood of no = 1/5x4/5x3/5x 5/14 = 0.0343

These two numbers are individually a lot higher than they were before because one
of the fractions is missing. But that’s not a problem because a fraction is missing in
both cases, and these likelihoods are subject to a further normalization process. This
yields probabilities for yes and no of 41% and 59%, respectively.

If a value is missing in a training instance, it is simply not included in the fre-
quency counts, and the probability ratios are based on the number of values that
actually occur rather than on the total number of instances.

Numeric values are usually handled by assuming that they have a “normal” or
“Gaussian” probability distribution. Table 4.4 gives a summary of the weather data
with numeric features from Table 1.3. For nominal attributes, we calculate counts as
before, while for numeric ones we simply list the values that occur. Then, instead of
normalizing counts into probabilities as we do for nominal attributes, we calculate
the mean and the standard deviation for each class and each numeric attribute. The
mean value of temperature over the yes instances is 73, and its standard deviation is
6.2. The mean is simply the average of the values—that is, the sum divided by the
number of values. The standard deviation is the square root of the sample variance,
which we calculate as follows: Subtract the mean from each value, square the result,
sum them together, and then divide by one less than the number of values. After we
have found this “sample variance,” take its square root to yield the standard deviation.
This is the standard way of calculating the mean and the standard deviation of a set
of numbers. (The “one less than” has to do with the number of degrees of freedom
in the sample, a statistical notion that we don’t want to get into here.)

/e 6/ Aure)
g/e 6/€ eni 1'6 ¢ 0L ep 'pIs 6. g9 ep pis G/0 6/ 1SedIsA0
1A% v1/6 g/¢ 6/9 os[e} 2’98 L'6L uesw 9v.L 72 uesw g/€ 6/¢ Auuns
G/ 18
06 ¢l
0. 7A
08 G/
L6 0. A 69
G6 <9 [79
0L 08 g9 89 4 € Aurel
e € ani 06 96 08 0. 0 ¥ 1SedJenO
S 6 4 9 os[e} S8 98 g8 €38) 4 Auuns
ou sof ou sof ou sof ou sof ou sof
Keld Apuipy Apiwny ainjesadwa |)oojno

SOl3sle}S Aewwing yum ejeq Jaylespn dUsWNN ' alqel

95

|
96

CHAPTER 4 Algorithms: The Basic Methods

The probability density function for a normal distribution with mean y and
standard deviation o is given by the rather formidable expression

-y
e 202

N e

But fear not! All this means is that if we are considering a yes outcome when
temperature has a value of, say, 66, we just need to plug x = 66, u =73, and 0 =
6.2 into the formula. So the value of the probability density function is

_(66-73)

1
(temperature = 66| yes) = ————e 262° =(.0340
f(temp Y V21 X6.2

And by the same token, the probability density of a yes outcome when humidity has
a value of, say, 90, is calculated in the same way:

f(humidity =901 yes) = 0.0221

The probability density function for an event is very closely related to its prob-
ability. However, it is not quite the same thing. If temperature is a continuous scale,
the probability of the temperature being exactly 66—or exactly any other value, such
as 63.14159262—is zero. The real meaning of the density function f{x) is that the
probability that the quantity lies within a small region around x, say between x — &/2
and x + &2, is € X f{x). You might think we ought to factor in the accuracy figure €
when using these density values, but that’s not necessary. The same € would appear
in both the yes and no likelihoods that follow and cancel out when the probabilities
were calculated.

Using these probabilities for the new day in Table 4.5 yields

Likelihood of yes = 2/9x0.0340x 0.0221x3/9 x 9/14 = 0.000036

Likelihood of no =3/5x0.0279 x 0.0381x3/5 x 5/14 = 0.000137

which leads to probabilities

Probability of yes = 0.000036 =20.8%
0.000036 +0.000137
Table 4.5 Another New Day
Outlook Temperature Humidity Windy Play
Sunny 66 90 true ?

4.2 Statistical Modeling 97

0.000137

=79.2%
0.000036+0.000137

Probability of no =

These figures are very close to the probabilities calculated earlier for the new day
in Table 4.3 because the femperature and humidity values of 66 and 90 yield similar
probabilities to the cool and high values used before.

The normal-distribution assumption makes it easy to extend the Naive Bayes
classifier to deal with numeric attributes. If the values of any numeric attributes are
missing, the mean and standard deviation calculations are based only on the ones
that are present.

Naive Bayes for Document Classification

An important domain for machine learning is document classification, in which each
instance represents a document and the instance’s class is the document’s topic.
Documents might be news items and the classes might be domestic news, overseas
news, financial news, and sports. Documents are characterized by the words that
appear in them, and one way to apply machine learning to document classification is
to treat the presence or absence of each word as a Boolean attribute. Naive Bayes is
a popular technique for this application because it is very fast and quite accurate.

However, this does not take into account the number of occurrences of each
word, which is potentially useful information when determining the category of a
document. Instead, a document can be viewed as a bag of words—a set that contains
all the words in the document, with multiple occurrences of a word appearing mul-
tiple times (technically, a set includes each of its members just once, whereas a bag
can have repeated elements). Word frequencies can be accommodated by applying
a modified form of Naive Bayes called multinominal Naive Bayes.

Suppose ny, Ny, ..., ny is the number of times word 7 occurs in the document, and Py, P,,
..., P is the probability of obtaining word / when sampling from all the documents in
category H. Assume that the probability is independent of the word’s context and position
in the document. These assumptions lead to a multinomial distribution for document
probabilities. For this distribution, the probability of a document E given its class H—in
other words, the formula for computing the probability Pr[E | HI in Bayes’ rule—is

| k Bn,

Pr[EIH]—N.xl;[o

where N =n; + n, + ... + n, is the number of words in the document. The reason for the
factorials is to account for the fact that the ordering of the occurrences of each word is
immaterial according to the bag-of-words model. P; is estimated by computing the relative
frequency of word 7 in the text of all training documents pertaining to category H. In
reality, there could be a further term that gives the probability that the model for category
H generates a document whose length is the same as the length of £, but it is common to
assume that this is the same for all classes and hence can be dropped.

98

CHAPTER 4 Algorithms: The Basic Methods

For example, suppose there are only two words, yellow and blue, in the vocabu-
lary, and a particular document class H has Pr[yellow | H] = 75% and Pr[blue | H]
=25% (you might call H the class of yellowish green documents). Suppose E is the
document blue yellow blue with a length of N = 3 words. There are four possible
bags of three words. One is {yellow yellow yellow}, and its probability according to
the preceding formula is

0.75° 025" 27

P l ll llow} | H]=3!Xx X—=—
t[{yellow yellow yellow}| H] 3 ol o

The other three, with their probabilities, are

Pr[{blue blue blue}| H] = 1
64

Pr[{yellow yellow blue}| H]= %

Pr({yellow blue blue}| H] = 624

E corresponds to the last case (recall that in a bag of words the order is immaterial);
thus, its probability of being generated by the yellowish green document model is
9/64, or 14%. Suppose another class, very bluish green documents (call it H’), has
Prlyellow | H'] = 10% and Pr[blue | H'] = 90%. The probability that E is generated
by this model is 24%.

If these are the only two classes, does that mean that E is in the very bluish green
document class? Not necessarily. Bayes’ rule, given earlier, says that you have to
take into account the prior probability of each hypothesis. If you know that in fact
very bluish green documents are twice as rare as yellowish green ones, this would
be just sufficient to outweigh the 14 to 24% disparity and tip the balance in favor
of the yellowish green class.

The factorials in the probability formula don’t actually need to be computed
because, being the same for every class, they drop out in the normalization process
anyway. However, the formula still involves multiplying together many small prob-
abilities, which soon yields extremely small numbers that cause underflow on large
documents. The problem can be avoided by using logarithms of the probabilities
instead of the probabilities themselves.

In the multinomial Naive Bayes formulation a document’s class is determined
not just by the words that occur in it but also by the number of times they occur. In
general, it performs better than the ordinary Naive Bayes model for document clas-
sification, particularly for large dictionary sizes.

4.3 Divide-and-Conquer: Constructing Decision Trees 99

Discussion

Naive Bayes gives a simple approach, with clear semantics, to representing, using,
and learning probabilistic knowledge. It can achieve impressive results. People often
find that Naive Bayes rivals, and indeed outperforms, more sophisticated classifiers
on many datasets. The moral is, always try the simple things first. Over and over
again people have eventually, after an extended struggle, managed to obtain good
results using sophisticated learning schemes, only to discover later that simple
methods such as 1R and Naive Bayes do just as well—or even better.

There are many datasets for which Naive Bayes does not do well, however, and
it is easy to see why. Because attributes are treated as though they were independent
given the class, the addition of redundant ones skews the learning process. As an
extreme example, if you were to include a new attribute with the same values as
temperature to the weather data, the effect of the femperature attribute would be
multiplied: All of its probabilities would be squared, giving it a great deal more
influence in the decision. If you were to add 10 such attributes, the decisions would
effectively be made on temperature alone. Dependencies between attributes inevi-
tably reduce the power of Naive Bayes to discern what is going on. They can,
however, be ameliorated by using a subset of the attributes in the decision procedure,
making a careful selection of which ones to use. Chapter 7 shows how.

The normal-distribution assumption for numeric attributes is another restriction
on Naive Bayes as we have formulated it here. Many features simply aren’t nor-
mally distributed. However, there is nothing to prevent us from using other
distributions—there is nothing magic about the normal distribution. If you know
that a particular attribute is likely to follow some other distribution, standard esti-
mation procedures for that distribution can be used instead. If you suspect it isn’t
normal but don’t know the actual distribution, there are procedures for “kernel
density estimation” that do not assume any particular distribution for the attribute
values. Another possibility is simply to discretize the data first.

4.3 DIVIDE-AND-CONQUER: CONSTRUCTING
DECISION TREES

The problem of constructing a decision tree can be expressed recursively. First,
select an attribute to place at the root node, and make one branch for each possible
value. This splits up the example set into subsets, one for every value of the attribute.
Now the process can be repeated recursively for each branch, using only those
instances that actually reach the branch. If at any time all instances at a node have
the same classification, stop developing that part of the tree.

The only thing left is how to determine which attribute to split on, given a set of
examples with different classes. Consider (again!) the weather data. There are four
possibilities for each split, and at the top level they produce the trees in Figure 4.2.

100 CHAPTER 4 Algorithms: The Basic Methods

temperature

overcast rainy i cool

yes - yes yes
yes e yes yes yes yes
no . yes yes yes yes
no no no yes yes
yes
no no no no no
no
(a) (b)
high normal false true
yes yes yes
yes yes yes yes
yes yes yes yes
no yes yes yes
no yes yes no
no yes yes no
no no no no
no
(©) d
FIGURE 4.2

Tree stumps for the weather data: (a) outlook, (b) temperature, (c) humidity, and (d) windy.

Which is the best choice? The number of yes and no classes is shown at the leaves.
Any leaf with only one class—yes or no—will not have to be split further, and the
recursive process down that branch will terminate. Because we seek small trees, we
would like this to happen as soon as possible. If we had a measure of the purity of each
node, we could choose the attribute that produces the purest daughter nodes. Take a
moment to look at Figure 4.2 and ponder which attribute you think is the best choice.

The measure of purity that we will use is called the information and is measured
in units called bits. Associated with each node of the tree, it represents the expected
amount of information that would be needed to specify whether a new instance
should be classified yes or no, given that the example reached that node. Unlike the
bits in computer memory, the expected amount of information usually involves frac-
tions of a bit—and is often less than 1! It is calculated based on the number of yes
and no classes at the node. We will look at the details of the calculation shortly, but
first let’s see how it’s used. When evaluating the first tree in Figure 4.2, the number
of yes and no classes at the leaf nodes are [2, 3], [4, 0], and [3, 2], respectively, and
the information values of these nodes are

4.3 Divide-and-Conquer: Constructing Decision Trees 101

info([2, 3]) = 0.971 bits
info([4, 0]) = 0.0 bits
info([3,2]) = 0.971 bits

We calculate the average information value of these, taking into account the
number of instances that go down each branch—five down the first and third and
four down the second:

info([2, 31, [4, 01,3, 2]) = (5/14) X 0.971+ (4/14) x 0+ (5/14) x 0.971
=0.693 bits

This average represents the amount of information that we expect would be nec-
essary to specify the class of a new instance, given the tree structure in Figure 4.2(a).

Before any of the nascent tree structures in Figure 4.2 were created, the training
examples at the root comprised nine yes and five no nodes, corresponding to an
information value of

info([9, 5]) = 0.940 bits
Thus, the tree in Figure 4.2(a) is responsible for an information gain of

gain(outlook) = info([9, 51) — info([2, 31, [4, 01, [3, 2]) = 0.940 — 0.693
=0.247 bits

which can be interpreted as the informational value of creating a branch on the
outlook attribute.

The way forward is clear. We calculate the information gain for each attribute
and split on the one that gains the most information. In the situation that is shown
in Figure 4.2:

* gain(outlook) = 0.247 bits

e gain(temperature) = 0.029 bits
o gain(humidity) = 0.152 bits

e gain(windy) = 0.048 bits

Therefore, we select outlook as the splitting attribute at the root of the tree. Hope-
fully this accords with your intuition as the best one to select. It is the only choice
for which one daughter node is completely pure, and this gives it a considerable
advantage over the other attributes. Humidity is the next best choice because it
produces a larger daughter node that is almost completely pure.

Then we continue, recursively. Figure 4.3 shows the possibilities for a further
branch at the node reached when outlook is sunny. Clearly, a further split on

102 CHAPTER 4 Algorithms: The Basic Methods

sunny

high normal

no
no
no

yes
yes

(@
(b)

no yes
no no
(©)

FIGURE 4.3

Expanded tree stumps for the weather data: (a) temperature, (b) humidity, and (c) windy.

outlook will produce nothing new, so we only consider the other three attributes.
The information gain for each turns out to be

* gain(temperature) = 0.571 bits
o gain(humidity) = 0.971 bits
* gain(windy) = 0.020 bits

Therefore, we select humidity as the splitting attribute at this point. There is no need
to split these nodes any further, so this branch is finished.

Continued application of the same idea leads to the decision tree of Figure 4.4 for
the weather data. Ideally, the process terminates when all leaf nodes are pure—that
is, when they contain instances that all have the same classification. However, it might
not be possible to reach this happy situation because there is nothing to stop the train-
ing set containing two examples with identical sets of attributes but different classes.
Consequently, we stop when the data cannot be split any further. Alternatively, one
could stop if the information gain is zero. This is slightly more conservative because

4.3 Divide-and-Conquer: Constructing Decision Trees 103

high normal false true

no yes yes no

FIGURE 4.4

Decision tree for the weather data.

it is possible to encounter cases where the data can be split into subsets exhibiting
identical class distributions, which would make the information gain zero.

Calculating Information

Now it is time to explain how to calculate the information measure that is used as
the basis for evaluating different splits. We describe the basic idea in this section,
then in the next we examine a correction that is usually made to counter a bias toward
selecting splits on attributes with large numbers of possible values.

Before examining the detailed formula for calculating the amount of information
required to specify the class of an example given that it reaches a tree node with a
certain number of yes’s and no’s, consider first the kind of properties we would
expect this quantity to have

1. When the number of either yes’s or no’s is zero, the information is zero.
2. When the number of yes’s and no’s is equal, the information reaches a
maximum.

Moreover, the measure should be applicable to multiclass situations, not just to two-
class ones.

The information measure relates to the amount of information obtained by
making a decision, and a more subtle property of information can be derived by
considering the nature of decisions. Decisions can be made in a single stage, or they
can be made in several stages, and the amount of information involved is the same
in both cases. For example, the decision involved in

info([2, 3, 4])

can be made in two stages. First decide whether it’s the first case or one of the other
two cases:

info([2, 7])

104 CHAPTER 4 Algorithms: The Basic Methods

and then decide which of the other two cases it is:
info([3, 4])

In some cases the second decision will not need to be made, namely, when the deci-
sion turns out to be the first one. Taking this into account leads to the equation

info([2, 3, 4]) = info([2, 71) + (7/9) x info([3, 4])

Of course, there is nothing special about these particular numbers, and a similar
relationship should hold regardless of the actual values. Thus, we could add a further
criterion to the list above:

3. The information should obey the multistage property that we have illustrated.

Remarkably, it turns out that there is only one function that satisfies all these
properties, and it is known as the information value or entropy:

entropy(pi, pas--., Pn)=—p1logp, — p, logp, ...—p,logp,

The reason for the minus signs is that logarithms of the fractions p,, p», ... , p, are
negative, so the entropy is actually positive. Usually the logarithms are expressed
in base 2, and then the entropy is in units called bits—ijust the usual kind of bits
used with computers.

The arguments p,, p,, ... of the entropy formula are expressed as fractions that
add up to 1, so that, for example,

info([2, 3, 4]) = entropy(2/9, 3/9, 4/9)

Thus, the multistage decision property can be written in general as

q r
entropy(p, g, r) = entropy(p, ¢ +r) + (g +r) X entropy R
q +r q +r

where p + g+ r=1.
Because of the way the log function works, you can calculate the information
measure without having to work out the individual fractions:

info([2, 3, 4]) = —2/9x1og2/9—3/9 x1og3/9—4/9 x log 4/9
=[-2log2-3log3—4log4+9log9]/9

This is the way that the information measure is usually calculated in practice. So
the information value for the first node of Figure 4.2(a) is

info([2, 3]) = —2/5xlog2/5—3/5x log3/5 = 0.971 bits

4.3 Divide-and-Conquer: Constructing Decision Trees

Highly Branching Attributes

When some attributes have a large number of possible values, giving rise to a mul-
tiway branch with many child nodes, a problem arises with the information gain
calculation. The problem can best be appreciated in the extreme case when an attri-
bute has a different value for each instance in the dataset—as, for example, an
identification code attribute might.

Table 4.6 gives the weather data with this extra attribute. Branching on ID code
produces the tree stump in Figure 4.5. The information required to specify the class
given the value of this attribute is

info([0, 1]) + info([0, 1]) + info([1, O]) +...+info([1, O]) + info([0, 1])

which is 0 because each of the 14 terms is 0. This is not surprising: The ID code
attribute identifies the instance, which determines the class without any ambiguity—
just as Table 4.6 shows. Consequently, the information gain of this attribute is just
the information at the root, info([9,5]) = 0.940 bits. This is greater than the informa-
tion gain of any other attribute, and so /D code will inevitably be chosen as the
splitting attribute. But branching on the identification code is no good for predicting
the class of unknown instances and tells nothing about the structure of the decision,
which after all are the twin goals of machine learning.

The overall effect is that the information gain measure tends to prefer attributes
with large numbers of possible values. To compensate for this, a modification of the
measure called the gain ratio is widely used. The gain ratio is derived by taking into
account the number and size of daughter nodes into which an attribute splits the
dataset, disregarding any information about the class. In the situation shown in
Figure 4.5, all counts have a value of 1, so the information value of the split is

info([, 1,..., 1)) =—1/14x log1/14 x 14

because the same fraction, 1/14, appears 14 times. This amounts to log 14, or 3.807
bits, which is a very high value. This is because the information value of a split is

no no yes yes no

FIGURE 4.5

Tree stump for the /D code attribute.

.
105

106

ou
soA
seA
soA
soA
seA

ou
seh

ou
soh
sah
seh

ou

ou

Aeld

ani]
ose)
anJ]
ani]
ose}
ose;
ose;
aniy
ani)
osel
ose;
ose;
enn
as[e)

Apuip

uby
jewJou
by
[ewou
[ewJou
[ewou
ybiy
[ewJou
[ews.ou
[ewJou
uby
ybly
ybiy
ybiy

Aypiwny

pliw

10y
plIw
I
plIw
|000
Pl
|000
|000
|00D
pliW

104

104

104

ainjesadwa]

Aures
1SEOJaNO
1SBOJONO

Auuns
Aurel
Auuns
Auuns
1SBOJONO

Aurel

Aurel

Aures
1SBOJaNO

Auuns
Auuns

Yoopno

TQ OV O DL — — x — & <

apod qi

S9P0Y UOIIedNIUaP| YIM eleq Jaylesp 9t d|qel

4.3 Divide-and-Conquer: Constructing Decision Trees

the number of bits needed to determine to which branch each instance is assigned,
and the more branches there are, the greater this value. The gain ratio is calculated
by dividing the original information gain, 0.940 in this case, by the information value
of the attribute, 3.807—yielding a gain ratio value of 0.247 for the ID code
attribute.

Returning to the tree stumps for the weather data in Figure 4.2, outlook splits
the dataset into three subsets of size 5, 4, and 5, and thus has an intrinsic information
value of

info([5, 4, 5]) =1.577

without paying any attention to the classes involved in the subsets. As we have seen,
this intrinsic information value is greater for a more highly branching attribute such
as the hypothesized ID code. Again, we can correct the information gain by dividing
by the intrinsic information value to get the gain ratio.

The results of these calculations for the tree stumps of Figure 4.2 are summarized
in Table 4.7. Outlook still comes out on top, but humidity is now a much closer
contender because it splits the data into two subsets instead of three. In this particular
example, the hypothetical ID code attribute, with a gain ratio of 0.247, would still
be preferred to any of these four. However, its advantage is greatly reduced. In
practical implementations, we can use an ad hoc test to guard against splitting on
such a useless attribute.

Unfortunately, in some situations the gain ratio modification overcompensates
and can lead to preferring an attribute just because its intrinsic information is
much lower than for the other attributes. A standard fix is to choose the attri-
bute that maximizes the gain ratio, provided that the information gain for that
attribute is at least as great as the average information gain for all the attributes
examined.

Discussion

The divide-and-conquer approach to decision tree induction, sometimes called fop-
down induction of decision trees, was developed and refined over many years by
J. Ross Quinlan at the University of Sydney in Australia. Although others have

107

Table 4.7 Gain Ratio Calculations for Figure 4.2 Tree Stumps

Outlook Temperature Humidity Windy

info:

0.693 info: 0.911 info: 0.788 info:

gain: 0.940-0.693 0.247 gain: 0.940-0.911 0.029 gain: 0.940-0.788 0.152 gain: 0.940-0.892
split info: info([5,4,5]) 1.577 split info: info([4,6,4]) 1.362 split info: info([7,7]) 1.000 split info: info([8,6])
gain ratio: 0.247/1.577 0.156 gain ratio: 0.029/1.557 0.019 gain ratio: 0.152/1 0.152 gain ratio: 0.048/0.985

0.892
0.048
0.985
0.049

108 CHAPTER 4 Algorithms: The Basic Methods

worked on similar methods, Quinlan’s research has always been at the very forefront
of decision tree induction. The scheme that has been described using the information
gain criterion is essentially the same as one known as ID3. The use of the gain ratio
was one of many improvements that were made to ID3 over several years; Quinlan
described it as robust under a wide variety of circumstances. Although a practical
solution, it sacrifices some of the elegance and clean theoretical motivation of the
information gain criterion.

A series of improvements to ID3 culminated in a practical and influential system
for decision tree induction called C4.5. These improvements include methods for
dealing with numeric attributes, missing values, noisy data, and generating rules
from trees, and they are described in Section 6.1.

4.4 COVERING ALGORITHMS: CONSTRUCTING RULES

As we have seen, decision tree algorithms are based on a divide-and-conquer
approach to the classification problem. They work top-down, seeking at each stage
an attribute to split on that best separates the classes, and then recursively processing
the subproblems that result from the split. This strategy generates a decision tree,
which can if necessary be converted into a set of classification rules—although if it
is to produce effective rules, the conversion is not trivial.

An alternative approach is to take each class in turn and seek a way of covering
all instances in it, at the same time excluding instances not in the class. This is called
a covering approach because at each stage you identify a rule that “covers” some of
the instances. By its very nature, this covering approach leads to a set of rules rather
than to a decision tree.

The covering method can readily be visualized in a two-dimensional space of
instances as shown in Figure 4.6(a). We first make a rule covering the a’s. For the
first test in the rule, split the space vertically as shown in the center picture. This
gives the beginnings of a rule:

If x > 1.2 then class = a

However, the rule covers many b’s as well as a’s, so a new test is added to it by
further splitting the space horizontally as shown in the third diagram:

If x > 1.2 and v > 2.6 then class = a

This gives a rule covering all but one of the a’s. It’s probably appropriate to leave
it at that, but if it were felt necessary to cover the final a, another rule would be
needed, perhaps

If x > 1.4 and yv < 2.4 then class = a

The same procedure leads to two rules covering the b’s:

If x £ 1.2 then class = b
If x > 1.2 and v £ 2.6 then class = b

4.4 Covering Algorithms: Constructing Rules 109

y y
X
no yes
DD
no yes
b a
(b)
FIGURE 4.6

Covering algorithm: (a) covering the instances, and (b) decision tree for the same problem.

Again, one a is erroneously covered by these rules. If it were necessary to exclude
it, more tests would have to be added to the second rule, and additional rules would
be needed to cover the b’s that these new tests exclude.

Rules versus Trees

A top-down divide-and-conquer algorithm operates on the same data in a manner
that is, at least superficially, quite similar to a covering algorithm. It might first
split the dataset using the x attribute, and would probably end up splitting it at the
same place, x = 1.2. However, whereas the covering algorithm is concerned only
with covering a single class, the division would take both classes into account
because divide-and-conquer algorithms create a single concept description that
applies to all classes. The second split might also be at the same place, y = 2.6,
leading to the decision tree in Figure 4.6(b). This tree corresponds exactly to the
set of rules, and in this case there is no difference in effect between the covering
and the divide-and-conquer algorithms.

But in many situations there is a difference between rules and trees in terms of
the perspicuity of the representation. For example, when we described the replicated
subtree problem in Section 3.4, we noted that rules can be symmetric whereas trees
must select one attribute to split on first, and this can lead to trees that are much

110 CHAPTER 4 Algorithms: The Basic Methods

larger than an equivalent set of rules. Another difference is that, in the multiclass
case, a decision tree split takes all classes into account in trying to maximize the
purity of the split, whereas the rule-generating method concentrates on one class at
a time, disregarding what happens to the other classes.

A Simple Covering Algorithm

Covering algorithms operate by adding tests to the rule that is under construction,
always striving to create a rule with maximum accuracy. In contrast, divide-and-con-
quer algorithms operate by adding tests to the tree that is under construction, always
striving to maximize the separation between the classes. Each of these involves
finding an attribute to split on. But the criterion for the best attribute is different in
each case. Whereas divide-and-conquer algorithms such as ID3 choose an attribute to
maximize the information gain, the covering algorithm we will describe chooses an
attribute—value pair to maximize the probability of the desired classification.

Figure 4.7 gives a picture of the situation, showing the space containing all the
instances, a partially constructed rule, and the same rule after a new term has been
added. The new term restricts the coverage of the rule: The idea is to include as many
instances of the desired class as possible and exclude as many instances of other
classes as possible. Suppose the new rule will cover a total of ¢ instances, of which p
are positive examples of the class and ¢ — p are in other classes—that is, they are
errors made by the rule. Then choose the new term to maximize the ratio p/r.

An example will help. For a change, we use the contact lens problem of Table
1.1 (page 6). We will form rules that cover each of the three classes—hard, soft, and
none—in turn. To begin, we seek a rule:

If ? then recommendation = hard

For the unknown term ?, we have nine choices:

age = young 2/8

age = pre-presbyopic 1/8

age = presbyopic 1/8

spectacle prescription = myope 3/12
Space of

/ examples

Rule so far
Rule after
adding new
term

FIGURE 4.7

The instance space during operation of a covering algorithm.

4.4 Covering Algorithms: Constructing Rules 111

spectacle prescription = hypermetrope 1/12
astigmatism = no 0/12
astigmatism = yes 4/12
tear production rate = reduced 0/12
tear production rate = normal 4/12

The numbers on the right show the fraction of “correct” instances in the set
singled out by that choice. In this case, “correct” means that the recommendation
is hard. For instance, age = young selects 8 instances, 2 of which recommend
hard contact lenses, so the first fraction is 2/8. (To follow this, you will need to
look back at the contact lens data in Table 1.1 (page 6) and count up the entries
in the table.)

We select the largest fraction, 4/12, arbitrarily choosing between the seventh and
the last choice in the list, and create the rule:

If astigmatism = yes then recommendation = hard

This rule is quite inaccurate, getting only 4 instances correct out of the 12 that it
covers, shown in Table 4.8. So we refine it further:

If astigmatism = yes and ? then recommendation = hard

Considering the possibilities for the unknown term, 2 yields the following seven

choices:

age = young 2/4
age = pre-presbyopic 1/4
age = presbyopic 1/4
spectacle prescription = myope 3/6
spectacle prescription = hypermetrope 1/6
tear production rate = reduced 0/6
tear production rate = normal 4/6

(Again, count the entries in Table 4.8.) The last is a clear winner, getting 4 instances
correct out of the 6 that it covers, and it corresponds to the rule

If astigmatism = yes and tear production rate = normal
then recommendation = hard

Should we stop here? Perhaps. But let’s say we are going for exact rules, no
matter how complex they become. Table 4.9 shows the cases that are covered by
the rule so far. The possibilities for the next term are now

age = young 2/2
age = pre-presbyopic 1/2
age = presbyopic 1/2
spectacle prescription = myope 3/3
spectacle prescription = hypermetrope 1/3

It is necessary for us to choose between the first and fourth. So far we have treated
the fractions numerically, but although these two are equal (both evaluate to 1), they
have different coverage: One selects just two correct instances and the other selects

112

Quou
Quou
prey
Quou
Quou
QuUou
prey
Quou
piey
Quou
piey
Quou

sasua
papuawiwosdy

[ewuou
paonpal
[ewuou
paonpal
[ewuou
paonpal
[ew.ou
paonpal
[ew.ou
paonpal
[ew.ou
paonpal

ajey
uononpoud Jeaj

sok
sah
sok
sah
sak
sok
sah
sak
sah
sak
sah
sak

wisnewbnsy

adosisuwiiadAy
adosswiadAy
adoAw
adoAw
adossuwiadAy
adoJjewadAy
adoAw
adoAw
adossuwiadAy
adoseuiadAy
adoAw
adoAw

uonduosaid
9Joe)oads

oidoAgsesd
oldoAgseud
oldoAgseud
oldoAgsesd
oldoAgseud-aid
oldoAgseid-aid
oldoAgselid-aid
oldoAgseud-aid
BunoA

BunoA

BunoA

BunoA

aby

sof = ws/jewsiisy YoIlupm 4o} eyeq Sus 30ejuo) Jo Ued g a|qel

113

Quou

paey

Quou

paey

paey

paey

Sosu9a]
papuswwosay

lewJou
[ewuou
lewJou
[ewou
fewJou
lewJou

ojey
uononpo.d Jeaj

sah
sok
sok
sok
soh
sah

wisnewbnsy

adosswiadAy
adoAw
adoJjewadAy
adoAw
adoseuwiiadAy
adoAw

uonduosaid
9joeyoads

oldoAgseud
oidoAgseud
oldoAgsaid-aid
oldoAgseld-aid
BunoA

BunoA

aby

Jewiou = 8jel UOI3oNPOI4 Jea] pue Saf = wsijewwSIisy YdIUm 40} eleQ susT 10BIU0) JO Hed &' 91qel

114 CHAPTER 4 Algorithms: The Basic Methods

three. In the event of a tie, we choose the rule with the greater coverage, giving the

final rule:
If astigmatism = yes and tear production rate = normal
and spectacle prescription = myope then recommendation = hard

This is indeed one of the rules given for the contact lens problem. But it only
covers three out of the four hard recommendations. So we delete these three from
the set of instances and start again, looking for another rule of the form:

If ? then recommendation = hard

Following the same process, we will eventually find that age = young is the best
choice for the first term. Its coverage is one out of 7 the reason for the 7 is that 3
instances have been removed from the original set, leaving 21 instances altogether.
The best choice for the second term is astigmatism = yes, selecting 1/3 (actually, this
is a tie); fear production rate = normal is the best for the third, selecting 1/1.

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

This rule actually covers two of the original set of instances, one of which is covered
by the previous rule—but that’s all right because the recommendation is the same
for each rule.

Now that all the hard-lens cases are covered, the next step is to proceed with the
soft-lens ones in just the same way. Finally, rules are generated for the none case—
unless we are seeking a rule set with a default rule, in which case explicit rules for
the final outcome are unnecessary.

What we have just described is the PRISM method for constructing rules. It
generates only correct or “perfect” rules. It measures the success of a rule by the
accuracy formula p/t. Any rule with accuracy less than 100% is “incorrect” in that

For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A = v to the LHS of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)
Add A = v to R
Remove the instances covered by R from E

FIGURE 4.8

Pseudocode for a basic rule learner.

4.4 Covering Algorithms: Constructing Rules 115

it assigns cases to the class in question that actually do not have that class. PRISM
continues adding clauses to each rule until it is perfect—its accuracy is 100%. Figure
4.8 gives a summary of the algorithm. The outer loop iterates over the classes, gen-
erating rules for each class in turn. Note that we reinitialize to the full set of examples
each time around. Then we create rules for that class and remove the examples from
the set until there are none of that class left. Whenever we create a rule, we start
with an empty rule (which covers all the examples), and then restrict it by adding
tests until it covers only examples of the desired class. At each stage we choose the
most promising test—that is, the one that maximizes the accuracy of the rule. Finally,
we break ties by selecting the test with greatest coverage.

Rules versus Decision Lists

Consider the rules produced for a particular class—that is, the algorithm in Figure 4.8
with the outer loop removed. It seems clear from the way that these rules are produced
that they are intended to be interpreted in order—that is, as a decision list—testing
the rules in turn until one applies and then using that. This is because the instances
covered by a new rule are removed from the instance set as soon as the rule is com-
pleted (in the last line of the code in Figure 4.8): Thus, subsequent rules are designed
for instances that are not covered by the rule. However, although it appears that we
are supposed to check the rules in turn, we do not have to do so. Consider that any
subsequent rules generated for this class will have the same effect—they all predict
the same class. This means that it does not matter what order they are executed in:
Either a rule will be found that covers this instance, in which case the class in question
is predicted, or no such rule is found, in which case the class is not predicted.

Now return to the overall algorithm. Each class is considered in turn, and rules
are generated that distinguish instances in that class from the others. No ordering is
implied between the rules for one class and those for another. Consequently, the
rules that are produced can be executed in any order.

As described in Section 3.4, order-independent rules seem to provide more
modularity by acting as independent nuggets of “knowledge,” but they suffer from
the disadvantage that it is not clear what to do when conflicting rules apply. With
rules generated in this way, a test example may receive multiple classifications—that
is, it may satisfy rules that apply to different classes. Other test examples may receive
no classification at all. A simple strategy to force a decision in ambiguous cases is
to choose, from the classifications that are predicted, the one with the most training
examples or, if no classification is predicted, to choose the category with the most
training examples overall. These difficulties do not occur with decision lists because
they are meant to be interpreted in order and execution stops as soon as one rule
applies: The addition of a default rule at the end ensures that any test instance
receives a classification. It is possible to generate good decision lists for the multi-
class case using a slightly different method, as we will see in Section 6.2.

Methods, such as PRISM, can be described as separate-and-conquer algorithms:
You identify a rule that covers many instances in the class (and excludes ones not in
the class), separate out the covered instances because they are already taken care of

116 CHAPTER 4 Algorithms: The Basic Methods

by the rule, and continue with the process on those that remain. This contrasts with
the divide-and-conquer approach of decision trees. The “separate” step results in an
efficient method because the instance set continually shrinks as the operation
proceeds.

4.5 MINING ASSOCIATION RULES

Association rules are like classification rules. You could find them in the same way,
by executing a divide-and-conquer rule-induction procedure for each possible
expression that could occur on the right side of the rule. However, not only might
any attribute occur on the right side with any possible value, but a single association
rule often predicts the value of more than one attribute. To find such rules, you would
have to execute the rule-induction procedure once for every possible combination
of attributes, with every possible combination of values, on the right side. That
would result in an enormous number of association rules, which would then have
to be pruned down on the basis of their coverage (the number of instances that they
predict correctly) and their accuracy (the same number expressed as a proportion of
the number of instances to which the rule applies). This approach is quite infeasible.
(Note that, as we mentioned in Section 3.4, what we are calling coverage is often
called support and what we are calling accuracy is often called confidence.)

Instead, we capitalize on the fact that we are only interested in association rules
with high coverage. We ignore, for the moment, the distinction between the left
and right sides of a rule and seek combinations of attribute—value pairs that have
a prespecified minimum coverage. These are called item sets: An attribute—value
pair is an ifem. The terminology derives from market basket analysis, in which the
items are articles in your shopping cart and the supermarket manager is looking
for associations among these purchases.

Item Sets

The first column of Table 4.10 shows the individual items for the weather data in
Table 1.2 (page 10), with the number of times each item appears in the dataset given
at the right. These are the one-item sets. The next step is to generate the two-item
sets by making pairs of the one-item sets. Of course, there is no point in generating
a set containing two different values of the same attribute (such as outlook = sunny
and outlook = overcast) because that cannot occur in any actual instance.

Assume that we seek association rules with minimum coverage 2; thus, we
discard any item sets that cover fewer than two instances. This leaves 47 two-item
sets, some of which are shown in the second column along with the number of times
they appear. The next step is to generate the three-item sets, of which 39 have a
coverage of 2 or greater. There are six four-item sets, and no five-item sets—for this
data, a five-item set with coverage 2 or greater could only correspond to a repeated
instance. The first rows of the table, for example, show that there are five days when
outlook = sunny, two of which have temperature = hot, and, in fact, on both of those
days humidity = high and play = no as well.

117

panuijuo)

soh = Aeid

as[e} = Apuim
[fewlou = Aypiuuny
|000 = ainjessduusl
seh = Aeid

as[e) = Apuim
fewlou = Aypiuny
Aurel = 30oo[Ino
sok = Aeid

as[e} = Apuim

pliw = ainjesedwsl
Aurel = 3oojno
seh = Aeid

as[e) = Apuim

j0y = ainjesadway
1SEQJBNO = XOO[INO

ou = Agd

as[e} = Apuim
ybly = Anpiuny
Auuns = »oono
ou = Aeld

uby = Aupiuny

10y = ainjesedwal
Auuns = »oono

S19S Wid}y|-4no4

seA = Agid

10y = ainjessdwsl
}SBOJISAO = Y00[INO
asfe} = Apuim

j0y = ainjeseduisl
1SEOJONO = HOO[INO

ou = Aeid
asle} = Apuim
Auuns = »oono

ou = Aed
ybiy = Apiwuny
Auuns = »oono

as[e} = Apuim
uby = Aupiuny
Auuns = »oono

soh = Aeid
fewlou = Aypiuny
Auuns = »o0ono

ou = Aed
10y = aineledwial
Auuns = »oono

ubly = Aypruny
10y = ainjesedwa)
Auuns = »oojno

s}os way|-9a4y L

ou = Ae/d
Auuns = »00jIN0

sok = Aeid
Auuns = »oono

as[e} = Apuim
Auuns = »oojno

anJ} = Apuim
Auuns = »oojno

ybly = Aupiuny
Auuns = »oono

[ewJou = Aypiuny
Auuns = »oono

104 = ainjeseduwsl
Auuns = yoopno

pliw = ainyesadwa)
Auuns = »oojno

S}9S Wd}|-oM |

ybiy = Aypiuny

[ewou = Aypiwuny

10y = ainjesadulis)

pliw = ainyesadwsy

|000 = ainjeladuis)

Aurel = yo00j1no

1SEJJBA0 = Y0O0INO

Auuns = »00[1no

S19S Wid)-auQ

Jajealn) Jo z 98esan0) UHM eleq Jaylesp Joj S19S Wel 0T dlqel

118

S}9S wWa}|-ino4

ou = Aeid

asle} = Apuim
ubly = Apiwuny
seA = Aegid

as[e} = Apuim
lewlou = Aypiuuny

[ewou = Aypiuny
|000 = ainjesedwal
Aures = 3oojno
soA = Agid

as[e} = Apuim
1SBOJSAO = X00[INO
seA = Agid

anJy = Apuim
}SBOJISAO = Y00[INO
seA = Aegd

ybly = Apiwuny
}SBOJBAO = HOO|INO
soh = Aeid

[fewJou = Aypiuny
1SBOJBAO = Y00INO

S19S Wd)-934yL

ou = Aed
as[e} = Apuim

anJ1 = Apuim
ubly = Apiwuny

seh = Aeid
[ewlou = Aypiuny

asle} = Apuim
[eulou = Aypiuuny

as[e} = Apuim
1SBOJON0 = YOO|INO

anJ} = Apuim
1SBOJBAO = Y00[INO

ybiy = Aupiuny
1SBOJOAO = YOO|INO

fewlou = Aypiuny
}SBOJSNO = YOO|INO

10y = ainjesedwa)
1SBOJBAO = Y0O0INO

S}og Wa}|-oM]

ou = Aegd

seh = Aeid

as[e} = Apuim

anJ = Apuim

S19S Way-auQ

(panuiju0y) J93ealn) Jo ageiono) UM eleq Jayieap) Jo) S19S Wall 0T 21qel

yA4

oy

6¢

8¢

el

ch

HE

Ok

4.5 Mining Association Rules 119

Association Rules

Shortly we will explain how to generate these item sets efficiently. But first let us
finish the story. Once all item sets with the required coverage have been generated,
the next step is to turn each into a rule, or a set of rules, with at least the specified
minimum accuracy. Some item sets will produce more than one rule; others will
produce none. For example, there is one three-item set with a coverage of 4 (row
38 of Table 4.10):

humidity = normal, windy = false, play = yes

This set leads to seven potential rules:

If humidity = normal and windy = false then play = yes 4/4
If humidity = normal and play = yes then windy = false 4/6
If windy = false and play = yes then humidity = normal 4/6
If humidity = normal then windy = false and play = yes 4/17
If windy = false then humidity = normal and play = yes 4/8
If play = yes then humidity = normal and windy = false 4/9

If - then humidity = normal and windy = false and play = yes 4/14

The figures at the right in this list show the number of instances for which all
three conditions are true—that is, the coverage—divided by the number of instances
for which the conditions in the antecedent are true. Interpreted as a fraction,
they represent the proportion of instances on which the rule is correct—that is,
its accuracy. Assuming that the minimum specified accuracy is 100%, only the
first of these rules will make it into the final rule set. The denominators of the
fractions are readily obtained by looking up the antecedent expression in Table
4.10 (although some are not shown in the table). The final rule above has no
conditions in the antecedent, and its denominator is the total number of instances
in the dataset.

Table 4.11 shows the final rule set for the weather data, with minimum cover-
age 2 and minimum accuracy 100%, sorted by coverage. There are 58 rules, 3
with coverage 4, 5 with coverage 3, and 50 with coverage 2. Only 7 have two
conditions in the consequent, and none has more than two. The first rule comes
from the item set described previously. Sometimes several rules arise from the
same item set. For example, rules 9, 10, and 11 all arise from the four-item set in
row 6 of Table 4.10:

temperature = cool, humidity = normal, windy = false, play = yes

which has coverage 2. Three subsets of this item set also have coverage 2:

temperature = cool, windy = false
temperature = cool, humidity = normal, windy = false
temperature = cool, windy = false, play = vyes

and these lead to rules 9, 10, and 11, all of which are 100% accurate (on the training
data).

120 CHAPTER 4 Algorithms: The Basic Methods

Table 4.11 Association Rules for Weather Data

10

1

12

13

14

15

16

17

18

Association Rule

humidity = normal

windy = false = play = yes
temperature = cool =

humidity = normal

outlook = overcast = play = yes
temperature = cool

play = yes = humidity = normal
outlook = rainy

windy = false = play = yes
outlook = rainy

play = yes = windy = false
outlook = sunny

humidity = high = play = no
outlook = sunny

play = no = humidity = high
temperature = cool

windy = false = humidity = normal
play = yes

temperature = cool

humidity = normal

windy = false = play = yes
temperature = cool

windy = false

play = yes = humidity = normal
outlook = rainy

humidity = normal

windy = false = play = yes
outlook = rainy

humidity = normal

play = yes = windy = false
outlook = rainy

temperature = mild

windy = false = play = yes
outlook = rainy

temperature = mild

play = yes = windy = false
temperature = mild

windy = false

play = yes = outlook = rainy
outlook = overcast

temperature = hot = windy = false
play = yes

outlook = overcast

windy = false = temperature = hot
play = yes

Coverage

4

~

Accuracy
100%

100%

100%
100%

100%
100%
100%
100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

4.5 Mining Association Rules

121

Table 4.11 Continued

19
20
21
22
23
24
25
26
27

28

29
30

31

58

Association Rule

temperature = hot

play = yes = outlook = overcast
windy = false

outlook = overcast
temperature = hot

windy = false = play = yes
outlook = overcast
temperature = hot

play = yes = windy = false
outlook = overcast

windy = false

play = yes = temperature = hot
temperature = hot

windy = false

play = yes = outlook = overcast
windy = false

play = no = outlook = sunny
humidity = high

outlook = sunny

humidity = high

windy = false = play = no
outlook = sunny

windy = false

play = no = humidity = high
humidity = high

windy = false

play = no = outlook = sunny
outlook = sunny

temperature = hot =
humidity = high

play = no

temperature = hot

play = no = outlook = sunny
humidity = high

outlook = sunny

temperature = hot

humidity = high = play = no
outlook = sunny

temperature = hot

play = no = humidity = high

outlook = sunny
temperature = hot =
humidity = high

Coverage

2

Accuracy

100%
100%
100%
100%
100%
100%
100%
100%
100%

100%

100%
100%

100%

100%

122

CHAPTER 4 Algorithms: The Basic Methods

Generating Rules Efficiently

We now consider in more detail an algorithm for producing association rules with
specified minimum coverage and accuracy. There are two stages: generating item
sets with the specified minimum coverage, and from each item set determining the
rules that have the specified minimum accuracy.

The first stage proceeds by generating all one-item sets with the given minimum
coverage (the first column of Table 4.10) and then using this to generate the two-item
sets (second column), three-item sets (third column), and so on. Each operation
involves a pass through the dataset to count the items in each set, and after the pass
the surviving item sets are stored in a hash table—a standard data structure that
allows elements stored in it to be found very quickly. From the one-item sets, can-
didate two-item sets are generated, and then a pass is made through the dataset,
counting the coverage of each two-item set; at the end the candidate sets with less
than minimum coverage are removed from the table. The candidate two-item sets
are simply all of the one-item sets taken in pairs, because a two-item set cannot have
the minimum coverage unless both its constituent one-item sets have the minimum
coverage, too. This applies in general: A three-item set can only have the minimum
coverage if all three of its two-item subsets have minimum coverage as well, and
similarly for four-item sets.

An example will help to explain how candidate item sets are generated. Suppose
there are five three-item sets—(A B C), (AB D), (ACD), (ACE), and (B C D)—
where, for example, A is a feature such as outlook = sunny. The union of the first
two, (A B C D), is a candidate four-item set because its other three-item subsets (A
C D) and (B C D) have greater than minimum coverage. If the three-item sets are
sorted into lexical order, as they are in this list, then we need only consider pairs
with the same first two members. For example, we do not consider (A C D) and (B
C D) because (A B C D) can also be generated from (A B C) and (A B D), and if
these two are not candidate three-item sets, then (A B C D) cannot be a candidate
four-item set. This leaves the pairs (A B C) and (A B D), which we have already
explained, and (A C D) and (A C E). This second pair leads to the set (A C D E)
whose three-item subsets do not all have the minimum coverage, so it is discarded.
The hash table assists with this check: We simply remove each item from the set in
turn and check that the remaining three-item set is indeed present in the hash table.
Thus, in this example there is only one candidate four-item set, (A B C D). Whether
or not it actually has minimum coverage can only be determined by checking the
instances in the dataset.

The second stage of the procedure takes each item set and generates rules from
it, checking that they have the specified minimum accuracy. If only rules with a
single test on the right side were sought, it would be simply a matter of considering
each condition in turn as the consequent of the rule, deleting it from the item set,
and dividing the coverage of the entire item set by the coverage of the resulting
subset—obtained from the hash table—to yield the accuracy of the corresponding
rule. Given that we are also interested in association rules with multiple tests in the

4.5 Mining Association Rules

consequent, it looks like we have to evaluate the effect of placing each subset of the
item set on the right side, leaving the remainder of the set as the antecedent.

This brute-force method will be excessively computation intensive unless item
sets are small, because the number of possible subsets grows exponentially with the
size of the item set. However, there is a better way. We observed when describing
association rules in Section 3.4 that if the double-consequent rule

If windy = false and play = no
then outlook = sunny and humidity = high

holds with a given minimum coverage and accuracy, then both single-consequent
rules formed from the same item set must also hold:

If humidity = high and windy = false and play = no
then outlook = sunny

If outlook = sunny and windy = false and play = no
then humidity = high

Conversely, if one or other of the single-consequent rules does not hold, there is
no point in considering the double-consequent one. This gives a way of building up
from single-consequent rules to candidate double-consequent ones, from double-
consequent rules to candidate triple-consequent ones, and so on. Of course, each
candidate rule must be checked against the hash table to see if it really does have
more than the specified minimum accuracy. But this generally involves checking far
fewer rules than the brute-force method. It is interesting that this way of building
up candidate (n + 1)-consequent rules from actual n-consequent ones is really just
the same as building up candidate (n + 1)-item sets from actual n-item sets, described
earlier.

Discussion

Association rules are often sought for very large datasets, and efficient algorithms
are highly valued. The method we have described makes one pass through the
dataset for each different size of item set. Sometimes the dataset is too large to
read in to main memory and must be kept on disk; then it may be worth reducing
the number of passes by checking item sets of two consecutive sizes at the same
time. For example, once sets with two items have been generated, all sets of three
items could be generated from them before going through the instance set to count
the actual number of items in the sets. More three-item sets than necessary would
be considered, but the number of passes through the entire dataset would be reduced.

In practice, the amount of computation needed to generate association rules
depends critically on the minimum coverage specified. The accuracy has less influ-
ence because it does not affect the number of passes that must be made through the
dataset. In many situations we would like to obtain a certain number of rules—say
50—with the greatest possible coverage at a prespecified minimum accuracy level.
One way to do this is to begin by specifying the coverage to be rather high and to

.
123

124 CHAPTER 4 Algorithms: The Basic Methods

then successively reduce it, reexecuting the entire rule-finding algorithm for each
of the coverage values and repeating until the desired number of rules has been
generated.

The tabular input format that we use throughout this book, and in particular the
standard ARFF format based on it, is very inefficient for many association-rule
problems. Association rules are often used in situations where attributes are binary—
either present or absent—and most of the attribute values associated with a given
instance are absent. This is a case for the sparse data representation described in
Section 2.4; the same algorithm for finding association rules applies.

4.6 LINEAR MODELS

The methods we have been looking at for decision trees and rules work most natu-
rally with nominal attributes. They can be extended to numeric attributes either by
incorporating numeric-value tests directly into the decision tree or rule-induction
scheme, or by prediscretizing numeric attributes into nominal ones. We will see how
in Chapters 6 and 7, respectively. However, there are methods that work most natu-
rally with numeric attributes, namely the linear models introduced in Section 3.2;
we examine them in more detail here. They can form components of more complex
learning methods, which we will investigate later.

Numeric Prediction: Linear Regression

When the outcome, or class, is numeric, and all the attributes are numeric, linear
regression is a natural technique to consider. This is a staple method in statistics.
The idea is to express the class as a linear combination of the attributes, with pre-
determined weights:

x=W0+W1a1+W2a2 +...+Wkak

where x is the class; a,, a,, ..., a; are the attribute values; and w,, wy, ..., w, are
weights.

The weights are calculated from the training data. Here the notation gets a little heavy,
because we need a way of expressing the attribute values for each training instance. The
first instance will have a class, say XV, and attribute values &V, &V, ..., a'", where the
superscript denotes that it is the first example. Moreover, it is notationally convenient to
assume an extra attribute a, with a value that is always 1.

The predicted value for the first instance’s class can be written as

k
woae” + wia® + w3,V + .+ wia® =Y wa
=0

This is the predicted, not the actual, value for the class. Of interest is the difference
between the predicted and actual values. The method of linear regression is to choose the

4.6 Linear Models 125

coefficients w,—there are k + 1 of them—to minimize the sum of the squares of these
differences over all the training instances. Suppose there are n training instances; denote
the fth one with a superscript (/). Then the sum of the squares of the differences is

n k 2

XD N g
S[x-wer]
where the expression inside the parentheses is the difference between the ith instance’s
actual class and its predicted class. This sum of squares is what we have to minimize by
choosing the coefficients appropriately.

This is all starting to look rather formidable. However, the minimization technique is
straightforward if you have the appropriate math background. Suffice it to say that given
enough examples—roughly speaking, more examples than attributes—choosing weights to
minimize the sum of the squared differences is really not difficult. It does involve a matrix
inversion operation, but this is readily available as prepackaged software.

Once the math has been accomplished, the result is a set of numeric weights,
based on the training data, which can be used to predict the class of new instances.
We saw an example of this when looking at the CPU performance data, and the
actual numeric weights are given in Figure 3.4(a) (page 68). This formula can be
used to predict the CPU performance of new test instances.

Linear regression is an excellent, simple method for numeric prediction, and it
has been widely used in statistical applications for decades. Of course, linear models
suffer from the disadvantage of, well, linearity. If the data exhibits a nonlinear
dependency, the best-fitting straight line will be found, where “best” is interpreted
as the least mean-squared difference. This line may not fit very well. However, linear
models serve well as building blocks for more complex learning methods.

Linear Classification: Logistic Regression

Linear regression can easily be used for classification in domains with numeric
attributes. Indeed, we can use any regression technique, whether linear or nonlinear,
for classification. The trick is to perform a regression for each class, setting the
output equal to 1 for training instances that belong to the class and 0 for those that
do not. The result is a linear expression for the class. Then, given a test example of
unknown class, calculate the value of each linear expression and choose the one that
is largest. This scheme is sometimes called multiresponse linear regression.

One way of looking at multiresponse linear regression is to imagine that it
approximates a numeric membership function for each class. The membership func-
tion is 1 for instances that belong to that class and O for other instances. Given a
new instance, we calculate its membership for each class and select the biggest.

Multiresponse linear regression often yields good results in practice. However,
it has two drawbacks. First, the membership values it produces are not proper prob-
abilities because they can fall outside the range O to 1. Second, least-squares regres-
sion assumes that the errors are not only statistically independent but are also

126 CHAPTER 4 Algorithms: The Basic Methods

normally distributed with the same standard deviation, an assumption that is bla-
tently violated when the method is applied to classification problems because the
observations only ever take on the values O and 1.

A related statistical technique called logistic regression does not suffer from these
problems. Instead of approximating the O and 1 values directly, thereby risking
illegitimate probability values when the target is overshot, logistic regression builds
a linear model based on a transformed target variable.

Suppose first that there are only two classes. Logistic regression replaces the original
target variable

Prllla, a, ..., al
which cannot be approximated accurately using a linear function, by
log[Pr(lla, as,...,aJ/A—=Prllla, a,,..., a]l

The resulting values are no longer constrained to the interval from O to 1 but can lie
anywhere between negative infinity and positive infinity. Figure 4.9(a) plots the
transformation function, which is often called the logit transformation.

The transformed variable is approximated using a linear function just like the ones
generated by linear regression. The resulting model is

Prillay, ay, ..., a] =1/(1L+exp(-wy —wia, —...—w,a,))

with weights w. Figure 4.9(b) shows an example of this function in one dimension, with
two weights wp = -1.25 and w; = 0.5.

Just as in linear regression, weights must be found that fit the training data well.
Linear regression measures goodness of fit using the squared error. In logistic regression
the log-likelihood of the model is used instead. This is given by

2 (1-xMlogl-Pri11a®, a?,...,aPD) + x7log(Pr(l1aY, a2, ..., a*1)
i=1

where the x” are either O or 1.

The weights w; need to be chosen to maximize the log-likelihood. There are several
methods for solving this maximization problem. A simple one is to iteratively solve a
sequence of weighted least-squares regression problems until the log-likelihood converges
to a maximum, which usually happens in a few iterations.

To generalize logistic regression to several classes, one possibility is to proceed in the
way described above for multiresponse linear regression by performing logistic regression
independently for each class. Unfortunately, the resulting probability estimates will not
sum to 1. To obtain proper probabilities it is necessary to couple the individual models for
each class. This yields a joint optimization problem, and there are efficient solution
methods for this.

The use of linear functions for classification can easily be visualized in instance
space. The decision boundary for two-class logistic regression lies where the predic-
tion probability is 0.5—that is:

Pr(lla;, a,,..., a1 =1/(1+exp(—wy —wia; —...— wiay) = 0.5

4.6 Linear Models 127

5

4

3

2

1

0
-1
-2
-3
-4
-5

0 0.2 0.4 0.6 0.8 1 -10 -5 0 5 10
(@) (b)

FIGURE 4.9

Logistic regression: (a) the logit transformation and (b) example logistic regression function.

This occurs when
_WO _Wlal _..._Wkak =O

Because this is a linear equality in the attribute values, the boundary is a plane, or
hyperplane, in instance space. It is easy to visualize sets of points that cannot be
separated by a single hyperplane, and these cannot be discriminated correctly by
logistic regression.

Multiresponse linear regression suffers from the same problem. Each class
receives a weight vector calculated from the training data. Focus for the moment on
a particular pair of classes. Suppose the weight vector for class 1 is

wol? + wPa +w,Pa, +...+w,Va,

and the same for class 2 with appropriate superscripts. Then an instance will be
assigned to class 1 rather than class 2 if

wol +w,Va; +...+wVa, >wy® +w,Pa, +...+w, Pa,
In other words, it will be assigned to class 1 if
Wo” =we)+ WP —w gy +...+ WP —w,a, >0

This is a linear inequality in the attribute values, so the boundary between each pair
of classes is a hyperplane.

Linear Classification Using the Perceptron

Logistic regression attempts to produce accurate probability estimates by maximiz-
ing the probability of the training data. Of course, accurate probability estimates

128 CHAPTER 4 Algorithms: The Basic Methods

lead to accurate classifications. However, it is not necessary to perform probability
estimation if the sole purpose of the model is to predict class labels. A different
approach is to learn a hyperplane that separates the instances pertaining to the dif-
ferent classes—Iet’s assume that there are only two of them. If the data can be sepa-
rated perfectly into two groups using a hyperplane, it is said to be linearly separable.
It turns out that if the data is linearly separable, there is a very simple algorithm for
finding a separating hyperplane.

The algorithm is called the perceptron learning rule. Before looking at it in detail,
let’s examine the equation for a hyperplane again:

Wody +wWia; +wha, +...+wea, =0

Here, a,, a,, ... , a; are the attribute values, and wy, wy, ... , w; are the weights that
define the hyperplane. We will assume that each training instance a;, a,, ... is
extended by an additional attribute a, that always has the value 1 (as we did in the
case of linear regression). This extension, which is called the bias, just means that
we don’t have to include an additional constant element in the sum. If the sum is
greater than 0, we will predict the first class; otherwise, we will predict the second
class. We want to find values for the weights so that the training data is correctly
classified by the hyperplane.

Figure 4.10(a) gives the perceptron learning rule for finding a separating hyper-
plane. The algorithm iterates until a perfect solution has been found, but it will
only work properly if a separating hyperplane exists—that is, if the data is linearly
separable. Each iteration goes through all the training instances. If a misclassified
instance is encountered, the parameters of the hyperplane are changed so that the
misclassified instance moves closer to the hyperplane or maybe even across the
hyperplane onto the correct side. If the instance belongs to the first class, this is
done by adding its attribute values to the weight vector; otherwise, they are
subtracted from it.

To see why this works, consider the situation after an instance a pertaining to
the first class has been added:

(Wo +ag)ay +(w, +ay)a; +(wy +ay)a, +...+(wy +a;)a;
This means that the output for a has increased by
Ay Xag+a; Xa +a,Xa, +...+a, Xa,

This number is always positive. Thus, the hyperplane has moved in the correct
direction for classifying instance a as positive. Conversely, if an instance belonging
to the second class is misclassified, the output for that instance decreases after the
modification, again moving the hyperplane in the correct direction.

These corrections are incremental, and can interfere with earlier updates.
However, it can be shown that the algorithm converges in a finite number of itera-
tions if the data is linearly separable. Of course, if the data is not linearly separable,
the algorithm will not terminate, so an upper bound needs to be imposed on the
number of iterations when this method is applied in practice.

4.6 Linear Models 129

Set all weights to zero
Until all instances in the training data are classified correctly
For each instance I in the training data
If I is classified incorrectly by the perceptron
If I belongs to the first class add it to the weight vector
else subtract it from the weight vector

(@)
/////;ﬁb/////ji;:;/ \WZ S
1 attribute attribute oo attribute
(“bias”) ay a ax
(b)

FIGURE 4.10

The perceptron: (a) learning rule, and (b) representation as a neural network.

The resulting hyperplane is called a perceptron, and it’s the grandfather of neural
networks (we return to neural networks in Section 6.4). Figure 4.10(b) represents
the perceptron as a graph with nodes and weighted edges, imaginatively termed a
“network” of “neurons.” There are two layers of nodes: input and output. The input
layer has one node for every attribute, plus an extra node that is always set to 1.
The output layer consists of just one node. Every node in the input layer is connected
to the output layer. The connections are weighted, and the weights are those numbers
found by the perceptron learning rule.

When an instance is presented to the perceptron, its attribute values serve to
“activate” the input layer. They are multiplied by the weights and summed up at the
output node. If the weighted sum is greater than O the output signal is 1, representing
the first class; otherwise, it is —1, representing the second.

Linear Classification Using Winnow

The perceptron algorithm is not the only method that is guaranteed to find a sepa-
rating hyperplane for a linearly separable problem. For datasets with binary attri-
butes there is an alternative known as Winnow, which is illustrated in Figure 4.11(a).

130 CHAPTER 4 Algorithms: The Basic Methods

While some instances are misclassified
for every instance a
classify a using the current weights
if the predicted class is incorrect
if a belongs to the first class
for each a; that is 1, multiply w; by o
(if a; is 0, leave w; unchanged)
otherwise
for each a; that is 1, divide w; by o
(if a; is 0, leave w; unchanged)

(@)

While some instances are misclassified
for every instance a
classify a using the current weights
if the predicted class is incorrect
if a belongs to the first class
for each a; that is 1,
multiply w;" by o
divide w; by «
(if a; is 0, leave w;' and w; unchanged)
otherwise
multiply w;” by o
divide w;" by «
(if a; is 0, leave w;' and w; unchanged)

(b)
FIGURE 4.11

The Winnow algorithm: (a) unbalanced version and (b) balanced version.

The structure of the two algorithms is very similar. Like the perceptron, Winnow
only updates the weight vector when a misclassified instance is encountered—it is
mistake driven.

The two methods differ in how the weights are updated. The perceptron rule
employs an additive mechanism that alters the weight vector by adding (or subtract-
ing) the instance’s attribute vector. Winnow employs multiplicative updates and
alters weights individually by multiplying them by a user-specified parameter ¢ (or
its inverse). The attribute values g; are either O or 1 because we are working with
binary data. Weights are unchanged if the attribute value is 0, because then they do
not participate in the decision. Otherwise, the multiplier is « if that attribute helps
to make a correct decision and 1/« if it does not.

Another difference is that the threshold in the linear function is also a user-
specified parameter. We call this threshold 6 and classify an instance as belonging
to class 1 if and only if

Wody +Wia; + wha, +...+wea, >0

4.7 Instance-Based Learning 131

The multiplier o needs to be greater than 1, and the w; are set to a constant at
the start.

The algorithm we have described doesn’t allow for negative weights, which—
depending on the domain—can be a drawback. However, there is a version, called
Balanced Winnow, which does allow them. This version maintains two weight
vectors, one for each class. An instance is classified as belonging to class 1 if

Wt —w)ag +w" —wHa +...+ (Wt —w,)a, >0

Figure 4.11(b) shows the balanced algorithm.

Winnow is very effective in homing in on the relevant features in a dataset;
therefore, it is called an attribute-efficient learner. That means that it may be a good
candidate algorithm if a dataset has many (binary) features and most of them are
irrelevant. Both Winnow and the perceptron algorithm can be used in an online
setting in which new instances arrive continuously, because they can incrementally
update their hypotheses as new instances arrive.

4.7 INSTANCE-BASED LEARNING

In instance-based learning the training examples are stored verbatim, and a distance
function is used to determine which member of the training set is closest to an
unknown test instance. Once the nearest training instance has been located, its class
is predicted for the test instance. The only remaining problem is defining the distance
function, and that is not very difficult to do, particularly if the attributes are numeric.

Distance Function

Although there are other possible choices, most instance-based learners use Euclid-
ean distance. The distance between an instance with attribute values a,", a,', ...,
a,V (where k is the number of attributes) and one with values a,?, a,?, ... , @,® is
defined as

V@ -a®Y +(@" -a,? Y +...+ (" - a,>)’

When comparing distances it is not necessary to perform the square root
operation—the sums of squares can be compared directly. One alternative to the
Euclidean distance is the Manhattan, or city-block, metric, where the difference
between attribute values is not squared but just added up (after taking the absolute
value). Others are obtained by taking powers higher than the square. Higher powers
increase the influence of large differences at the expense of small differences. Gener-
ally, the Euclidean distance represents a good compromise. Other distance metrics
may be more appropriate in special circumstances. The key is to think of actual
instances and what it means for them to be separated by a certain distance—what
would twice that distance mean, for example?

132

CHAPTER 4 Algorithms: The Basic Methods

Different attributes are often measured on different scales, so if the Euclidean
distance formula were used directly, the effect of some attributes might be com-
pletely dwarfed by others that had larger scales of measurement. Consequently, it is
usual to normalize all attribute values to lie between 0 and 1 by calculating

V; —minv;
a=—""—
max v; —minv;

where v; is the actual value of attribute i, and the maximum and minimum are taken
over all instances in the training set.

These formulae implicitly assume numeric attributes. Here the difference between
two values is just the numerical difference between them, and it is this difference
that is squared and added to yield the distance function. For nominal attributes that
take on values that are symbolic rather than numeric, the difference between two
values that are not the same is often taken to be 1, whereas if the values are the same
the difference is 0. No scaling is required in this case because only the values 0 and
1 are used.

A common policy for handling missing values is as follows. For nominal attri-
butes, assume that a missing feature is maximally different from any other feature
value. Thus, if either or both values are missing, or if the values are different, the
difference between them is taken as 1; the difference is O only if they are not missing
and both are the same. For numeric attributes, the difference between two missing
values is also taken as 1. However, if just one value is missing, the difference is
often taken as either the (normalized) size of the other value or 1 minus that size,
whichever is larger. This means that if values are missing, the difference is as large
as it can possibly be.

Finding Nearest Neighbors Efficiently

Although instance-based learning is simple and effective, it is often slow. The
obvious way to find which member of the training set is closest to an unknown
test instance is to calculate the distance from every member of the training set
and select the smallest. This procedure is linear in the number of training
instances. In other words, the time it takes to make a single prediction is pro-
portional to the number of training instances. Processing an entire test set takes
time proportional to the product of the number of instances in the training and
test sets.

Nearest neighbors can be found more efficiently by representing the training set
as a tree, although it is not quite obvious how. One suitable structure is a kD-tree.
This is a binary tree that divides the input space with a hyperplane and then splits
each partition again, recursively. All splits are made parallel to one of the axes, either
vertically or horizontally, in the two-dimensional case. The data structure is called
a kD-tree because it stores a set of points in k-dimensional space, with k being the
number of attributes.

4.7 Instance-Based Learning 133

az

(7,4); h

° (3.8
6,7

(2.2) 6,7); v (7.4

°(2.2)

(3.8) a
(a) (b)

FIGURE 4.12

A kD-tree for four training instances: (a) the tree and (b) instances and splits.

Figure 4.12(a) gives a small example with k = 2, and Figure 4.12(b) shows the
four training instances it represents, along with the hyperplanes that constitute the
tree. Note that these hyperplanes are not decision boundaries: Decisions are made
on a nearest-neighbor basis as explained later. The first split is horizontal (%), through
the point (7,4)—this is the tree’s root. The left branch is not split further: It contains
the single point (2,2), which is a leaf of the tree. The right branch is split vertically
(v) at the point (6,7). Its right child is empty, and its left child contains the point
(3,8). As this example illustrates, each region contains just one point—or, perhaps,
no points. Sibling branches of the tree—for example, the two daughters of the root
in Figure 4.12(a)—are not necessarily developed to the same depth. Every point in
the training set corresponds to a single node, and up to half are leaf nodes.

How do you build a kD-tree from a dataset? Can it be updated efficiently as new
training examples are added? And how does it speed up nearest-neighbor calcula-
tions? We tackle the last question first.

To locate the nearest neighbor of a given target point, follow the tree down from
its root to locate the region containing the target. Figure 4.13 shows a space like that
of Figure 4.12(b) but with a few more instances and an extra boundary. The target,
which is not one of the instances in the tree, is marked by a star. The leaf node of
the region containing the target is colored black. This is not necessarily the target’s
closest neighbor, as this example illustrates, but it is a good first approximation. In
particular, any nearer neighbor must lie closer—within the dashed circle in Figure
4.13. To determine whether one exists, first check whether it is possible for a closer
neighbor to lie within the node’s sibling. The black node’s sibling is shaded in Figure
4.13, and the circle does not intersect it, so the sibling cannot contain a closer

134 CHAPTER 4 Algorithms: The Basic Methods

FIGURE 4.13

Using a kD-tree to find the nearest neighbor of the star.

neighbor. Then back up to the parent node and check ifs sibling, which here covers
everything above the horizontal line. In this case it must be explored because the
area it covers intersects with the best circle so far. To explore it, find its daughters
(the original point’s two aunts); check whether they intersect the circle (the left one
does not, but the right one does); and descend to see if it contains a closer point
(it does).

In a typical case, this algorithm is far faster than examining all points to find the
nearest neighbor. The work involved in finding the initial approximate nearest
neighbor—the black point in Figure 4.13—depends on the depth of the tree, given
by the logarithm of the number of nodes, log,n if the tree is well balanced. The
amount of work involved in backtracking to check whether this really is the nearest
neighbor depends a bit on the tree, and on how good the initial approximation is.
But for a well-constructed tree with nodes that are approximately square rather than
long skinny rectangles, it can also be shown to be logarithmic in the number of nodes
(if the number of attributes in the dataset is not too large).

How do you build a good tree for a set of training examples? The problem boils
down to selecting the first training instance to split at and the direction of the split.
Once you can do that, apply the same method recursively to each child of the initial
split to construct the entire tree.

4.7 Instance-Based Learning 135

To find a good direction for the split, calculate the variance of the data points
along each axis individually, select the axis with the greatest variance, and create a
splitting hyperplane perpendicular to it. To find a good place for the hyperplane,
locate the median value along that axis and select the corresponding point. This
makes the split perpendicular to the direction of greatest spread, with half the points
lying on either side. This produces a well-balanced tree. To avoid long skinny
regions it is best for successive splits to be along different axes, which is likely
because the dimension of greatest variance is chosen at each stage. However, if the
distribution of points is badly skewed, choosing the median value may generate
several successive splits in the same direction, yielding long, skinny hyperrectangles.
A better strategy is to calculate the mean rather than the median and use the point
closest to that. The tree will not be perfectly balanced, but its regions will tend to
be squarish because there is a greater chance that different directions will be chosen
for successive splits.

An advantage of instance-based learning over most other machine learning
methods is that new examples can be added to the training set at any time. To retain
this advantage when using a kD-tree, we need to be able to update it incrementally
with new data points. To do this, determine which leaf node contains the new point
and find its hyperrectangle. If it is empty, simply place the new point there. Other-
wise, split the hyperrectangle along its longest dimension to preserve squareness.
This simple heuristic does not guarantee that adding a series of points will preserve
the tree’s balance, nor that the hyperrectangles will be well shaped for a nearest-
neighbor search. It is a good idea to rebuild the tree from scratch occasionally—for
example, when its depth grows to twice the best possible depth.

As we have seen, kD-trees are good data structures for finding nearest neighbors
efficiently. However, they are not perfect. Skewed datasets present a basic conflict
between the desire for the tree to be perfectly balanced and the desire for regions to
be squarish. More important, rectangles—even squares—are not the best shape to
use anyway, because of their corners. If the dashed circle in Figure 4.13 were any
bigger, which it would be if the black instance were a little further from the target,
it would intersect the lower right corner of the rectangle at the top left and then that
rectangle would have to be investigated, too—despite the fact that the training
instances that define it are a long way from the corner in question. The corners of
rectangular regions are awkward.

The solution? Use hyperspheres, not hyperrectangles. Neighboring spheres may
overlap, whereas rectangles can abut, but this is not a problem because the nearest-
neighbor algorithm for kD-trees does not depend on the regions being disjoint. A
data structure called a ball tree defines k-dimensional hyperspheres (“balls”) that
cover the data points, and arranges them into a tree.

Figure 4.14(a) shows 16 training instances in two-dimensional space, overlaid
by a pattern of overlapping circles, and Figure 4.14(b) shows a tree formed from
these circles. Circles at different levels of the tree are indicated by different styles
of dash, and the smaller circles are drawn in shades of gray. Each node of the tree
represents a ball, and the node is dashed or shaded according to the same convention

136 CHAPTER 4 Algorithms: The Basic Methods

(b)
FIGURE 4.14

Ball tree for 16 training instances: (a) instances and balls and (b) the tree.

so that you can identify which level the balls are at. To help you understand the tree,
numbers are placed on the nodes to show how many data points are deemed to be
inside that ball. But be careful: This is not necessarily the same as the number of
points falling within the spatial region that the ball represents. The regions at each
level sometimes overlap, but points that fall into the overlap area are assigned to
only one of the overlapping balls (the diagram does not show which one). Instead
of the occupancy counts in Figure 4.14(b), the nodes of actual ball trees store the
center and radius of their ball; leaf nodes record the points they contain as well.

To use a ball tree to find the nearest neighbor to a given target, start by traversing
the tree from the top down to locate the leaf that contains the target and find the
closest point to the target in that ball. This gives an upper bound for the target’s
distance from its nearest neighbor. Then, just as for the kD-tree, examine the sibling
node. If the distance from the target to the sibling’s center exceeds its radius plus
the current upper bound, it cannot possibly contain a closer point; otherwise, the
sibling must be examined by descending the tree further.

In Figure 4.15 the target is marked with a star and the black dot is its closest cur-
rently known neighbor. The entire contents of the gray ball can be ruled out: It cannot
contain a closer point because its center is too far away. Proceed recursively back up
the tree to its root, examining any ball that may possibly contain a point nearer than
the current upper bound.

Ball trees are built from the top down, and as with kD-trees the basic problem is
to find a good way of splitting a ball containing a set of data points into two. In prac-
tice, you do not have to continue until the leaf balls contain just two points: You can
stop earlier, once a predetermined minimum number is reached—and the same goes
for kD-trees. Here is one possible splitting method. Choose the point in the ball that

4.7 Instance-Based Learning 137

is farthest from its center, and then
a second point that is farthest from
the first one. Assign all data points
in the ball to the closest one of these
two cluster centers; then compute
the centroid of each cluster and the
minimum radius required for it to
enclose all the data points it repre-
sents. This method has the merit
that the cost of splitting a ball con-
taining n points is only linear in
n. There are more elaborate algo-
rithms that produce tighter balls,
but they require more computation.
FIGURE 4.15 We will not describe sophisticated
algorithms for constructing ball
trees or updating them incremen-
tally as new training instances are
encountered.

Ruling out an entire ball (the gray one) based
on a target point (star) and its current nearest
neighbor.

Discussion

Nearest-neighbor instance-based learning is simple and often works very well. In
the scheme we have described, each attribute has exactly the same influence on the
decision, just as it does in the Naive Bayes method. Another problem is that the
database can easily become corrupted by noisy exemplars. One solution is to adopt
the k-nearest-neighbor strategy, where some fixed, small number k of nearest
neighbors—say five—are located and used together to determine the class of the test
instance through a simple majority vote. (Note that earlier we used k to denote the
number of attributes; this is a different, independent usage.) Another way of proofing
the database against noise is to choose the exemplars that are added to it selectively
and judiciously. Improved procedures, which are described in Chapter 6, address
these shortcomings.

The nearest-neighbor method originated many decades ago, and statisticians
analyzed k-nearest-neighbor schemes in the early 1950s. If the number of training
instances is large, it makes intuitive sense to use more than one nearest neighbor,
but clearly this is dangerous if there are few instances. It can be shown that when k
and the number n of instances both become infinite in such a way that k/n — 0, the
probability of error approaches the theoretical minimum for the dataset. The nearest-
neighbor method was adopted as a classification scheme in the early 1960s and has
been widely used in the field of pattern recognition for almost half a century.

Nearest-neighbor classification was notoriously slow until kD-trees began to be
applied in the early 1990s, although the data structure itself was developed much
earlier. In practice, these trees become inefficient when the dimension of the space

138 CHAPTER 4 Algorithms: The Basic Methods

increases and they are only worthwhile when the number of attributes is small—up
to 10. Ball trees were developed much more recently and are an instance of a more
general structure called a metric tree. Sophisticated algorithms can create metric
trees that deal successfully with thousands of dimensions.

Instead of storing all training instances, you can compress them into regions. A
very simple technique, mentioned at the end of Section 4.1, is to just record the
range of values observed in the training data for each attribute and category. Given
a test instance, you work out which ranges the attribute values fall into and choose
the category with the greatest number of correct ranges for that instance. A slightly
more elaborate technique is to construct intervals for each attribute and use the
training set to count the number of times each class occurs for each interval on each
attribute. Numeric attributes can be discretized into intervals, and “intervals” con-
sisting of a single point can be used for nominal ones. Then, given a test instance,
you can determine which intervals the instance resides in and classify it by voting,
a method called voting feature intervals. These methods are very approximate, but
very fast, and can be useful for initial analysis of large datasets.

4.8 CLUSTERING

Clustering techniques apply when there is no class to be predicted but the
instances are to be divided into natural groups. These clusters presumably reflect
some mechanism that is at work in the domain from which instances are drawn,
a mechanism that causes some instances to bear a stronger resemblance to each
other than they do to the remaining instances. Clustering naturally requires dif-
ferent techniques to the classification and association learning methods that we
have considered so far.

As we saw in Section 3.6, there are different ways in which the result of cluster-
ing can be expressed. The groups that are identified may be exclusive: Any instance
belongs in only one group. Or they may be overlapping: An instance may fall into
several groups. Or they may be probabilistic: An instance belongs to each group
with a certain probability. Or they may be hierarchical: A rough division of instances
into groups at the top level and each group refined further—perhaps all the way
down to individual instances. Really, the choice among these possibilities should be
dictated by the nature of the mechanisms that are thought to underlie the particular
clustering phenomenon. However, because these mechanisms are rarely known—the
very existence of clusters is, after all, something that we’re trying to discover—and
for pragmatic reasons too, the choice is usually dictated by the clustering tools that
are available.

We will examine an algorithm that works in numeric domains, partitioning
instances into disjoint clusters. Like the basic nearest-neighbor method of instance-
based learning, it is a simple and straightforward technique that has been used for
several decades. In Chapter 6 we examine newer clustering methods that perform
incremental and probabilistic clustering.

4.8 Clustering 139

Iterative Distance-Based Clustering

The classic clustering technique is called k-means. First, you specify in advance how
many clusters are being sought: This is the parameter k. Then k points are chosen
at random as cluster centers. All instances are assigned to their closest cluster center
according to the ordinary Euclidean distance metric. Next the centroid, or mean, of
the instances in each cluster is calculated—this is the “means” part. These centroids
are taken to be new center values for their respective clusters. Finally, the whole
process is repeated with the new cluster centers. Iteration continues until the same
points are assigned to each cluster in consecutive rounds, at which stage the cluster
centers have stabilized and will remain the same forever.

This clustering method is simple and effective. It is easy to prove that choosing
the cluster center to be the centroid minimizes the total squared distance from each
of the cluster’s points to its center. Once the iteration has stabilized, each point is
assigned to its nearest cluster center, so the overall effect is to minimize the total
squared distance from all points to their cluster centers. But the minimum is a local
one; there is no guarantee that it is the global minimum. The final clusters are quite
sensitive to the initial cluster centers. Completely different arrangements can arise
from small changes in the initial random choice. In fact, this is true of all practical
clustering techniques: It is almost always infeasible to find globally optimal clusters.
To increase the chance of finding a global minimum people often run the algorithm
several times with different initial choices and choose the best final result—the one
with the smallest total squared distance.

It is easy to imagine situations in which k-means fails to find a good clustering.
Consider four instances arranged at the vertices of a rectangle in two-dimensional
space. There are two natural clusters, formed by grouping together the two vertices
at either end of a short side. But suppose the two initial cluster centers happen to
fall at the midpoints of the long sides. This forms a stable configuration. The two
clusters each contain the two instances at either end of a long side—no matter how
great the difference between the long and the short sides.

k-means clustering can be dramatically improved by careful choice of the
initial cluster centers, often called seeds. Instead of beginning with an arbitrary
set of seeds, here is a better procedure. Choose the initial seed at random from
the entire space, with a uniform probability distribution. Then choose the second
seed with a probability that is proportional to the square of the distance from the
first. Proceed, at each stage choosing the next seed with a probability proportional
to the square of the distance from the closest seed that has already been chosen.
This procedure, called k-means++, improves both speed and accuracy over the
original algorithm with random seeds.

Faster Distance Calculations

The k-means clustering algorithm usually requires several iterations, each involv-
ing finding the distance of the k cluster centers from every instance to determine

140 CHAPTER 4 Algorithms: The Basic Methods

its cluster. There are simple approximations that speed this up considerably. For
example, you can project the dataset and make cuts along selected axes, instead
of using the arbitrary hyperplane divisions that are implied by choosing the nearest
cluster center. But this inevitably compromises the quality of the resulting
clusters.

Here’s a better way of speeding things up. Finding the closest cluster center is
not so different from finding nearest neighbors in instance-based learning. Can the
same efficient solutions—kD-trees and ball trees—be used? Yes! Indeed, they can
be applied in an even more efficient way, because in each iteration of k-means all
the data points are processed together whereas, in instance-based learning, test
instances are processed individually.

First, construct a kD-tree or ball tree for all the data points, which will remain
static throughout the clustering procedure. Each iteration of k-means produces a set
of cluster centers, and all data points must be examined and assigned to the nearest
center. One way of processing the points is to descend the tree from the root until
reaching a leaf and check each individual point in the leaf to find its closest cluster
center. But it may be that the region represented by a higher interior node falls
entirely within the domain of a single cluster center. In that case, all the data points
under that node can be processed in one blow!

The aim of the exercise, after all, is to find new positions for the cluster
centers by calculating the centroid of the points they contain. The centroid can
be calculated by keeping a running vector sum of the points in the cluster, and
a count of how many there are so far. At the end, just divide one by the other
to find the centroid. Suppose that with each node of the tree we store the vector
sum of the points within that node and a count of the number of points. If the
whole node falls within the ambit of a single cluster, the running totals for that
cluster can be updated immediately. If not, look inside the node by proceeding
recursively down the tree.

Figure 4.16 shows the same instances and ball tree as in Figure 4.14, but
with two cluster centers marked as black stars. Because all instances are assigned
to the closest center, the space is divided in two by the thick line shown in Figure
4.16(a). Begin at the root of the tree in Figure 4.16(b), with initial values for the
vector sum and counts for each cluster; all initial values are 0. Proceed recursively
down the tree. When node A is reached, all points within it lie in cluster 1, so
cluster 1’s sum and count can be updated with the sum and count for node A,
and we need not descend any further. Recursing back to node B, its ball straddles
the boundary between the clusters, so its points must be examined individually.
When node C is reached, it falls entirely within cluster 2; again, we can update
cluster 2 immediately and we need not descend any further. The tree is only
examined down to the frontier marked by the dashed line in Figure 4.16(b), and
the advantage is that the nodes below need not be opened—at least not on this
particular iteration of k-means. Next time, the cluster centers will have changed
and things may be different.

4.9 Multi-Instance learning 141

FIGURE 4.16

A ball tree: (a) two cluster centers and their dividing line and (b) the corresponding tree.

Discussion

Many variants of the basic k-means procedure have been developed. Some produce
a hierarchical clustering by applying the algorithm with k = 2 to the overall dataset
and then repeating, recursively, within each cluster.

How do you choose k? Often nothing is known about the likely number of clus-
ters, and the whole point of clustering is to find out. One way is to try different
values and choose the best. To do this you need to learn how to evaluate the success
of machine learning, which is what Chapter 5 is about. We return to clustering in
Section 6.8.

4.9 MULTI-INSTANCE LEARNING

In Chapter 2 we introduced multi-instance learning, where each example in the
data comprises several different instances. We call these examples bags (we noted
the difference between bags and sets in Section 4.2). In supervised multi-instance
learning, a class label is associated with each bag, and the goal of learning is to
determine how the class can be inferred from the instances that make up the bag.
While advanced algorithms have been devised to tackle such problems, it turns out
that the simplicity-first methodology can be applied here with surprisingly good
results. A simple but effective approach is to manipulate the input data to transform
it into a single-instance learning problem and then apply standard learning methods,

142

CHAPTER 4 Algorithms: The Basic Methods

such as the ones described in this chapter. Two such approaches are described in
the following sections.

Aggregating the Input

You can convert a multiple-instance problem to a single-instance one by calculating
values such as mean, mode, minimum, and maximum that summarize the instances
in the bag and adding these as new attributes. Each “summary” instance retains the
class label of the bag it was derived from. To classify a new bag the same process
is used: A single aggregated instance is created with attributes that summarize the
instances in the bag. Surprisingly, for the original drug activity dataset that spurred
the development of multi-instance learning, results comparable with special-purpose
multi-instance learners can be obtained using just the minimum and maximum
values of each attribute for each bag, combined with a support vector machine clas-
sifier (see Chapter 6). One potential drawback of this approach is that the best
summary statistics to compute depend on the problem at hand. However, the addi-
tional computational cost associated with exploring combinations of different
summary statistics is offset by the fact that the summarizing process means that
fewer instances are processed by the learning algorithm.

Aggregating the Output

Instead of aggregating the instances in each bag, another approach is to learn a clas-
sifier directly from the original instances that comprise the bag. To achieve this, the
instances in a given bag are all assigned the bag’s class label. At classification time,
a prediction is produced for each instance in the bag to be predicted, and the predic-
tions are aggregated in some fashion to form a prediction for the bag as a whole.
One approach is to treat the predictions as votes for the various class labels. If the
classifier is capable of assigning probabilities to the class labels, these could be
averaged to yield an overall probability distribution for the bag’s class label. This
method treats the instances independently and gives them equal influence on the
predicted class label.

One problem is that the bags in the training data can contain different numbers
of instances. Ideally, each bag should have the same influence on the final model
that is learned. If the learning algorithm can accept instance-level weights, this can
be achieved by assigning each instance in a given bag a weight inversely propor-
tional to the bag’s size. If a bag contains n instances, giving each one a weight of
1/n ensures that the instances contribute equally to the bag’s class label and each
bag receives a total weight of 1.

Discussion

Both methods described previously for tackling multi-instance problems disregard
the original multi-instance assumption that a bag is positive if and only if at least one

4.10 Further Reading 143

of its instances is positive. Instead, making each instance in a bag contribute equally
to its label is the key element that allows standard learning algorithms to be applied.
Otherwise, it is necessary to try to identify the “special” instances that are the key to
determining the bag’s label.

4.10 FURTHER READING

The 1R scheme was proposed and thoroughly investigated by Holte (1993). It
was never really intended as a machine learning “method.” The point was more
to demonstrate that very simple structures underlie most of the practical datasets
being used to evaluate machine learning schemes at the time and that putting
high-powered inductive inference schemes to work on simple datasets was like
using a sledgehammer to crack a nut. Why grapple with a complex decision tree
when a simple rule will do? The scheme that generates one simple rule per class
is due to Lucio de Souza Coelho of Brazil and Len Trigg of New Zealand, and
it has been dubbed hyperpipes. A very simple algorithm, it has the advantage of
being extremely fast and is quite feasible even with an enormous number of
attributes.

Bayes was an eighteenth-century English philosopher who set out his theory
of probability in an “Essay towards solving a problem in the doctrine of chances,”
published in the Philosophical Transactions of the Royal Society of London (Bayes,
1763). The rule that bears his name has been a cornerstone of probability theory
ever since. The difficulty with the application of Bayes’ rule in practice is the
assignment of prior probabilities.

Some statisticians, dubbed Bayesians, take the rule as gospel and insist that
people make serious attempts to estimate prior probabilities accurately—although
such estimates are often subjective. Others, non-Bayesians, prefer the kind of prior-
free analysis that typically generates statistical confidence intervals, which we will
see in Chapter 5. With a particular dataset, prior probabilities for Naive Bayes are
usually reasonably easy to estimate, which encourages a Bayesian approach to learn-
ing. The independence assumption made by the Naive Bayes method is a great
stumbling block, however, and efforts are being made to apply Bayesian analysis
without assuming independence. The resulting models are called Bayesian networks
(Heckerman et al., 1995), and we describe them in Section 6.7.

Bayesian techniques had been used in the field of pattern recognition (Duda
and Hart, 1973) for 20 years before they were adopted by machine learning
researchers (e.g., Langley et al., 1992) and made to work on datasets with redun-
dant attributes (Langley and Sage 1994) and numeric attributes (John and Langley,
1995). The label Naive Bayes is unfortunate because it is hard to use this method
without feeling simpleminded. However, there is nothing naive about its use in
appropriate circumstances. The multinomial Naive Bayes model, which is particu-
larly useful for text classification, was investigated by McCallum and Nigam
(1998).

144 CHAPTER 4 Algorithms: The Basic Methods

The classic paper on decision tree induction is Quinlan (1986), who describes
the basic ID3 procedure developed in this chapter. A comprehensive description of
the method, including the improvements that are embodied in C4.5, appears in a
classic book by Quinlan (1993), which gives a listing of the complete C4.5 system,
written in the C programming language. PRISM was developed by Cendrowska
(1987), who also introduced the contact lens dataset.

Association rules are introduced and described in the database literature rather
than in the machine learning literature. Here the emphasis is very much on dealing
with huge amounts of data rather than on sensitive ways of testing and evaluating
algorithms on limited datasets. The algorithm introduced in this chapter is the
Apriori method developed by Agrawal and his associates (Agrawal et al., 1993a,
1993b; Agrawal and Srikant, 1994). A survey of association-rule mining appears in
an article by Chen et al. (1996).

Linear regression is described in most standard statistical texts, and a particularly
comprehensive treatment can be found in Lawson and Hanson (1995). The use of
linear models for classification enjoyed a great deal of popularity in the 1960s;
Nilsson (1965) is an excellent reference. He defines a linear threshold unit as a
binary test of whether a linear function is greater or less than zero and a linear
machine as a set of linear functions, one for each class, whose value for an unknown
example is compared and the largest chosen as its predicted class. In the distant
past, perceptrons fell out of favor on publication of an influential book that showed
that they had fundamental limitations (Minsky and Papert, 1969); however, more
complex systems of linear functions have enjoyed a resurgence in recent years in
the form of neural networks, described in Section 6.4. The Winnow algorithms were
introduced by Nick Littlestone in his Ph.D. thesis (Littlestone, 1988, 1989). Mul-
tiresponse linear classifiers have found application in an operation called stacking
that combines the output of other learning algorithms, described in Chapter 8 (see
Wolpert, 1992).

Fix and Hodges (1951) performed the first analysis of the nearest-neighbor
method, and Johns (1961) pioneered its use in classification problems. Cover and
Hart (1967) obtained the classic theoretical result that, for large enough datasets, its
probability of error never exceeds twice the theoretical minimum. Devroye et al.
(1996) showed that k-nearest neighbor is asymptotically optimal for large k and n
with k/n — 0. Nearest-neighbor methods gained popularity in machine learning
through the work of Aha (1992), who showed that instance-based learning can be
combined with noisy exemplar pruning and attribute weighting and that the resulting
methods perform well in comparison with other learning methods. We take this up
again in Chapter 6.

The kD-tree data structure was developed by Friedman et al. (1977). Our descrip-
tion closely follows an explanation given by Andrew Moore in his Ph.D. thesis
(Moore, 1991). Moore, who, along with Omohundro (1987), pioneered its use in
machine learning. Moore (2000) describes sophisticated ways of constructing ball
trees that perform well even with thousands of attributes. We took our ball tree
example from lecture notes by Alexander Gray of Carnegie-Mellon University. The

4.11 Weka Implementations 145

voting feature interval method mentioned in the Discussion section at the end of
Section 4.7 is described by Demiroz and Guvenir (1997).

The k-means algorithm is a classic technique, and many descriptions and varia-
tions are available (e.g., Hartigan, 1975). The k-means++ variant, which yields a
significant improvement by choosing the initial seeds more carefully, was introduced
as recently as 2007 by Arthur and Vassilvitskii (2007). The clever use of kD-trees
to speed up k-means clustering, which we have chosen to illustrate using ball trees
instead, was pioneered by Moore and Pelleg (2000) in their X-means clustering
algorithm. That algorithm contains some other innovations, described in Section 6.8.

The method of dealing with multi-instance learning problems by applying stan-
dard single-instance learners to summarized bag-level data was applied in conjunc-
tion with support vector machines by Gartner et al. (2002). The alternative approach
of aggregating the output is explained by Frank and Xu (2003).

4.11 WEKA IMPLEMENTATIONS

For classifiers, see Section 11.4 and Table 11.5.

* Inferring rudimentary rules: OneR, HyperPipes (learns one rule per class)
e Statistical modeling:
* NaiveBayes and many variants, including NaiveBayesMultinomial
* Decision trees: 1d3
* Decision rules: Prism
e Association rules (see Section 11.7 and Table 11.8): a priori
* Linear models:
e SimpleLinearRegression, LinearRegression, Logistic (regression)
* VotedPerceptron, Winnow
* Instance-based learning: /B1, VFI (voting feature intervals)
* Clustering (see Section 11.6 and Table 11.7): SimpleKMeans
* Multi-instance learning: SimpleMI, MIWrapper

This page intentionally left blank

CHAPTER

Credibility: Evaluating
What's Been Learned

Evaluation is the key to making real progress in data mining. There are lots of ways
of inferring structure from data: We have encountered many already and will see
further refinements, and new methods, in Chapter 6. However, in order to determine
which ones to use on a particular problem we need systematic ways to evaluate how
different methods work and to compare one with another. But evaluation is not as
simple as it might appear at first sight.

What’s the problem? We have the training set; surely we can just look at how
well different methods do on that. Well, no: As we will see very shortly, performance
on the training set is definitely not a good indicator of performance on an indepen-
dent test set. We need ways of predicting performance bounds in practice, based on
experiments with whatever data can be obtained.

When a vast supply of data is available, this is no problem: Just make a model
based on a large training set, and try it out on another large test set. But although
data mining sometimes involves “big data”—particularly in marketing, sales, and
customer support applications—it is often the case that data, quality data, is scarce.
The oil slicks mentioned in Chapter 1 (page 23) had to be detected and marked
manually—a skilled and labor-intensive process—before being used as training
data. Even in the personal loan application data (page 22), there turned out to be
only 1000 training examples of the appropriate type. The electricity supply data
(page 24) went back 15 years, 5000 days—but only 15 Christmas days and Thanks-
givings, and just four February 29s and presidential elections. The electromechanical
diagnosis application (page 25) was able to capitalize on 20 years of recorded
experience, but this yielded only 300 usable examples of faults. The marketing
and sales applications (page 26) certainly involve big data, but many others do
not: Training data frequently relies on specialist human expertise—and that is
always in short supply.

The question of predicting performance based on limited data is an interesting,
and still controversial, one. We will encounter many different techniques, of which
one—repeated cross-validation—is probably the method of choice in most practical
limited-data situations. Comparing the performance of different machine learning
schemes on a given problem is another matter that is not as easy as it sounds: To be
sure that apparent differences are not caused by chance effects, statistical tests are
needed.

Data Mining: Practical Machine Learning Tools and Techniques 1 47
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

148 CHAPTER 5 Credibility: Evaluating What's Been Learned

So far we have tacitly assumed that what is being predicted is the ability to clas-
sify test instances accurately; however, some situations involve predicting class
probabilities rather than the classes themselves, and others involve predicting
numeric rather than nominal values. Different methods are needed in each case. Then
we look at the question of cost. In most practical data mining situations, the cost of
a misclassification error depends on the type of error it is—whether, for example, a
positive example was erroneously classified as negative or vice versa. When doing
data mining, and evaluating its performance, it is often essential to take these costs
into account. Fortunately, there are simple techniques to make most learning schemes
cost sensitive without grappling with the algorithm’s internals. Finally, the whole
notion of evaluation has fascinating philosophical connections. For 2000 years,
philosophers have debated the question of how to evaluate scientific theories, and
the issues are brought into sharp focus by data mining because what is extracted is
essentially a “theory” of the data.

5.1 TRAINING AND TESTING

For classification problems, it is natural to measure a classifier’s performance in
terms of the error rate. The classifier predicts the class of each instance: If it is
correct, that is counted as a success; if not, it is an error. The error rate is just the
proportion of errors made over a whole set of instances, and it measures the overall
performance of the classifier.

Of course, what we are interested in is the likely future performance on new data,
not the past performance on old data. We already know the classifications of each
instance in the training set, which after all is why we can use it for training. We are
not generally interested in learning about those classifications—although we might
be if our purpose is data cleansing rather than prediction. So the question is, is the
error rate on old data likely to be a good indicator of the error rate on new data?
The answer is a resounding no—not if the old data was used during the learning
process to train the classifier.

This is a surprising fact, and a very important one. The error rate on the training
set is not likely to be a good indicator of future performance. Why? Because the
classifier has been learned from the very same training data, any estimate of perfor-
mance based on that data will be optimistic, even hopelessly optimistic.

We have already seen an example of this in the labor relations dataset. Figure
1.3(b) (page 18) was generated directly from the training data, and Figure 1.3(a)
was obtained from it by a process of pruning. The former is potentially more accurate
on the data that was used to train the classifier, but may perform less well on inde-
pendent test data because it is overfitted to the training data. The first tree will look
good according to the error rate on the training data, better than the second tree. But
this does not necessarily reflect how they will perform on independent test data.

The error rate on the training data is called the resubstitution error because it is
calculated by resubstituting the training instances into a classifier that was

5.1 Training and Testing 149

constructed from them. Although it is not a reliable predictor of the true error rate
on new data, it is nevertheless often useful to know.

To predict the performance of a classifier on new data, we need to assess its error
rate on a dataset that played no part in the formation of the classifier. This indepen-
dent dataset is called the fest ser. We assume that both the training data and the test
data are representative samples of the underlying problem.

In some cases the test data might be distinct in nature from the training data.
Consider, for example, the credit risk problem from Section 1.3 (page 22). Suppose
the bank had training data from branches in New York and Florida and wanted to
know how well a classifier trained on one of these datasets would perform in a
new branch in Nebraska. It should probably use the Florida data as test data for
evaluating the New York—trained classifier and the New York data to evaluate the
Florida-trained classifier. If the datasets were amalgamated before training, perfor-
mance on the test data would probably not be a good indicator of performance on
future data in a completely different state.

It is important that the test data is not used in any way to create the classifier.
For example, some learning schemes involve two stages, one to come up with a
basic structure and the second to optimize parameters involved in that structure, and
separate sets of data may be needed in the two stages. Or you might try out several
learning schemes on the training data and then evaluate them—on a fresh dataset,
of course—to see which one works best. But none of this data may be used to
determine an estimate of the future error rate.

In such situations people often talk about three datasets: the training data, the
validation data, and the test data. The training data is used by one or more learning
schemes to come up with classifiers. The validation data is used to optimize param-
eters of those classifier, or to select a particular one. Then the test data is used to
calculate the error rate of the final, optimized, method. Each of the three sets must
be chosen independently: The validation set must be different from the training set
to obtain good performance in the optimization or selection stage, and the test set
must be different from both to obtain a reliable estimate of the true error rate.

It may be that once the error rate has been determined, the test data is bundled
back into the training data to produce a new classifier for actual use. There is nothing
wrong with this: It is just a way of maximizing the amount of data used to generate
the classifier that will actually be employed in practice. With well-behaved learning
schemes, this should not decrease predictive performance. Also, once the validation
data has been used—maybe to determine the best type of learning scheme to use—
then it can be bundled back into the training data to retrain that learning scheme,
maximizing the use of data.

If lots of data is available, there is no problem: We take a large sample and use
it for training; then another, independent large sample of different data and use it
for testing. Provided both samples are representative, the error rate on the test set
will give a good indication of future performance. Generally, the larger the training
sample, the better the classifier, although the returns begin to diminish once a certain
volume of training data is exceeded. And the larger the test sample, the more accurate

150 CHAPTER 5 Credibility: Evaluating What's Been Learned

the error estimate. The accuracy of the error estimate can be quantified statistically,
as we will see in Section 5.2.

The real problem occurs when there is not a vast supply of data available. In
many situations the training data must be classified manually—and so must the test
data, of course, to obtain error estimates. This limits the amount of data that can be
used for training, validation, and testing, and the problem becomes how to make the
most of a limited dataset. From this dataset, a certain amount is held over for
testing—this is called the holdout procedure—and the remainder used for training
(and, if necessary, part of that is set aside for validation). There’s a dilemma here:
To find a good classifier, we want to use as much of the data as possible for training;
to obtain a good error estimate, we want to use as much of it as possible for testing.
Sections 5.3 and 5.4 review widely used methods for dealing with this dilemma.

5.2 PREDICTING PERFORMANCE

Suppose we measure the error of a classifier on a test set and obtain a certain numeri-
cal error rate—say 25%. Actually, in this section we talk about success rate rather
than error rate, so this corresponds to a success rate of 75%. Now, this is only an
estimate. What can you say about the tfrue success rate on the target population?
Sure, it’s expected to be close to 75%. But how close—within 5 or 10%? It must
depend on the size of the test set. Naturally, we would be more confident of the 75%
figure if it were based on a test set of 10,000 instances rather than a test set of 100
instances. But how much more confident would we be?

To answer these questions, we need some statistical reasoning. In statistics, a
succession of independent events that either succeed or fail is called a Bernoulli
process. The classic example is coin tossing. Each toss is an independent event. Let’s
say we always predict heads; but rather than “heads” or “tails,” each toss is consid-
ered a “success” or a “failure.” Let’s say the coin is biased, but we don’t know what
the probability of heads is. Then, if we actually toss the coin 100 times and 75 of
the tosses are heads, we have a situation very like the one just described for a clas-
sifier with an observed 75% success rate on a test set. What can we say about the
true success probability? In other words, imagine that there is a Bernoulli process—a
biased coin—with a true (but unknown) success rate of p. Suppose that out of N
trials, S are successes; thus, the observed success rate is f = S/N. The question is,
what does this tell you about the true success rate p?

The answer to this question is usually expressed as a confidence interval—that
is, p lies within a certain specified interval with a certain specified confidence. For
example, if S =750 successes are observed out of N = 1000 trials, this indicates that
the true success rate must be around 75%. But how close to 75%? It turns out that
with 80% confidence, the true success rate p lies between 73.2% and 76.7%. If
S =75 successes are observed out of N = 100 trials, this also indicates that the true
success rate must be around 75%. But the experiment is smaller, and so the 80%
confidence interval for p is wider, stretching from 69.1 to 80.1%.

5.2 Predicting Performance

These figures are easy to relate to qualitatively, but how are they derived quantitatively?
We reason as follows: The mean and variance of a single Bernoulli trial with success rate
p are p and p(1 — p), respectively. If N trials are taken from a Bernoulli process, the
expected success rate f = S/N is a random variable with the same mean p; the variance is
reduced by a factor of N to p(1 — p)/N. For large N, the distribution of this random
variable approaches the normal distribution. These are all facts of statistics—we will not
go into how they are derived.

The probability that a random variable X, with zero mean, lies within a certain
confidence range of width 2z is

Prl-z<X<z]=c

For a normal distribution, values of ¢ and corresponding values of z are given in tables
printed at the back of most statistical texts. However, the tabulations conventionally take
a slightly different form: They give the confidence that X will lie outside the range, and
they give it for the upper part of the range only:

Pr(X = z]

This is called a one-tailed probability because it refers only to the upper “tail” of the
distribution. Normal distributions are symmetric, so the probabilities for the lower tail

PriX <-z]

are just the same.

Table 5.1 gives an example. Like other tables for the normal distribution, this
assumes that the random variable X has a mean of O and a variance of 1. Alternatively,
you might say that the z figures are measured in standard deviations from the mean.
Thus, the figure for Pr(X > z] = 5% implies that there is a 5% chance that X lies more
than 1.65 standard deviations above the mean. Because the distribution is symmetric,
the chance that X lies more than 1.65 standard deviations from the mean (above or
below) is 10%, or

Pr(-1.65< X <1.65]=90%

Now all we need to do is reduce the random variable f to have zero mean and unit
variance. We do this by subtracting the mean p and dividing by the standard
deviation 4/p(1 — p)/N. This leads to

Pr —z<f_7p<z}=c

\Jp(L—p)/N

Here is the procedure for finding confidence limits. Given a particular confidence figure
¢, consult Table 5.1 for the corresponding z value. To use the table you will first have to
subtract ¢ from 1 and then halve the result, so that for ¢ = 90% you use the table entry
for 5%. Linear interpolation can be used for intermediate confidence levels. Then write
the inequality in the preceding expression as an equality and invert it to find an
expression for p.

The final step involves solving a quadratic equation. Although this is not hard to do, it
leads to an unpleasantly formidable expression for the confidence limits:

2 2 2 2
p= f+z—irz,i—f—+ z 1+2
2N N N 4N° N

The + in this expression gives two values for p that represent the upper and lower confidence
boundaries. Although the formula looks complicated, it is not hard to work out in particular
cases.

.
151

152 CHAPTER 5 Credibility: Evaluating What's Been Learned

This result can be used to obtain the values in the numeric example given earlier.
Setting f=75%, N = 1000, and ¢ = 80% (so that z= 1.28) leads to the interval [0.732,
0.767] for p, and N = 100 leads to [0.691, 0.801] for the same level of confidence.
Note that the normal distribution assumption is only valid for large N (say, N > 100).
Thus, f=75% and N = 10 leads to confidence limits [0.549, 0.881], but these should
be taken with a grain of salt.

Table 5.1 Confidence Limits for the Normal Distribution
Pr[X = z] z
0.1% 3.09
0.5% 2.58
1% 2.33
5% 1.65
10% 1.28
20% 0.84
40% 0.25

5.3 CROSS-VALIDATION

Now consider what to do when the amount of data for training and testing is limited.
The holdout method reserves a certain amount for testing and uses the remainder
for training (and sets part of that aside for validation, if required). In practical terms,
it is common to hold out one-third of the data for testing and use the remaining
two-thirds for training.

Of course, you may be unlucky: The sample used for training (or testing) might
not be representative. In general, you cannot tell whether a sample is representative
or not. But there is one simple check that might be worthwhile: Each class in the
full dataset should be represented in about the right proportion in the training and
testing sets. If, by bad luck, all examples with a certain class were omitted from
the training set, you could hardly expect a classifier learned from that data to perform
well on examples of that class—and the situation would be exacerbated by the fact
that the class would necessarily be overrepresented in the test set because none of
its instances made it into the training set! Instead, you should ensure that the random
sampling is done in a way that guarantees that each class is properly represented
in both training and test sets. This procedure is called stratification, and we might
speak of stratified holdout. While it is generally well worth doing, stratification
provides only a primitive safeguard against uneven representation in training and
test sets.

A more general way to mitigate any bias caused by the particular sample chosen
for holdout is to repeat the whole process, training and testing, several times with
different random samples. In each iteration a certain proportion, say two-thirds, of

5.3 Cross-Validation 153

the data is randomly selected for training, possibly with stratification, and the
remainder is used for testing. The error rates on the different iterations are averaged
to yield an overall error rate. This is the repeated holdout method of error rate
estimation.

In a single holdout procedure, you might consider swapping the roles of the
testing and training data—that is, train the system on the test data and test it on
the training data—and average the two results, thus reducing the effect of uneven
representation in training and test sets. Unfortunately, this is only really plausible
with a 50:50 split between training and test data, which is generally not ideal—it
is better to use more than half the data for training even at the expense of test data.
However, a simple variant forms the basis of an important statistical technique
called cross-validation. In cross-validation, you decide on a fixed number of folds,
or partitions, of the data. Suppose we use three. Then the data is split into three
approximately equal partitions; each in turn is used for testing and the remainder
is used for training. That is, use two-thirds of the data for training and one-third
for testing, and repeat the procedure three times so that in the end, every instance
has been used exactly once for testing. This is called threefold cross-validation,
and if stratification is adopted as well—which it often is—it is stratified threefold
cross-validation.

The standard way of predicting the error rate of a learning technique given a
single, fixed sample of data is to use stratified tenfold cross-validation. The data is
divided randomly into 10 parts in which the class is represented in approximately
the same proportions as in the full dataset. Each part is held out in turn and the
learning scheme trained on the remaining nine-tenths; then its error rate is calculated
on the holdout set. Thus, the learning procedure is executed a total of 10 times on
different training sets (each set has a lot in common with the others). Finally, the 10
error estimates are averaged to yield an overall error estimate.

Why 10? Extensive tests on numerous different datasets, with different learning
techniques, have shown that 10 is about the right number of folds to get the best
estimate of error, and there is also some theoretical evidence that backs this up.
Although these arguments are by no means conclusive, and debate continues to
rage in machine learning and data mining circles about what is the best scheme
for evaluation, tenfold cross-validation has become the standard method in practi-
cal terms. Tests have also shown that the use of stratification improves results
slightly. Thus, the standard evaluation technique in situations where only limited
data is available is stratified tenfold cross-validation. Note that neither the strati-
fication nor the division into 10 folds has to be exact: It is enough to divide the
data into 10 approximately equal sets in which the various class values are rep-
resented in approximately the right proportion. Moreover, there is nothing magic
about the exact number 10: 5-fold or 20-fold cross-validation is likely to be almost
as good.

A single tenfold cross-validation might not be enough to get a reliable error
estimate. Different tenfold cross-validation experiments with the same learning
scheme and dataset often produce different results because of the effect of random

154 CHAPTER 5 Credibility: Evaluating What's Been Learned

variation in choosing the folds themselves. Stratification reduces the variation, but
it certainly does not eliminate it entirely. When seeking an accurate error estimate,
it is standard procedure to repeat the cross-validation process 10 times—that is, 10
times tenfold cross-validation—and average the results. This involves invoking the
learning algorithm 100 times on datasets that are all nine-tenths the size of the
original. Getting a good measure of performance is a computation-intensive
undertaking.

5.4 OTHER ESTIMATES

Tenfold cross-validation is the standard way of measuring the error rate of a learning
scheme on a particular dataset; for reliable results, 10 times tenfold cross-validation.
But many other methods are used instead. Two that are particularly prevalent are
leave-one-out cross-validation and the bootstrap.

Leave-One-Out Cross-Validation

Leave-one-out cross-validation is simply n-fold cross-validation, where n is the
number of instances in the dataset. Each instance in turn is left out, and the learning
scheme is trained on all the remaining instances. It is judged by its correctness on
the remaining instance—one or zero for success or failure, respectively. The results
of all n judgments, one for each member of the dataset, are averaged, and that
average represents the final error estimate.

This procedure is an attractive one for two reasons. First, the greatest possible
amount of data is used for training in each case, which presumably increases the
chance that the classifier is an accurate one. Second, the procedure is deterministic:
No random sampling is involved. There is no point in repeating it 10 times, or
repeating it at all: The same result will be obtained each time. Set against this is the
high computational cost, because the entire learning procedure must be executed n
times and this is usually infeasible for large datasets. Nevertheless, leave-one-out
seems to offer a chance of squeezing the maximum out of a small dataset and getting
as accurate an estimate as possible.

But there is a disadvantage to leave-one-out cross-validation, apart from the
computational expense. By its very nature, it cannot be stratified—worse than that,
it guarantees a nonstratified sample. Stratification involves getting the correct pro-
portion of examples in each class into the test set, and this is impossible when the
test set contains only a single example. A dramatic, although highly artificial, illus-
tration of the problems this might cause is to imagine a completely random dataset
that contains exactly the same number of instances of each of two classes. The best
that an inducer can do with random data is to predict the majority class, giving a
true error rate of 50%. But in each fold of leave-one-out, the opposite class to the
test instance is in the majority—and therefore the predictions will always be incor-
rect, leading to an estimated error rate of 100%!

5.4 Other Estimates

The Bootstrap

The second estimation method we describe, the bootstrap, is based on the statistical
procedure of sampling with replacement. Previously, whenever a sample was taken
from the dataset to form a training or test set, it was drawn without replacement.
That is, the same instance, once selected, could not be selected again. It is like
picking teams for football: You cannot choose the same person twice. But dataset
instances are not like people. Most learning schemes can use the same instance
twice, and it makes a difference in the result of learning if it is present in the training
set twice. (Mathematical sticklers will notice that we should not really be talking
about “sets” at all if the same object can appear more than once.)

The idea of the bootstrap is to sample the dataset with replacement to form a
training set. We will describe a particular variant, mysteriously (but for a reason that
will soon become apparent) called the 0.632 bootstrap. For this, a dataset of n
instances is sampled # times, with replacement, to give another dataset of n instances.
Because some elements in this second dataset will (almost certainly) be repeated,
there must be some instances in the original dataset that have not been picked—we
will use these as test instances.

What is the chance that a particular instance will not be picked for the training set? It has
a 1/n probability of being picked each time and so a 1 — 1/n probability of not being
picked. Multiply these probabilities together for a sufficient number of picking
opportunities, n, and the result is a figure of

(1—1) ~e’=0.368
n

where e is the base of natural logarithms, 2.7183 (not the error rate!) This gives the
chance of a particular instance not being picked at all. Thus, for a reasonably large
dataset, the test set will contain about 36.8% of the instances and the training set will
contain about 63.2% of them (now you can see why it's called the 0.632 bootstrap).
Some instances will be repeated in the training set, bringing it up to a total size of n,
the same as in the original dataset.

The figure obtained by training a learning system on the training set and cal-
culating its error over the test set will be a pessimistic estimate of the true error
rate because the training set, although its size is n, nevertheless contains only 63%
of the instances, which is not a great deal compared, for example, with the 90%
used in tenfold cross-validation. To compensate for this, we combine the test-set
error rate with the resubstitution error on the instances in the training set. The
resubstitution figure, as we warned earlier, gives a very optimistic estimate of the
true error and should certainly not be used as an error figure on its own. But the
bootstrap procedure combines it with the test error rate to give a final estimate e
as follows:

.
155

156 CHAPTER 5 Credibility: Evaluating What's Been Learned

€= 0632 X €iest instances + 0368 X etraining instances

Then, the whole bootstrap procedure is repeated several times, with different
replacement samples for the training set, and the results are averaged.

The bootstrap procedure may be the best way of estimating the error rate for
very small datasets. However, like leave-one-out cross-validation, it has disadvan-
tages that can be illustrated by considering a special, artificial situation. In fact, the
very dataset we considered above will do: a completely random dataset with two
classes of equal size. The true error rate is 50% for any prediction rule. But a scheme
that memorized the training set would give a perfect resubstitution score of 100%,
S0 that eyaining instances = 0, and the 0.632 bootstrap will mix this in with a weight of
0.368 to give an overall error rate of only 31.6% (0.632 %X 50% + 0.368 x 0%), which
is misleadingly optimistic.

5.5 COMPARING DATA MINING SCHEMES

We often need to compare two different learning schemes on the same problem to
see which is the better one to use. It seems simple: Estimate the error using cross-
validation (or any other suitable estimation procedure), perhaps repeated several
times, and choose the scheme with the smaller estimate. This is quite sufficient in
many practical applications: If one scheme has a lower estimated error than another
on a particular dataset, the best we can do is to use the former scheme’s model.
However, it may be that the difference is simply due to estimation error, and in some
circumstances it is important to determine whether one scheme is really better than
another on a particular problem. This is a standard challenge for machine learning
researchers. If a new learning algorithm is proposed, its proponents must show that
it improves on the state of the art for the problem at hand and demonstrate that the
observed improvement is not just a chance effect in the estimation process.

This is a job for a statistical test based on confidence bounds, the kind we met
previously when trying to predict true performance from a given test-set error rate.
If there were unlimited data, we could use a large amount for training and evaluate
performance on a large independent test set, obtaining confidence bounds just as
before. However, if the difference turns out to be significant we must ensure that
this is not just because of the particular dataset we happened to base the experiment
on. What we want to determine is whether one scheme is better or worse than another
on average, across all possible training and test datasets that can be drawn from the
domain. Because the amount of training data naturally affects performance, all
datasets should be the same size. Indeed, the experiment might be repeated with
different sizes to obtain a learning curve.

For the moment, assume that the supply of data is unlimited. For definiteness,
suppose that cross-validation is being used to obtain the error estimates (other esti-
mators, such as repeated cross-validation, are equally viable). For each learning
scheme we can draw several datasets of the same size, obtain an accuracy estimate

5.5 Comparing Data Mining Schemes

for each dataset using cross-validation, and compute the mean of the estimates. Each
cross-validation experiment yields a different, independent error estimate. What we
are interested in is the mean accuracy across all possible datasets of the same size,
and whether this mean is greater for one scheme or the other.

From this point of view, we are trying to determine whether the mean of a set
of samples—cross-validation estimates for the various datasets that we sampled
from the domain—is significantly greater than, or significantly less than, the mean
of another. This is a job for a statistical device known as the -test, or Student’s t-test.
Because the same cross-validation experiment can be used for both learning schemes
to obtain a matched pair of results for each dataset, a more sensitive version of the
t-test known as a paired t-test can be used.

We need some notation. There is a set of samples x;, X, ..., X, obtained by successive
tenfold cross-validations using one learning scheme, and a second set of samples y;,
Yo, ..., Yx Obtained by successive tenfold cross-validations using the other. Each cross-
validation estimate is generated using a different dataset, but all datasets are of the same
size and from the same domain. We will get best results if exactly the same cross-
validation partitions are used for both schemes, so that x; and y; are obtained using the
same cross-validation split, as are x, and y,, and so on. Denote the mean of the first set
of samples by X and the mean of the second set by y. We are trying to determine whether
X is significantly different fromy.

If there are enough samples, the mean (x) of a set of independent samples (x;, X, ...,
X) has a normal (i.e., Gaussian) distribution, regardless of the distribution underlying the
samples themselves. Call the true value of the mean u. If we knew the variance of that
normal distribution, so that it could be reduced to have zero mean and unit variance, we
could obtain confidence limits on i given the mean of the samples (x). However, the
variance is unknown, and the only way we can obtain it is to estimate it from the set of
samples.

That is not hard to do. The variance of X can be estimated by dividing the variance
calculated from the samples X, X, ..., X—call it 6,>—by k. We can reduce the
distribution of X to have zero mean and unit variance by using

X—u
Jo, 2k

The fact that we have to estimate the variance changes things somewhat. Because the
variance is only an estimate, this does not have a normal distribution (although it does
become normal for large values of k). Instead, it has what is called a Student's
distribution with k — 1 degrees of freedom. What this means in practice is that we have to
use a table of confidence intervals for the Student’s distribution rather than the
confidence table for the normal distribution given earlier. For 9 degrees of freedom (which
is the correct number if we are using the average of 10 cross-validations) the appropriate
confidence limits are shown in Table 5.2. If you compare them with Table 5.1 you will
see that the Student’s figures are slightly more conservative—for a given degree of
confidence, the interval is slightly wider—and this reflects the additional uncertainty
caused by having to estimate the variance. Different tables are needed for different
numbers of degrees of freedom, and if there are more than 100 degrees of freedom the
confidence limits are very close to those for the normal distribution. Like Table 5.1, the
figures in Table 5.2 are for a “one-sided” confidence interval.

157

158 CHAPTER 5 Credibility: Evaluating What's Been Learned

To decide whether the means X and y, each an average of the same number k of
samples, are the same or not, we consider the differences d; between corresponding
observations, d; = x; — . This is legitimate because the observations are paired. The
mean of this difference is just the difference between the two means, d = X — ¥, and,
like the means themselves, it has a Student’s distribution with k — 1 degrees of freedom.
If the means are the same, the difference is zero (this is called the null hypothesis);
if they're significantly different, the difference will be significantly different from zero.

So for a given confidence level, we will check whether the actual difference exceeds the
confidence limit.

First, reduce the difference to a zero-mean, unit-variance variable called the t-statistic,

d

o /k
where o is the variance of the difference samples. Then, decide on a confidence
level—generally, 5% or 1% is used in practice. From this, the confidence limit z is
determined using Table 5.2 if kis 10; if it is not, a confidence table of the Student
distribution for the k value in question is used. A two-tailed test is appropriate because we
do not know in advance whether the mean of the x's is likely to be greater than that of
the y’s or vice versa; thus, for a 1% test we use the value corresponding to 0.5% in Table
5.2. If the value of t according to the last formula is greater than z or less than —z, we
reject the null hypothesis that the means are the same and conclude that there really is a
significant difference between the two learning methods on that domain for that dataset
size.

Two observations are worth making on this procedure. The first is technical: What if
the observations were not paired? That is, what if we were unable, for some reason, to
assess the error of each learning scheme on the same datasets? What if the number of
datasets for each scheme was not even the same? These conditions could arise if someone
else had evaluated one of the schemes and published several different estimates for a
particular domain and dataset size—or perhaps just their mean and variance—and we
wished to compare this with a different learning scheme. Then it is necessary to use a
regular, nonpaired t-test. Instead of taking the mean of the difference, d, we use the
difference of the means, X — y. Of course, that’'s the same thing: The mean of the
difference is the difference of the means. But the variance of the difference d is not the
same. If the variance of the samples x;, X, ..., Xc is ¢;° and the variance of the samples
Y1 Yor ooy Yo is G,

02 0/

k 4

is a good estimate of the variance of the difference of the means. It is this variance (or
rather its square root) that should be used as the denominator of the t-statistic given
previously. The degrees of freedom, necessary for consulting Student’s confidence tables,
should be taken conservatively to be the minimum of the degrees of freedom of the two
samples. Essentially, knowing that the observations are paired allows the use of a better
estimate for the variance, which will produce tighter confidence bounds.

The second observation concerns the assumption that there is essentially unlimited
data, so that several independent datasets of the right size can be used. In practice, there
is usually only a single dataset of limited size. What can be done? We could split the data
into subsets (perhaps 10) and perform a cross-validation on each one. However, the
overall result will only tell us whether a learning scheme is preferable for that particular
size—one-tenth of the original dataset. Alternatively, the original dataset could be
reused—for example, with different randomizations of the dataset for each cross-
validation. However, the resulting cross-validation estimates will not be independent

5.6 Predicting Probabilities

because they are not based on independent datasets. In practice, this means that a
difference may be judged to be significant when in fact it is not. Indeed, just increasing
the number of samples k—that is, the number of cross-validation runs—will eventually
yield an apparently significant difference because the value of the t-statistic increases
without bound.

Various modifications of the standard t-test have been proposed to circumvent this
problem, all of them heuristic and somewhat lacking in theoretical justification. One that
appears to work well in practice is the corrected resampled t-test. Assume for the moment
that the repeated holdout method is used instead of cross-validation, repeated k times on
different random splits of the same dataset to obtain accuracy estimates for two learning
schemes. Each time, n; instances are used for training and n, for testing, and differences
d; are computed from performance on the test data. The corrected resampled t-test uses
the modified statistic

d

1. m 2
— + =
(k m jo-d

in exactly the same way as the standard t-statistic. A closer look at the formula shows that
its value cannot be increased simply by increasing k. The same modified statistic can be
used with repeated cross-validation, which is just a special case of repeated holdout in
which the individual test sets for one cross-validation do not overlap. For tenfold cross-
validation repeated 10 times, k =100, n./n; = 0.1/0.9, and o, is based on 100
differences.

t=

159

Table 5.2 Confidence Limits for Student’s Distribution
with 9 Degrees of Freedom
Pr[X = Z] z
0.1% 4.30
0.5% 3.25
1% 2.82
5% 1.83
10% 1.38
20% 0.88

5.6 PREDICTING PROBABILITIES

Throughout this chapter we have tacitly assumed that the goal is to maximize the
success rate of the predictions. The outcome for each test instance is either correct,
if the prediction agrees with the actual value for that instance, or incorrect, if it does
not. There are no grays: Everything is black or white, correct or incorrect. In many
situations, this is the most appropriate perspective. If the learning scheme, when it
is actually applied, results in either a correct or an incorrect prediction, success is

160 CHAPTER 5 Credibility: Evaluating What's Been Learned

the right measure to use. This is sometimes called a 0 — [loss function: The “loss”
is either O if the prediction is correct or 1 if it is not. The use of /oss is conventional,
although a more optimistic terminology might couch the outcome in terms of profit
instead.

Other situations are softer-edged. Most learning schemes can associate a prob-
ability with each prediction (as the Naive Bayes scheme does). It might be more
natural to take this probability into account when judging correctness. For example,
a correct outcome predicted with a probability of 99% should perhaps weigh more
heavily than one predicted with a probability of 51%, and, in a two-class situation,
perhaps the latter is not all that much better than an incorrect outcome predicted
with probability 51%. Whether it is appropriate to take prediction probabilities into
account depends on the application. If the ultimate application really is just a predic-
tion of the outcome, and no prizes are awarded for a realistic assessment of the
likelihood of the prediction, it does not seem appropriate to use probabilities. If the
prediction is subject to further processing, however—perhaps involving assessment
by a person, or a cost analysis, or maybe even serving as input to a second-level
learning process—then it may well be appropriate to take prediction probabilities
into account.

Quadratic Loss Function

Suppose for a single instance there are k possible outcomes, or classes, and for
a given instance the learning scheme comes up with a probability vector p;, p,,
..., pi for the classes (where these probabilities sum to 1). The actual outcome
for that instance will be one of the possible classes. However, it is convenient
to express it as a vector a;, a,, ..., a; whose ith component, where i is the actual
class, is 1 and all other components are 0. We can express the penalty associated
with this situation as a loss function that depends on both the p vector and the
a vector.

One criterion that is frequently used to evaluate probabilistic prediction is the
quadratic loss function:

z_,(Pj _aj)2

Note that this is for a single instance: The summation is over possible outputs, not
over different instances. Just one of the a’s will be 1 and the rest 0, so the sum
contains contributions of p;* for the incorrect predictions and (1- p;)* for the correct
one. Consequently, it can be written as

l_zpi+szj2

where i is the correct class. When the test set contains several instances, the loss
function is summed over them all.

5.6 Predicting Probabilities 161

It is an interesting theoretical fact that if you seek to minimize the value of the quadratic
loss function in a situation where the actual class is generated probabilistically, the best
strategy is to choose for the p vector the actual probabilities of the different outcomes—
that is, p; = Prlclass = /1. If the true probabilities are known, they will be the best values
for p. If they are not, a system that strives to minimize the quadratic loss function will be
encouraged to use its best estimate of Pr[class = /] as the value for p;.

This is quite easy to see. Denote the true probabilities by p;*, p.*, ..., p* so that p*
= Prlclass = /1. The expected value of the quadratic loss function over test instances can
be rewritten as

E[Y (p-a)|=Y (Elp?1-2Elp;a)+Ela])
=Y, (% =2 +p)
=, (p; =P + p*1-p*)
The first stage involves bringing the expectation inside the sum and expanding the square.
For the second, p; is just a constant and the expected value of g; is simply p;*; moreover,
because a; is either 0 or 1, a? = & and its expected value is p* as well. The third stage is
straightforward algebra. To minimize the resulting sum, it is clear that it is best to choose

p; = p;¥, so that the squared term disappears and all that remains is a term that is just
the variance of the true distribution governing the actual class.

Minimizing the squared error has a long history in prediction problems. In the
present context, the quadratic loss function forces the predictor to be honest about
choosing its best estimate of the probabilities—or, rather, it gives preference to
predictors that are able to make the best guess at the true probabilities. Moreover,
the quadratic loss function has some useful theoretical properties that we will not
go into here. For all these reasons, it is frequently used as the criterion of success
in probabilistic prediction situations.

Informational Loss Function

Another popular criterion used to evaluate probabilistic prediction is the informa-
tional loss function,

—log, p;

where the ith prediction is the correct one. This is in fact identical to the negative
of the log-likelihood function that is optimized by logistic regression, described in
Section 4.6 (modulo a constant factor, which is determined by the base of the loga-
rithm). It represents the information (in bits) required to express the actual class i
with respect to the probability distribution p,, ps, ..., pi. In other words, if you were
given the probability distribution and someone had to communicate to you which
class was the one that actually occurred, this is the number of bits they would need
to encode the information if they did it as effectively as possible. (Of course, it is

162

CHAPTER 5 Credibility: Evaluating What's Been Learned

always possible to use more bits.) Because probabilities are always less than 1, their
logarithms are negative, and the minus sign makes the outcome positive. For
example, in a two-class situation—heads or tails—with an equal probability of each
class, the occurrence of a head would take 1 bit to transmit because —log, 1/2 is 1.

The expected value of the informational loss function, if the true probabilities are p,*, p.*,
oy P IS
—pi*log, p1 — p*log, po —... — pi*10g2 pi

Like the quadratic loss function, this expression is minimized by choosing p; = p/*, in
which case the expression becomes the entropy of the true distribution:

—pi*logs pi* — py*logs po” — ... — p*log, pi*

Thus, the informational loss function also rewards honesty in predictors that know the true
probabilities, and encourages predictors that do not to put forward their best guess.

One problem with the informational loss function is that if you assign a probabil-
ity of O to an event that actually occurs, the function’s value is infinity. This corre-
sponds to losing your shirt when gambling. Prudent predictors operating under the
informational loss function do not assign zero probability to any outcome. This does
lead to a problem when no information is available about that outcome on which to
base a prediction. This is called the zero-frequency problem, and various plausible
solutions have been proposed, such as the Laplace estimator discussed for Naive
Bayes in Chapter 4 (page 93).

Discussion

If you are in the business of evaluating predictions of probabilities, which of
the two loss functions should you use? That’s a good question, and there is no
universally agreed-on answer—it’s really a matter of taste. They both do the
fundamental job expected of a loss function: They give maximum reward to
predictors that are capable of predicting the true probabilities accurately. However,
there are some objective differences between the two that may help you form
an opinion.

The quadratic loss function takes into account not only the probability assigned
to the event that actually occurred but also the other probabilities. For example, in
a four-class situation, suppose you assigned 40% to the class that actually came up
and distributed the remainder among the other three classes. The quadratic loss will
depend on how you distributed it because of the sum of the p; that occurs in the
expression given earlier for the quadratic loss function. The loss will be smallest if
the 60% was distributed evenly among the three classes: An uneven distribution will
increase the sum of the squares. The informational loss function, on the other hand,
depends solely on the probability assigned to the class that actually occurred. If

5.7 Counting the Cost 163

you’re gambling on a particular event coming up, and it does, who cares about
potential winnings from other events?

If you assign a very small probability to the class that actually occurs, the infor-
mation loss function will penalize you massively. The maximum penalty, for a zero
probability, is infinite. The quadratic loss function, on the other hand, is milder, being
bounded by

1+szj2

which can never exceed 2.

Finally, proponents of the informational loss function point to a general theory
of performance assessment in learning called the minimum description length (MDL)
principle. They argue that the size of the structures that a scheme learns can be
measured in bits of information, and if the same units are used to measure the
loss, the two can be combined in useful and powerful ways. We return to this in
Section 5.9.

5.7 COUNTING THE COST

The evaluations that have been discussed so far do not take into account the cost of
making wrong decisions, wrong classifications. Optimizing the classification rate
without considering the cost of the errors often leads to strange results. In one case,
machine learning was being used to determine the exact day that each cow in a dairy
herd was in estrus, or “in heat.” Cows were identified by electronic ear tags, and
various attributes were used such as milk volume and chemical composition (recorded
automatically by a high-tech milking machine) and milking order—for cows are
regular beasts and generally arrive in the milking shed in the same order, except in
unusual circumstances such as estrus. In a modern dairy operation it’s important to
know when a cow is ready: Animals are fertilized by artificial insemination and
missing a cycle will delay calving unnecessarily, causing complications down the
line. In early experiments, machine learning schemes stubbornly predicted that each
cow was never in estrus. Like humans, cows have a menstrual cycle of approxi-
mately 30 days, so this “null” rule is correct about 97% of the time—an impressive
degree of accuracy in any agricultural domain! What was wanted, of course, was
rules that predicted the “in estrus” situation more accurately than the “not in estrus”
one: The costs of the two kinds of error were different. Evaluation by classification
accuracy tacitly assumes equal error costs.

Other examples where errors cost different amounts include loan decisions: The
cost of lending to a defaulter is far greater than the lost-business cost of refusing a
loan to a nondefaulter. And oil-slick detection: The cost of failing to detect an
environment-threatening real slick is far greater than the cost of a false alarm. And
load forecasting: The cost of gearing up electricity generators for a storm that doesn’t
hit is far less than the cost of being caught completely unprepared. And diagnosis:

164 CHAPTER 5 Credibility: Evaluating What's Been Learned

Table 5.3 Different Outcomes of a Two-Class Prediction

Predicted Class

yes no
Actual Class yes true positive false negative
no false positive true negative

The cost of misidentifying problems with a machine that turns out to be free of faults
is less than the cost of overlooking problems with one that is about to fail. And
promotional mailing: The cost of sending junk mail to a household that doesn’t
respond is far less than the lost-business cost of not sending it to a household that
would have responded. Why—these are all the examples from Chapter 1! In truth,
you’d be hard pressed to find an application in which the costs of different kinds of
errors were the same.

In the two-class case with classes yes and no—Ilend or not lend, mark a suspicious
patch as an oil slick or not, and so on—a single prediction has the four different
possible outcomes shown in Table 5.3. The true positives (TP) and true negatives
(TN) are correct classifications. A false positive (FP) is when the outcome is incor-
rectly predicted as yes (or positive) when it is actually no (negative). A false negative
(FN) is when the outcome is incorrectly predicted as negative when it is actually
positive. The true positive rate is TP divided by the total number of positives, which
is TP + FN; the false positive rate is FP divided by the total number of negatives,
which is FP + TN. The overall success rate is the number of correct classifications
divided by the total number of classifications:

TP+TN
TP+ TN +FP+FN

Finally, the error rate is 1 minus this.

In multiclass prediction, the result on a test set is often displayed as a two-
dimensional confusion matrix with a row and column for each class. Each matrix
element shows the number of test examples for which the actual class is the row
and the predicted class is the column. Good results correspond to large numbers
down the main diagonal and small, ideally zero, off-diagonal elements. Table 5.4(a)
shows a numeric example with three classes. In this case, the test set has 200
instances (the sum of the nine numbers in the matrix), and 88 + 40 + 12 = 140 of
them are predicted correctly, so the success rate is 70%.

But is this a fair measure of overall success? How many agreements would you
expect by chance? This predictor predicts a total of 120 a’s, 60 b’s, and 20 ¢’s; what
if you had a random predictor that predicted the same total numbers of the three
classes? The answer is shown in Table 5.4(b). Its first row divides the 100 a’s in the
test set into these overall proportions, and the second and third rows do the same

165

(q) (e)

0¢ 09 0ch [eioL 0¢ 09 och /eiol
oy ¥ gk e o (014 gl Ok St 2
09 9 8l 9€ q sse|n 09 9 oy 14" q sse|n
00k 0] 0e 09 e |en}oy 00k c O] 88 e |enoy
erol & q e [erol 2 q e
SSe|Q padlpaid SSe|D pardlpaid

pa1oadx3 (q) pue |enjoy (B) :UOIIDIPaId SSB|Q-924YL B JO SBWO0IINQ JUalayld #°G alqel

166 CHAPTER 5 Credibility: Evaluating What's Been Learned

thing for the other two classes. Of course, the row and column totals for this matrix
are the same as before—the number of instances hasn’t changed, and we have
ensured that the random predictor predicts the same number of a’s, b’s, and ¢’s as
the actual predictor.

This random predictor gets 60 + 18 + 4 = 82 instances correct. A measure called
the Kappa statistic takes this expected figure into account by deducting it from the
predictor’s successes and expressing the result as a proportion of the total for a
perfect predictor, to yield 140 — 82 = 58 extra successes out of a possible total of
200 — 82 =118, or 49.2%. The maximum value of Kappa is 100%, and the expected
value for a random predictor with the same column totals is 0. In summary, the
Kappa statistic is used to measure the agreement between predicted and observed
categorizations of a dataset, while correcting for an agreement that occurs by chance.
However, like the plain success rate, it does not take costs into account.

Cost-Sensitive Classification

If the costs are known, they can be incorporated into a financial analysis of the
decision-making process. In the two-class case, in which the confusion matrix is like
that of Table 5.3, the two kinds of error—false positives and false negatives—will
have different costs; likewise, the two types of correct classification may have
different benefits. In the two-class case, costs can be summarized in the form of a
2 x 2 matrix in which the diagonal elements represent the two types of correct clas-
sification and the off-diagonal elements represent the two types of error. In the
multiclass case this generalizes to a square matrix whose size is the number of
classes, and again the diagonal elements represent the cost of correct classification.
Table 5.5(a) and (b) shows default cost matrixes for the two- and three-class cases,
whose values simply give the number of errors: Misclassification costs are all 1.
Taking the cost matrix into account replaces the success rate by the average cost
(or, thinking more positively, profit) per decision. Although we will not do so here,
a complete financial analysis of the decision-making process might also take into
account the cost of using the machine learning tool—including the cost of gathering
the training data—and the cost of using the model, or decision structure, that it

Table 5.5 Default Cost Matrixes: (a) Two-Class Case and (b) Three-Class Case

Predicted Class Predicted Class

yes no a b c

Actual yes 0 1 Actual a 0 1 !
Class no 1 0 Class b 1 0 1

(a) (b)

5.7 Counting the Cost 167

produces—including the cost of determining the attributes for the test instances. If
all costs are known, and the projected number of the four different outcomes in the
cost matrix can be estimated, say using cross-validation, it is straightforward to
perform this kind of financial analysis.

Given a cost matrix, you can calculate the cost of a particular learned model on
a given test set just by summing the relevant elements of the cost matrix for the
model’s prediction for each test instance. Here, costs are ignored when making
predictions, but taken into account when evaluating them.

If the model outputs the probability associated with each prediction, it can be
adjusted to minimize the expected cost of the predictions. Given a set of predicted
probabilities for each outcome on a certain test instance, one normally selects the
most likely outcome. Instead, the model could predict the class with the smallest
expected misclassification cost. For example, suppose in a three-class situation the
model assigns the classes a, b, and ¢ to a test instance with probabilities p,, p,, and
P, and the cost matrix is that in Table 5.5(b). If it predicts a, the expected cost of
the prediction is obtained by multiplying the first column of the matrix, [0,1,1], by
the probability vector, [p,, p, pcl, yielding p, + p., or 1 — p,, because the three
probabilities sum to 1. Similarly, the costs for predicting the other two classes are
1 — p, and 1 — p,. For this cost matrix, choosing the prediction with the lowest
expected cost is the same as choosing the one with the greatest probability. For a
different cost matrix it might be different.

We have assumed that the learning scheme outputs probabilities, as Naive Bayes
does. Even if they do not normally output probabilities, most classifiers can easily
be adapted to compute them. In a decision tree, for example, the probability distribu-
tion for a test instance is just the distribution of classes at the corresponding leaf.

Cost-Sensitive Learning

We have seen how a classifier, built without taking costs into consideration, can be
used to make predictions that are sensitive to the cost matrix. In this case, costs are
ignored at training time but used at prediction time. An alternative is to do just the
opposite: Take the cost matrix into account during the training process and ignore
costs at prediction time. In principle, better performance might be obtained if the
classifier were tailored by the learning algorithm to the cost matrix.

In the two-class situation, there is a simple and general way to make any learning
scheme cost sensitive. The idea is to generate training data with a different propor-
tion of yes and no instances. Suppose you artificially increase the number of no
instances by a factor of 10 and use the resulting dataset for training. If the learning
scheme is striving to minimize the number of errors, it will come up with a decision
structure that is biased toward avoiding errors on the no instances because such
errors are effectively penalized tenfold. If data with the original proportion of no
instances is used for testing, fewer errors will be made on these than on yes
instances—that is, there will be fewer false positives than false negatives—because
false positives have been weighted 10 times more heavily than false negatives.

168 CHAPTER 5 Credibility: Evaluating What's Been Learned

Varying the proportion of instances in the training set is a general technique for
building cost-sensitive classifiers.

One way to vary the proportion of training instances is to duplicate instances in
the dataset. However, many learning schemes allow instances to be weighted. (As
we mentioned in Section 3.2, this is a common technique for handling missing
values.) Instance weights are normally initialized to 1. To build cost-sensitive clas-
sifiers the weights can be initialized to the relative cost of the two kinds of error,
false positives and false negatives.

Lift Charts

In practice, costs are rarely known with any degree of accuracy, and people will
want to ponder various different scenarios. Imagine you’re in the direct-mailing
business and are contemplating a mass mailout of a promotional offer to 1,000,000
households, most of whom won’t respond, of course. Let us say that, based on previ-
ous experience, the proportion that normally respond is known to be 0.1% (1000
respondents). Suppose a data mining tool is available that, based on known informa-
tion about the households, identifies a subset of 100,000 for which the response rate
is 0.4% (400 respondents). It may well pay off to restrict the mailout to these 100,000
households; this, of course, depends on the mailing cost compared with the return
gained for each response to the offer. In marketing terminology, the increase in
response rate, a factor of 4 in this case, is known as the /ift factor yielded by the
learning tool. If you knew the costs, you could determine the payoff implied by a
particular lift factor.

But you probably want to evaluate other possibilities too. The same data mining
scheme, with different parameter settings, may be able to identify 400,000 house-
holds for which the response rate will be 0.2% (800 respondents), corresponding
to a lift factor of 2. Again, whether this would be a more profitable target for
the mailout can be calculated from the costs involved. It may be necessary to
factor in the cost of creating and using the model, including collecting the infor-
mation that is required to come up with the attribute values. After all, if developing
the model is very expensive, a mass mailing may be more cost effective than a
targeted one.

Given a learning scheme that outputs probabilities for the predicted class of each
member of the set of test instances (as Naive Bayes does), your job is to find subsets
of test instances that have a high proportion of positive instances, higher than in
the test set as a whole. To do this, the instances should be sorted in descending
order of predicted probability of yes. Then, to find a sample of a given size with
the greatest possible proportion of positive instances, just read the requisite number
of instances off the list, starting at the top. If each test instance’s class is known,
you can calculate the lift factor by simply counting the number of positive instances
that the sample includes, dividing by the sample size to obtain a success proportion,
and dividing by the success proportion for the complete test set to determine the
lift factor.

5.7 Counting the Cost 169

. Table 5.6 shows an example,

Table 5.6 Data for a Lift Chart for a small dataset that has 150
Rank Predicted Actual Class instances, of which 50 are yes
1 0.95 ves responses—an overall success

2 0.93 yes proportion of 33%. The instances

3 0.93 no have been sorted in descending

4 0.88 yes probability order according to the

5 0.86 yes predicted probability of a yes

6 0.85 ves response. The first instance is

7 0.82 yes the one that the learning scheme

8 0.80 yes thinks is the most likely to be

9 0.80 no positive, the second is the next

10 0.79 yes most likely, and so on. The
11 0.77 no numeric values of the probabili-
12 0.76 yes ties are unimportant: Rank is the
13 0.73 yes only thing that matters. With each
14 0.65 no rank is given the actual class of
15 0.63 yes the instance. Thus, the learning
16 0.58 no scheme was correct about items 1
17 056 ves and 2—they are indeed positives—
18 0.49 o but wrong about item 3, which
19 0.48 yes turned out to be negative. Now, if
you were seeking the most prom-

ising sample of size 10, but only
knew the predicted probabilities
and not the actual classes, your best bet would be the top 10 ranking instances.
Eight of these are positive, so the success proportion for this sample is 80%,
corresponding to a lift factor of about 2.4.

If you knew the different costs involved, you could work them out for each sample
size and choose the most profitable. But a graphical depiction of the various possibili-
ties will often be far more revealing than presenting a single “optimal” decision.
Repeating the operation for different-size samples allows you to plot a lift chart like
that of Figure 5.1. The horizontal axis shows the sample size as a proportion of the
total possible mailout. The vertical axis shows the number of responses obtained. The
lower left and upper right points correspond to no mailout at all, with a response of
0, and a full mailout, with a response of 1000. The diagonal line gives the expected
result for different-size random samples. But we do not choose random samples; we
choose those instances that, according to the data mining tool, are most likely to
generate a positive response. These correspond to the upper line, which is derived by
summing the actual responses over the corresponding percentage of the instance list
sorted in probability order. The two particular scenarios described previously are
marked: a 10% mailout that yields 400 respondents and a 40% one that yields 800.

Where you’d like to be in a lift chart is near the upper left corner: At the very
best, 1000 responses from a mailout of just 1000, where you send only to those

170 CHAPTER 5 Credibility: Evaluating What's Been Learned

1000

800 +--------m-mmmmmmoooo

600 +

400 +----

Number of Respondents

200 T

0 20 40 60 80 100
Sample Size (%)

FIGURE 5.1
A hypothetical lift chart.

households that will respond and are rewarded with a 100% success rate. Any selec-
tion procedure worthy of the name will keep you above the diagonal—otherwise,
you’d be seeing a response that is worse than for random sampling. So the operating
part of the diagram is the upper triangle, and the farther to the upper left the better.

Figure 5.2(a) shows a visualization that allows various cost scenarios to be
explored in an interactive fashion (called the cost-benefit analyzer, it forms
part of the Weka workbench described in Part III). Here it is displaying results
for predictions generated by the Naive Bayes classifier on a real-world direct-
mail data set. In this example, 47,706 instances were used for training and a
further 47,706 for testing. The test instances were ranked according to the
predicted probability of a response to the mailout. The graphs show a lift chart
on the left and the total cost (or benefit), plotted against the sample size, on
the right. At the lower left is a confusion matrix; at the lower right is a cost
matrix.

Cost or benefit values associated with incorrect or correct classifications can be
entered into the matrix and affect the shape of the curve above. The horizontal slider
in the middle allows users to vary the percentage of the population that is selected
from the ranked list. Alternatively, one can determine the sample size by adjusting
the recall level (the proportion of positives to be included in the sample) or by
adjusting a threshold on the probability of the positive class, which here corresponds
to a response to the mailout. When the slider is moved, a large cross shows the cor-
responding point on both graphs. The total cost or benefit associated with the
selected sample size is shown at the lower right, along with the expected response
to a random mailout of the same size.

5.7 Counting the Cost

ANO Weka Classifier: Cost/Benefit Analysis - bayes.NaiveBayes (class = 1)
_X: Sample Size (Num) | ¥: True Positive Rate... ? X: Sample Size (Num) ﬂ | ¥: Cost/Benefit (Num) ?
[Colour: Thresheld (Num) [Select Instance 7#] [Colour: Cost/Benefit (Num) 78] [Selectinstance =
Clear) ((Open) (Save) Jitter — ("clear) (" Open) (_save Jitter (B—

Plot: ThresholdCurve Plot: Cost/Benefit Curve

Threshold
@ % of Population () % of Target (recall) () Score Threshold % of Population: 100
_ % of Target: 100
) Score Threshold: 0
Confusion Matrix Cost Matrix
Benefit: 13378
predicted (a) Predicted (b) Predicted () Predicted (b Random: 13378
Gain: 0
2402 0 Actual @): 1 15.00 0 Actual (a) \
1 5.04% 0% el = 2
45304 0 ; -0.5 Actual (b) (Minimize Cost/Benefit
I .5+ oy Al O70 — = —
Classification Accuracy: 5.035% Total Population: | 47706 O Cost @ Benefit
(@)
8.0.0 Weka Classifier: Cost/Benefit Analysis - bayes.NaiveBayes (class = 1)
X: Sample Size (Num) 78] [¥: True Positive Rate.. |8 [X: Sample Size (Num) F8] [¥: Cost/Benefit (Num) |8
| Colour: Threshold (Num) %] [select Instance 2] Colour: Cost/Benefit (Num) %] [select Instance]
'_7clear 4 € Openf fisaveﬂ\ Jitter (— € (C{elrr\ (pperniw (Savei\ Jitter (—

Plot: ThresholdCurve Plot: Cost/Benefit Curve

Threshold
® % of Population () % of Target (recall) () Score Threshold Aot Vopaietion: 40,7122
% of Target: 58.9925
Score Threshold: 0.0213
Confusion Matrix Cost Matrix
Benefit: 4560.6
Predicted (a) Predicted (b) Predicted (a) Predicted (b) Random: -99,59
I T Gain: 4660.19
1417 985, 5 P LU B
| 2.97%] 2.06% Actual (@): 1 i5i00 0 IR { Maximize Cost/Benefit)
20868 24436 -0.8 Actual (b) (Minimize Cost/Benefit)
Acty b): O SRl L L L
- 43743 I 51,200 2URHY = ! -
Classification Accuracy: 54.1923% ekl EopUiationzgi 47706 £ Cos i Benert

(b)
FIGURE 5.2

Analyzing the expected benefit of a mailing campaign when the cost of mailing is
(a) $0.50 and (b) $0.80.

.
171

172

CHAPTER 5 Credibility: Evaluating What's Been Learned

In the cost matrix in Figure 5.2(a), a cost of $0.50—the cost of mailing—has
been associated with nonrespondents and a benefit of $15.00 with respondents (after
deducting the mailing cost). Under these conditions, and using the Naive Bayes
classifier, there is no subset from the ranked list of prospects that yields a greater
profit than mailing to the entire population. However, a slightly higher mailing cost
changes the situation dramatically, and Figure 5.2(b) shows what happens when it
is increased to $0.80. Assuming the same profit of $15.00 per respondent, a maximum
profit of $4,560.60 is achieved by mailing to the top 46.7% of the population. In
this situation, a random sample of the same size achieves a loss of $99.59.

ROC Curves

Lift charts are a valuable tool, widely used in marketing. They are closely related
to a graphical technique for evaluating data mining schemes known as ROC curves,
which are used in just the same situation, where the learner is trying to select samples
of test instances that have a high proportion of positives. The acronym stands for
receiver operating characteristic, a term used in signal detection to characterize the
tradeoff between hit rate and false-alarm rate over a noisy channel. ROC curves
depict the performance of a classifier without regard to class distribution or error
costs. They plot the true positive rate on the vertical axis against the true negative
rate on the horizontal axis. The former is the number of positives included in the
sample, expressed as a percentage of the total number of positives (TP Rate =
100 x TP/(TP + FN)); the latter is the number of negatives included in the
sample, expressed as a percentage of the total number of negatives (FP Rate =
100 x FP/(FP + TN)). The vertical axis is the same as the lift chart’s except that it
is expressed as a percentage. The horizontal axis is slightly different—it is the
number of negatives rather than the sample size. However, in direct marketing situ-
ations where the proportion of positives is very small anyway (like 0.1%), there is
negligible difference between the size of a sample and the number of negatives it
contains, so the ROC curve and lift chart look very similar. As with lift charts, the
upper left corner is the place to be.

Figure 5.3 shows an example ROC curve—the jagged line—for the sample of
test data shown earlier in Table 5.6. You can follow it along with the table. From
the origin: Go up two (two positives), along one (one negative), up five (five posi-
tives), along two (two negatives), up one, along one, up two, and so on. Each point
corresponds to drawing a line at a certain position on the ranked list, counting the
yes’s and no’s above it, and plotting them vertically and horizontally, respectively.
As you go farther down the list, corresponding to a larger sample, the number of
positives and negatives both increase.

The jagged ROC line in Figure 5.3 depends intimately on the details of the par-
ticular sample of test data. This sample dependence can be reduced by applying
cross-validation. For each different number of no’s—that is, each position along the
horizontal axis—take just enough of the highest-ranked instances to include that
number of no’s, and count the number of yes’s they contain. Finally, average that

5.7 Counting the Cost

100

80 7

60 1

40 -

True Positives (%)

20 1

0 t t t t
20 40 60 80
False Positives (%)

100

FIGURE 5.3

A sample ROC curve.

number over different folds of the cross-validation. The result is a smooth curve like
that in Figure 5.3—although in reality such curves do not generally look quite so
smooth.

This is just one way of using cross-validation to generate ROC curves. A simpler
approach is to collect the predicted probabilities for all the various test sets (of which
there are 10 in a tenfold cross-validation), along with the true class labels of the
corresponding instances, and generate a single ranked list based on this data. This
assumes that the probability estimates from the classifiers built from the different
training sets are all based on equally sized random samples of the data. It is not clear
which method is preferable. However, the latter method is easier to implement.

If the learning scheme does not allow the instances to be ordered, you can first
make it cost-sensitive as described earlier. For each fold of a tenfold cross-validation,
weight the instances for a selection of different cost ratios, train the scheme on each
weighted set, count the true positives and false positives in the test set, and plot the
resulting point on the ROC axes. (It doesn’t matter whether the test set is weighted
or not because the axes in the ROC diagram are expressed as the percentage of true
and false positives.) However, for probabilistic classifiers such as Naive Bayes it is
far more costly than the method described previously because it involves a separate
learning problem for every point on the curve.

It is instructive to look at ROC curves obtained using different learning schemes.
For example, in Figure 5.4, method A excels if a small, focused sample is sought—
that is, if you are working toward the left side of the graph. Clearly, if you aim to
cover just 40% of the true positives you should choose method A, which gives a
false positive rate of around 5%, rather than method B, which gives more than 20%

173

174 CHAPTER 5 Credibility: Evaluating What's Been Learned

100
B
80 T

S ¥
7 60T
3
3 A
B 40
o 1
2
[_4

20 A

0 T T - -
0 20 40 60 80 100
False Positives (%)
FIGURE 5.4

ROC curves for two learning schemes.

false positives. But method B excels if you are planning a large sample: If you are
covering 80% of the true positives, B will give a false positive rate of 60% as com-
pared with method A’s 80%. The shaded area is called the convex hull of the two
curves, and you should always operate at a point that lies on the upper boundary of
the convex hull.

What about the region in the middle where neither method A nor method B lies
on the convex hull? It is a remarkable fact that you can get anywhere in the shaded
region by combining methods A and B and using them at random with appropriate
probabilities. To see this, choose a particular probability cutoff for method A that
gives true and false positive rates of 7, and f,, respectively, and another cutoff for
method B that gives tz and f;. If you use these two schemes at random with prob-
abilities p and ¢, where p + g = 1, then you will get true and false positive rates
of p.ty + q.t3 and p.f, + q.fz. This represents a point lying on the straight line
joining the points (t4, f4) and (7, f3), and by varying p and ¢ you can trace out the
whole line between these two points. By this device, the entire shaded region can
be reached. Only if a particular scheme generates a point that lies on the convex
hull should it be used alone. Otherwise, it would always be better to use a combi-
nation of classifiers corresponding to a point that lies on the convex hull.

Recall-Precision Curves

People have grappled with the fundamental tradeoff illustrated by lift charts and
ROC curves in a wide variety of domains. Information retrieval is a good example.
Given a query, a Web search engine produces a list of hits that represent documents

5.7 Counting the Cost 175

supposedly relevant to the query. Compare one system that locates 100 documents,
40 of which are relevant, with another that locates 400 documents, 80 of which are
relevant. Which is better? The answer should now be obvious: It depends on the
relative cost of false positives, documents returned that aren’t relevant, and false
negatives, documents that are relevant but aren’t returned. Information retrieval
researchers define parameters called recall and precision:

number of documents retrieved that are relevant
Recall =

total number of documents that are relevant

number of documents retrieved that are relevant

Precision =
total number of documents that are retrieved

For example, if the list of yes’s and no’s in Table 5.6 represented a ranked list

of retrieved documents and whether they were relevant or not, and the entire col-

lection contained a total of 40 relevant documents, then “recall at 10” would refer

to the recall for the top 10 documents—that is, 8/40 = 20%—while “precision at

10” would be 8/10 = 80%. Information retrieval experts use recall-precision curves

that plot one against the other, for different numbers of retrieved documents, in just

the same way as ROC curves and lift charts—except that, because the axes are dif-

ferent, the curves are hyperbolic in shape and the desired operating point is toward
the upper right.

Discussion

Table 5.7 summarizes the three different ways introduced for evaluating the same
basic tradeoff; TP, FP, TN, and FN are the numbers of true positives, false positives,
true negatives, and false negatives, respectively. You want to choose a set of instances
with a high proportion of yes instances and a high coverage of the yes instances:
You can increase the proportion by (conservatively) using a smaller coverage, or
(liberally) increase the coverage at the expense of the proportion. Different tech-
niques give different tradeoffs, and can be plotted as different lines on any of these
graphical charts.

People also seek single measures that characterize performance. Two that are
used in information retrieval are three-point average recall, which gives the average
precision obtained at recall values of 20%, 50%, and 80%, and 1I-point average
recall, which gives the average precision obtained at recall values of 0%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Also used in information
retrieval is the F-measure, which is

2 xrecall X precision 2xTP
recall + precision 2xTP+FP+FN

Different terms are used in different domains. Physicians, for example, talk about
the sensitivity and specificity of diagnostic tests. Sensitivity refers to the proportion

176

dd+dl

%00 X uoisioa.d
dl uoisiosid [ersLel anIno
9A0CE d] JO 918l (| Se ewes |leosy "SA |[e0sy uoleuLIoU| uoISIoaId—|[eosy
NL+dd
%00l X ——— =0 alel d
dd
N4 +dL L eldd
%001} X TR a el dl SA 818l d1 SUOIBOIUNWILLOYD aAINO DOY
%001} X NITNL ¥ v dl 927IS 19sgNs
(o) i
dd+dl 8zIS 19sgNs
seniysod enuy Jo Jequinu dl "SA dL Bunssiep veyo yr
saxy jo uoneuejdxgy soxy 101d urewoq

JJoapei] aAIleSaN 9S|e{ SNSISA BAINISO4 S|eq d}en|eA] 0} Pas() Sainsead|\ Uil £'G 9|qel

5.7 Counting the Cost 177

of people with disease who have a positive test result—that is, tp. Specificity refers
to the proportion of people without disease who have a negative test result, which
is 1 — fp. Sometimes the product of these is used as an overall measure:

TPx TN
(TP + FN) x (FP + TN)

sensitivity X specificity = tp(1 - fp) =

Finally, of course, there is our old friend the success rate:

TP+ TN
TP +FP + TN +FN

To summarize ROC curves in a single quantity, people sometimes use the area
under the curve (AUC) because, roughly speaking, the larger the area the better the
model. The area also has a nice interpretation as the probability that the classifier
ranks a randomly chosen positive instance above a randomly chosen negative one.
Although such measures may be useful if costs and class distributions are unknown
and one scheme must be chosen to handle all situations, no single number is able to
capture the tradeoff. That can only be done by two-dimensional depictions such as
lift charts, ROC curves, and recall-precision diagrams.

Several methods are commonly employed for computing the area under the ROC
curve. One, corresponding to a geometric interpretation, is to approximate it by
fitting several trapezoids under the curve and summing up their area. Another is to
compute the probability that the classifier ranks a randomly chosen positive instance
above a randomly chosen negative one. This can be accomplished by calculating the
Mann—Whitney U statistic, or, more specifically, the p statistic from the U statistic.
This value is easily obtained from a list of test instances sorted in descending order
of predicted probability of the positive class. For each positive instance, count how
many negative ones are ranked below it (increase the count by)5 if positive and
negative instances tie in rank). The U statistic is simply the total of these counts.
The p statistic is obtained by dividing U by the product of the number of positive
and negative instances in the test set—in other words, the U value that would result
if all positive instances were ranked above the negative ones.

The area under the precision—-recall curve (AUPRC) is an alternative summary
statistic that is preferred by some practitioners, particularly in the information
retrieval area.

Cost Curves

ROC curves and their relatives are very useful for exploring the tradeoffs among
different classifiers over a range of scenarios. However, they are not ideal for evalu-
ating machine learning models in situations with known error costs. For example,
it is not easy to read off the expected cost of a classifier for a fixed cost matrix and
class distribution. Neither can you easily determine the ranges of applicability of
different classifiers. For example, from the crossover point between the two ROC

178

Expected Error

S
-

0.5

CHAPTER 5 Credibility: Evaluating What's Been Learned

curves in Figure 5.4 it is hard to tell for what cost and class distributions classifier
A outperforms classifier B.

Cost curves are a different kind of display on which a single classifier corre-
sponds to a straight line that shows how the performance varies as the class distribu-
tion changes. Again, they work best in the two-class case, although you can always
make a multiclass problem into a two-class one by singling out one class and evalu-
ating it against the remaining ones.

Figure 5.5(a) plots the expected error against the probability of one of the classes.
You could imagine adjusting this probability by resampling the test set in a non-
uniform way. We denote the two classes by + and —. The diagonals show the per-
formance of two extreme classifiers: One always predicts +, giving an expected error
of 1 if the dataset contains no + instances and O if all its instances are +; the other
always predicts —, giving the opposite performance. The dashed horizontal line
shows the performance of the classifier that is always wrong, and the x-axis itself
represents the classifier that is always correct. In practice, of course, neither of these
is realizable. Good classifiers have low error rates, so where you want to be is as
close to the bottom of the diagram as possible.

The line marked A represents the error rate of a particular classifier. If you cal-
culate its performance on a certain test set, its false positive rate, fp, is its expected
error on a subsample of the test set that contains only examples that are negative
(p[+] = 0), and its false negative rate, fn, is the error on a subsample that contains
only positive examples, (p[+] = 1). These are the values of the intercepts at the left
and right, respectively. You can see immediately from the plot that if p[+] is smaller
than about 0.2, predictor A is outperformed by the extreme classifier that always
predicts —, while if it is larger than about 0.65, the other extreme classifier is better.

e 0.5 7
Always pick +

S Alwa};s pick —

0.25

fn

Normalized Expected Cost

- Always right

T T
0 0.5 1 0 0.5 1
Probability, p [+] Probability Cost Function, p. [+]

(a) (b)
FIGURE 5.5

Effect of varying the probability threshold: (a) error curve and (b) cost curve.

5.7 Counting the Cost 179

So far we have not taken costs into account, or rather we have used the default
cost matrix in which all errors cost the same. Cost curves, which do take cost into
account, look very similar—very similar indeed—but the axes are different. Figure
5.5(b) shows a cost curve for the same classifier A (note that the vertical scale has
been enlarged, for convenience, and ignore the gray lines for now). It plots the
expected cost of using A against the probability cost function, which is a distorted
version of p[+] that retains the same extremes: 0 when p[+] = 0 and 1 when
pl+] = 1. Denote by C[+ | —] the cost of predicting + when the instance is actually
—, and the reverse by C[- | +]. Then the axes of Figure 5.5(b) are

Normalized expected cost = fin X pc[+]+ fo X (1— pc[+])

Probability cost function pc[+]= PLHCIZ]

pI+ICI=1+]+ p[=]C[+1-]
We are assuming here that correct predictions have no cost: C[+ | +] = C[- | -] = 0.
If that is not the case, the formulas are a little more complex.

The maximum value that the normalized expected cost can have is 1—that is
why it is “normalized.” One nice thing about cost curves is that the extreme cost
values at the left and right sides of the graph are fp and fn, just as they are for the
error curve, so you can draw the cost curve for any classifier very easily.

Figure 5.5(b) also shows classifier B, whose expected cost remains the same
across the range—that is, its false positive and false negative rates are equal. As you
can see, it outperforms classifier A if the probability cost function exceeds about
0.45, and knowing the costs we could easily work out what this corresponds to in
terms of class distribution. In situations that involve different class distributions,
cost curves make it easy to tell when one classifier will outperform another.

In what circumstances might this be useful? To return to our example of predict-
ing when cows will be in estrus, their 30-day cycle, or 1/30 prior probability, is
unlikely to vary greatly (barring a genetic cataclysm!). But a particular herd may
have different proportions of cows that are likely to reach estrus in any given week,
perhaps synchronized with—who knows?—the phase of the moon. Then, different
classifiers would be appropriate at different times. In the oil spill example, different
batches of data may have different spill probabilities. In these situations cost curves
can help to show which classifier to use when.

Each point on a lift chart, ROC curve, or recall-precision curve represents a
classifier, typically obtained by using different threshold values for a method such
as Naive Bayes. Cost curves represent each classifier by a straight line, and a suite
of classifiers will sweep out a curved envelope whose lower limit shows how well
that type of classifier can do if the parameter is well chosen. Figure 5.5(b) indicates
this with a few gray lines. If the process were continued, it would sweep out the
dotted parabolic curve.

The operating region of classifier B ranges from a probability cost value of about
0.25 to a value of about 0.75. Outside this region, classifier B is outperformed by
the trivial classifiers represented by dashed lines. Suppose we decide to use classifier

180 CHAPTER 5 Credibility: Evaluating What's Been Learned

B within this range and the appropriate trivial classifier below and above it. All
points on the parabola are certainly better than this scheme. But how much better?
It is hard to answer such questions from an ROC curve, but the cost curve makes
them easy. The performance difference is negligible if the probability cost value is
around 0.5, and below a value of about 0.2 and above 0.8 it is barely perceptible.
The greatest difference occurs at probability cost values of 0.25 and 0.75 and is
about 0.04, or 4% of the maximum possible cost figure.

5.8 EVALUATING NUMERIC PREDICTION

All the evaluation measures we have described pertain to classification situations
rather than numeric prediction situations. The basic principles—using an indepen-
dent test set rather than the training set for performance evaluation, the holdout
method, cross-validation—apply equally well to numeric prediction. But the basic
quality measure offered by the error rate is no longer appropriate: Errors are not
simply present or absent; they come in different sizes.

Several alternative measures, some of which are summarized in Table 5.8, can be
used to evaluate the success of numeric prediction. The predicted values on the test
instances are p, pa, ..., p,; the actual values are a,, a,, ..., a,. Notice that p; means

Table 5.8 Performance Measures for Numeric Prediction

Mean-squared error (o1 —a)f +...+(p,—a)
n
Root mean-squared error \/(Dw —a)f +...+ (o —a)
n
Mean-absolute error oy —a| +...+ Py — &
n
Relative-squared error* (or—a)f +...+(Pn—a.)

(ay—ay +...+(a,—a)y

Root relative-squared error* \/(Pw —af +...+ (o, —a)
(@ —ay +...+(a,—a)

Di—a|+...+|p, —an|
la;—al+...+|a, — a|

Relative-absolute error*

Y (o -Pla -3)

S
Z— where g, == PMY T

VSpSa n-1
Xp-pf o _X(a-dr

n-1 ’ n-1

Correlation coefficient*

sz

*Here, a is the mean value over the training data.
**Here, a is the mean value over the test data.

5.8 Evaluating Numeric Prediction 181

something very different here from what it meant in the last section: There it was
the probability that a particular prediction was in the ith class; here it refers to the
numerical value of the prediction for the ith test instance.

Mean-squared error is the principal and most commonly used measure; some-
times the square root is taken to give it the same dimensions as the predicted value
itself. Many mathematical techniques (such as linear regression, explained in Chapter
4) use the mean-squared error because it tends to be the easiest measure to manipu-
late mathematically: It is, as mathematicians say, “well behaved.” However, here we
are considering it as a performance measure: All the performance measures are easy
to calculate, so mean-squared error has no particular advantage. The question is, is
it an appropriate measure for the task at hand?

Mean absolute error is an alternative: Just average the magnitude of the indi-
vidual errors without taking account of their sign. Mean-squared error tends to
exaggerate the effect of outliers—instances when the prediction error is larger than
the others—but absolute error does not have this effect: All sizes of error are treated
evenly according to their magnitude.

Sometimes it is the relative rather than absolute error values that are of impor-
tance. For example, if a 10% error is equally important whether it is an error of 50
in a prediction of 500 or an error of 0.2 in a prediction of 2, then averages of absolute
error will be meaningless—relative errors are appropriate. This effect would be taken
into account by using the relative errors in the mean-squared error calculation or the
mean absolute error calculation.

Relative squared error in Table 5.8 refers to something quite different. The error
is made relative to what it would have been if a simple predictor had been used. The
simple predictor in question is just the average of the actual values from the training
data, denoted by a. Thus, relative squared error takes the total squared error and
normalizes it by dividing by the total squared error of the default predictor. The root
relative squared error is obtained in the obvious way.

The next error measure goes by the glorious name of relative absolute error and
is just the total absolute error, with the same kind of normalization. In these three
relative error measures, the errors are normalized by the error of the simple predictor
that predicts average values.

The final measure in Table 5.8 is the correlation coefficient, which measures the
statistical correlation between the a’s and the p’s. The correlation coefficient ranges
from 1 for perfectly correlated results, through 0 when there is no correlation, to —1
when the results are perfectly correlated negatively. Of course, negative values
should not occur for reasonable prediction methods. Correlation is slightly different
from the other measures because it is scale independent in that, if you take a particu-
lar set of predictions, the error is unchanged if all the predictions are multiplied by
a constant factor and the actual values are left unchanged. This factor appears in
every term of Sp, in the numerator and in every term of S, in the denominator, thus
canceling out. (This is not true for the relative error figures, despite normalization:
If you multiply all the predictions by a large constant, then the difference between
the predicted and actual values will change dramatically, as will the percentage

182

CHAPTER 5 Credibility: Evaluating What's Been Learned

errors.) It is also different in that good performance leads to a large value of the
correlation coefficient, whereas because the other methods measure error, good
performance is indicated by small values.

Which of these measures is appropriate in any given situation is a matter
that can only be determined by studying the application itself. What are we
trying to minimize? What is the cost of different kinds of error? Often it is not
easy to decide. The squared error measures and root-squared error measures
weigh large discrepancies much more heavily than small ones, whereas the abso-
lute error measures do not. Taking the square root (root mean-squared error) just
reduces the figure to have the same dimensionality as the quantity being predicted.
The relative error figures try to compensate for the basic predictability or unpre-
dictability of the output variable: If it tends to lie fairly close to its average
value, then you expect prediction to be good and the relative figure compensates
for this. Otherwise, if the error figure in one situation is far greater than in
another situation, it may be because the quantity in the first situation is inher-
ently more variable and therefore harder to predict, not because the predictor is
any worse.

Fortunately, it turns out that in most practical situations the best numerical
prediction method is still the best no matter which error measure is used. For
example, Table 5.9 shows the result of four different numeric prediction techniques
on a given dataset, measured using cross-validation. Method D is the best accord-
ing to all five metrics: It has the smallest value for each error measure and the
largest correlation coefficient. Method C is the second best by all five metrics.
The performance of A and B is open to dispute: They have the same correlation
coefficient; A is better than B according to mean-squared and relative squared
errors, and the reverse is true for absolute and relative absolute error. It is likely
that the extra emphasis that the squaring operation gives to outliers accounts for
the differences in this case.

When comparing two different learning schemes that involve numeric prediction,
the methodology developed in Section 5.5 still applies. The only difference is that
success rate is replaced by the appropriate performance measure (e.g., root mean-
squared error) when performing the significance test.

Table 5.9 Performance Measures for Four Numeric Prediction Models

A B (o3 D
Root mean-squared error 67.8 91.7 63.3 57.4
Mean absolute error 41.3 38.5 33.4 29.2
Root relative squared error 42.2% 57.2% 39.4% 35.8%
Relative absolute error 43.1% 40.1% 34.8% 30.4%
Correlation coefficient 0.88 0.88 0.89 0.91

5.9 Minimum Description Length Principle 183

5.9 MINIMUM DESCRIPTION LENGTH PRINCIPLE

What is learned by a machine learning scheme is a kind of “theory” of the domain
from which the examples are drawn, a theory that is predictive in that it is capable
of generating new facts about the domain—in other words, the class of unseen
instances. Theory is rather a grandiose term: We are using it here only in the sense
of a predictive model. Thus, theories might comprise decision trees or sets of
rules—they don’t have to be any more “theoretical” than that.

There is a long-standing tradition in science that, other things being equal,
simple theories are preferable to complex ones. This is known as Occam’s Razor
after the medieval philosopher William of Occam (or Ockham). Occam’s Razor
shaves philosophical hairs off a theory. The idea is that the best scientific theory
is the smallest one that explains all the facts. As Einstein is reputed to have said,
“Everything should be made as simple as possible, but no simpler.” Of course,
quite a lot is hidden in the phrase “other things being equal,” and it can be hard
to assess objectively whether a particular theory really does “explain” all the facts
on which it is based—that’s what controversy in science is all about.

In our case, in machine learning, most theories make errors. And if what is
learned is a theory, then the errors it makes are like exceptions to the theory. One
way to ensure that other things are equal is to insist that the information embodied
in the exceptions is included as part of the theory when its “simplicity” is judged.

Imagine an imperfect theory for which there are a few exceptions. Not all the
data is explained by the theory, but most is. What we do is simply adjoin the
exceptions to the theory, specifying them explicitly as exceptions. This new theory
is larger: That is a price that, quite justifiably, has to be paid for its inability to
explain all the data. However, it may be that the simplicity—is it too much to call
it elegance?—of the original theory is sufficient to outweigh the fact that it does
not quite explain everything compared with a large, baroque theory that is more
comprehensive and accurate.

For example, even though Kepler’s three laws of planetary motion did not at the
time account for the known data quite so well as Copernicus’ latest refinement of
the Ptolemaic theory of epicycles, they had the advantage of being far less complex,
and that would have justified any slight apparent inaccuracy. Kepler was well aware
of the benefits of having a theory that was compact, despite the fact that his theory
violated his own aesthetic sense because it depended on “ovals” rather than pure
circular motion. He expressed this in a forceful metaphor: “T have cleared the Augean
stables of astronomy of cycles and spirals, and left behind me only a single cartload
of dung.”

The minimum description length, or MDL, principle takes the stance that the best
theory for a body of data is one that minimizes the size of the theory plus the amount
of information necessary to specify the exceptions relative to the theory—the small-
est “cartload of dung.” In statistical estimation theory, this has been applied success-
fully to various parameter-fitting problems. It applies to machine learning as follows:
Given a set of instances, a learning scheme infers a theory—be it ever so simple;

184 CHAPTER 5 Credibility: Evaluating What's Been Learned

unworthy, perhaps, to be called a “theory”—from them. Using a metaphor of com-
munication, imagine that the instances are to be transmitted through a noiseless
channel. Any similarity that is detected among them can be exploited to give a more
compact coding. According to the MDL principle, the best theory is the one that
minimizes the number of bits required to communicate the theory, along with the
labels of the examples from which it was made.

Now the connection with the informational loss function introduced in Section
5.6 should be starting to emerge. That function measures the error in terms of the
number of bits required to transmit the instances’ class labels, given the probabi-
listic predictions made by the theory. According to the MDL principle, we need
to add to this the “size” of the theory in bits, suitably encoded, to obtain an overall
figure for complexity. However, the MDL principle refers to the information required
to transmit the examples from which the theory was formed—that is, the training
instances, not a test set. The overfitting problem is avoided because a complex
theory that overfits will be penalized relative to a simple one by virtue of the fact
that it takes more bits to encode. At one extreme is a very complex, highly over-
fitted theory that makes no errors on the training set. At the other is a very simple
theory—the null theory—which does not help at all when transmitting the training
set. And in between are theories of intermediate complexity, which make proba-
bilistic predictions that are imperfect and need to be corrected by transmitting
some information about the training set. The MDL principle provides a means of
comparing all these possibilities on an equal footing to see which is the best. We
have found the holy grail: an evaluation scheme that works on the training set
alone and does not need a separate test set. But the devil is in the details, as we
will see.

Suppose a learning scheme comes up with a theory 7, based on a training
set E of examples, that requires a certain number of bits L[7] to encode, where
L is for length. We are only interested in predicting class labels correctly, so we
assume that E stands for the collection of class labels in the training set. Given
the theory, the training set itself can be encoded in a certain number of
bits, L[E | T]. L[E | T] is in fact given by the informational loss function summed
over all members of the training set. Then the total description length of theory
plus training set is

L[T]+L[EIT]

and the MDL principle recommends choosing the theory 7 that minimizes this sum.

There is a remarkable connection between the MDL principle and basic probabil-
ity theory. Given a training set E, we seek the “most likely” theory 7—that is,
the theory for which the a posteriori probability Pr[7' | E]—the probability after the
examples have been seen—is maximized. Bayes’ rule of conditional probability
(the very same rule that we encountered in Section 4.2) dictates that

Pr[EIT]Pr[T]

Pr[T | E]= PiE]

5.9 Minimum Description Length Principle 185

Taking negative logarithms,
—logPr[T | E]=—logPr[E | T]—1ogPr[T]+log Pr[E]

Maximizing the probability is the same as minimizing its negative logarithm.
Now (as we saw in Section 5.6) the number of bits required to code something is just
the negative logarithm of its probability. Furthermore, the final term, log Pr[E],
depends solely on the training set and not on the learning method. Thus, choosing the
theory that maximizes the probability Pr[7'| E] is tantamount to choosing the theory
that minimizes

LIEIT)+L[T]

In other words, the MDL principle!

This astonishing correspondence with the notion of maximizing the a posteriori
probability of a theory after the training set has been taken into account gives cre-
dence to the MDL principle. But it also points out where the problems will sprout
when the principle is applied in practice. The difficulty with applying Bayes’ rule
directly is in finding a suitable prior probability distribution Pr[7] for the theory. In
the MDL formulation, that translates into finding how to code the theory 7 into bits
in the most efficient way. There are many ways of coding things, and they all depend
on presuppositions that must be shared by encoder and decoder. If you know in
advance that the theory is going to take a certain form, you can use that information
to encode it more efficiently. How are you going to actually encode 77 The devil is
in the details.

Encoding E with respect to T to obtain L[E | 7] seems a little more straightfor-
ward: We have already met the informational loss function. But actually, when you
encode one member of the training set after another, you are encoding a sequence
rather than a ser. It is not necessary to transmit the training set in any particular
order, and it ought to be possible to use that fact to reduce the number of bits
required. Often, this is simply approximated by subtracting log n!/ (where n is the
number of elements in E), which is the number of bits needed to specify a particular
permutation of the training set (and because this is the same for all theories, it doesn’t
actually affect the comparison between them). But one can imagine using the fre-
quency of the individual errors to reduce the number of bits needed to code them.
Of course, the more sophisticated the method that is used to code the errors, the less
the need for a theory in the first place—so whether a theory is justified or not depends
to some extent on how the errors are coded. The details, the details.

We end this section as we began, on a philosophical note. It is important to
appreciate that Occam’s Razor, the preference of simple theories over complex ones,
has the status of a philosophical position or “axiom” rather than something that can
be proven from first principles. While it may seem self-evident to us, this is a func-
tion of our education and the times we live in. A preference for simplicity is—or
may be—culture specific rather than absolute.

186 CHAPTER 5 Credibility: Evaluating What's Been Learned

The Greek philosopher Epicurus (who enjoyed good food and wine and suppos-
edly advocated sensual pleasure—in moderation—as the highest good) expressed
almost the opposite sentiment. His principle of multiple explanations advises that “If
more than one theory is consistent with the data, keep them all” on the basis that if
several explanations are equally in agreement, it may be possible to achieve a higher
degree of precision by using them together—and, anyway, it would be unscientific to
discard some arbitrarily. This brings to mind instance-based learning, in which all the
evidence is retained to provide robust predictions, and resonates strongly with deci-
sion combination methods such as bagging and boosting (described in Chapter 8)
that actually do gain predictive power by using multiple explanations together.

5.10 APPLYING THE MDL PRINCIPLE TO CLUSTERING

One of the nice things about the minimum description length principle is that, unlike
other evaluation criteria, it can be applied under widely different circumstances.
Although in some sense equivalent to Bayes’ rule in that, as we have seen, devising
a coding scheme for theories is tantamount to assigning them a prior probability
distribution, schemes for coding are somehow far more tangible and easier to think
about in concrete terms than intuitive prior probabilities. To illustrate this we will
briefly describe—without entering into coding details—how you might go about
applying the MDL principle to clustering.

Clustering seems intrinsically difficult to evaluate. Whereas classification or
association learning has an objective criterion of success—predictions made on test
cases are either right or wrong—this is not so with clustering. It seems that the only
realistic evaluation is whether the result of learning—the clustering—proves useful
in the application context. (It is worth pointing out that really this is the case for all
types of learning, not just clustering.)

Despite this, clustering can be evaluated from a description-length perspective.
Suppose a cluster-learning technique divides the training set E into k clusters. If
these clusters are natural ones, it should be possible to use them to encode E more
efficiently. The best clustering will support the most efficient encoding.

One way of encoding the instances in E with respect to a given clustering is to
start by encoding the cluster centers—the average value of each attribute over all
instances in the cluster. Then, for each instance in E, transmit which cluster it belongs
to (in log, k bits) followed by its attribute values with respect to the cluster center—
perhaps as the numeric difference of each attribute value from the center. Couched
as it is in terms of averages and differences, this description presupposes numeric
attributes and raises thorny questions of how to code numbers efficiently. Nominal
attributes can be handled in a similar manner: For each cluster there is a probability
distribution for the attribute values, and the distributions are different for different
clusters. The coding issue becomes more straightforward: Attribute values are coded
with respect to the relevant probability distribution, a standard operation in data
compression.

5.11 Further Reading 187

If the data exhibits extremely strong clustering, this technique will result in a
smaller description length than simply transmitting the elements of E without any
clusters. However, if the clustering effect is not so strong, it will likely increase
rather than decrease the description length. The overhead of transmitting cluster-
specific distributions for attribute values will more than offset the advantage gained
by encoding each training instance relative to the cluster it lies in. This is where
more sophisticated coding techniques come in. Once the cluster centers have been
communicated, it is possible to transmit cluster-specific probability distributions
adaptively, in tandem with the relevant instances: The instances themselves help to
define the probability distributions, and the probability distributions help to define
the instances. We will not venture further into coding techniques here. The point is
that the MDL formulation, properly applied, may be flexible enough to support the
evaluation of clustering. But actually doing it satisfactorily in practice is not easy.

5.11 FURTHER READING

The statistical basis of confidence tests is well covered in most statistics texts, which
also give tables of the normal distribution and Student’s distribution. (We use an
excellent course text by Wild and Seber (1995) that we recommend very strongly if
you can get hold of it.) “Student” is the nom de plume of a statistician called William
Gosset, who obtained a post as a chemist in the Guinness brewery in Dublin, Ireland,
in 1899 and invented the #-test to handle small samples for quality control in
brewing. The corrected resampled #-test was proposed by Nadeau and Bengio (2003).
Cross-validation is a standard statistical technique, and its application in machine
learning has been extensively investigated and compared with the bootstrap by
Kohavi (1995a). The bootstrap technique itself is thoroughly covered by Efron and
Tibshirani (1993).

The Kappa statistic was introduced by Cohen (1960). Ting (2002) has investi-
gated a heuristic way of generalizing to the multiclass case the algorithm given in
Section 5.7 to make two-class learning schemes cost sensitive. Lift charts are
described by Berry and Linoft (1997). The use of ROC analysis in signal detection
theory is covered by Egan (1975); this work has been extended for visualizing and
analyzing the behavior of diagnostic systems (Swets, 1988) and is also used in
medicine (Beck and Schultz, 1986). Provost and Fawcett (1997) brought the idea of
ROC analysis to the attention of the machine learning and data mining community.
Witten et al. (1999b) explain the use of recall and precision in information retrieval
systems; the F-measure is described by van Rijsbergen (1979). Drummond and Holte
(2000) introduced cost curves and investigated their properties.

The MDL principle was formulated by Rissanen (1985). Kepler’s discovery of
his economical three laws of planetary motion, and his doubts about them, are
recounted by Koestler (1964).

Epicurus’ principle of multiple explanations is mentioned by Li and Vityani
(1992), quoting from Asmis (1984).

This page intentionally left blank

PART

Advanced Data
Mining II

This page intentionally left blank

CHAPTER

Implementations: Real
Machine Learning Schemes

We have seen the basic ideas of several machine learning methods and studied in
detail how to assess their performance on practical data mining problems. Now we
are well prepared to look at real, industrial-strength, machine learning algorithms.
Our aim is to explain these algorithms both at a conceptual level and with a fair
amount of technical detail so that you can understand them fully and appreciate the
key implementation issues that arise.

In truth, there is a world of difference between the simplistic methods described
in Chapter 4 and the actual algorithms that are widely used in practice. The principles
are the same. So are the inputs and outputs—methods of knowledge representation.
But the algorithms are far more complex, principally because they have to deal
robustly and sensibly with real-world problems such as numeric attributes, missing
values, and—most challenging of all—noisy data. To understand how the various
schemes cope with noise, we will have to draw on some of the statistical knowledge
that we learned in Chapter 5.

Chapter 4 opened with an explanation of how to infer rudimentary rules and then
examined statistical modeling and decision trees. Then we returned to rule induction
and continued with association rules, linear models, the nearest-neighbor method of
instance-based learning, and clustering. This chapter develops all these topics.

We begin with decision tree induction and work up to a full description of the
C4.5 system, a landmark decision tree program that is probably the machine learning
workhorse most widely used in practice to date. Then we describe decision rule
induction. Despite the simplicity of the idea, inducing decision rules that perform
comparably with state-of-the-art decision trees turns out to be quite difficult in
practice. Most high-performance rule inducers find an initial rule set and then refine
it using a rather complex optimization stage that discards or adjusts individual rules
to make them work better together. We describe the ideas that underlie rule learning
in the presence of noise and then go on to cover a scheme that operates by forming
partial decision trees, an approach that has been demonstrated to perform well while
avoiding complex and ad hoc heuristics. Following this, we take a brief look at how
to generate rules with exceptions, which were described in Section 3.4, and examine
fast data structures for learning association rules.

There has been a resurgence of interest in linear models with the introduction of
support vector machines, a blend of linear modeling and instance-based learning.

Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

191

192

CHAPTER 6 Implementations: Real Machine Learning Schemes

Support vector machines select a small number of critical boundary instances called
support vectors from each class and build a linear discriminant function that sepa-
rates them as widely as possible. This instance-based approach transcends the limita-
tions of linear boundaries by making it practical to include extra nonlinear terms in
the function, making it possible to form quadratic, cubic, and higher-order decision
boundaries. The same techniques can be applied to the perceptron described in
Section 4.6 to implement complex decision boundaries, and also to least squares
regression. An older technique for extending the perceptron is to connect units
together into multilayer “neural networks.” All of these ideas are described in
Section 6.4.

Section 6.5 describes classic instance-based learners, developing the simple
nearest-neighbor method introduced in Section 4.7 and showing some more pow-
erful alternatives that perform explicit generalization. Following that we extend
linear regression for numeric prediction to a more sophisticated procedure that
comes up with the tree representation introduced in Section 3.3 and go on to
describe locally weighted regression, an instance-based strategy for numeric pre-
diction. Then we examine Bayesian networks, a potentially very powerful way of
extending the Naive Bayes method to make it less “naive” by dealing with datasets
that have internal dependencies. Next we return to clustering and review some
methods that are more sophisticated than simple k-means, methods that produce
hierarchical clusters and probabilistic clusters. We also look at semi-supervised
learning, which can be viewed as combining clustering and classification. Finally,
we discuss more advanced schemes for multi-instance learning than those covered
in Section 4.9.

Because of the nature of the material it contains, this chapter differs from the
others in the book. Sections can be read independently, and each is self-contained,
including the references to further reading, which are gathered together in Discus-
sion sections.

6.1 DECISION TREES

The first machine learning scheme that we will develop in detail, the C4.5 algorithm,
derives from the simple divide-and-conquer algorithm for producing decision trees
that was described in Section 4.3. It needs to be extended in several ways before it
is ready for use on real-world problems. First, we consider how to deal with numeric
attributes and, after that, missing values. Then we look at the all-important problem
of pruning decision trees, because although trees constructed by the divide-and-
conquer algorithm as described perform well on the training set, they are usually
overfitted to the training data and do not generalize well to independent test sets.
We then briefly consider how to convert decision trees to classification rules and
examine the options provided by the C4.5 algorithm itself. Finally, we look at an
alternative pruning strategy that is implemented in the famous CART system for
learning classification and regression trees.

6.1 Decision Trees 193

Numeric Attributes

The method we described in Section 4.3 only works when all the attributes are
nominal, whereas, as we have seen, most real datasets contain some numeric attri-
butes. It is not too difficult to extend the algorithm to deal with these. For a numeric
attribute we will restrict the possibilities to a two-way, or binary, split. Suppose we
use the version of the weather data that has some numeric features (see Table 1.3).
Then, when temperature is being considered for the first split, the temperature values
involved are

64 65 68 69 70 71 72 75 80 81 83 85
ves no ves ves ves no no ves no ves ves no
ves ves

Repeated values have been collapsed together, and there are only 11 possible posi-
tions for the breakpoint—=8 if the breakpoint is not allowed to separate items of the
same class. The information gain for each can be calculated in the usual way. For
example, the test temperature < 71.5 produces four yes’s and two no’s, whereas
temperature > 71.5 produces five yes’s and three no’s, and so the information value
of this test is

info([4, 21,5, 3]) = (6/14) X info([4, 2]) + (8/14) X info([3, 3]) = 0.939 bits

It is common to place numeric thresholds halfway between the values that delimit
the boundaries of a concept, although something might be gained by adopting a more
sophisticated policy. For example, we will see in the following that although the
simplest form of instance-based learning puts the dividing line between concepts in
the middle of the space between them, other methods that involve more than just
the two nearest examples have been suggested.

When creating decision trees using the divide-and-conquer method, once the
first attribute to split on has been selected, a top-level tree node is created that
splits on that attribute, and the algorithm proceeds recursively on each of the child
nodes. For each numeric attribute, it appears that the subset of instances at each
child node must be re-sorted according to that attribute’s values—and, indeed, this
is how programs for inducing decision trees are usually written. However, it is
not actually necessary to re-sort because the sort order at a parent node can be
used to derive the sort order for each child, leading to a speedier implementation.
Consider the temperature attribute in the weather data, whose sort order (this time
including duplicates) is

64 65 68 ©69 70 71 72 72 75 75 80 81 83 85
7 6 5 9 4 4 8 12 10 11 2 3 3 1

The italicized numbers below each temperature value give the number of the
instance that has that value. Thus, instance number 7 has temperature value 64,
instance 6 has temperature 65, and so on. Suppose we decide to split at the top level

194 CHAPTER 6 Implementations: Real Machine Learning Schemes

on the attribute outlook. Consider the child node for which outlook = sunny—in fact,
the examples with this value of outlook are numbers 1, 2, 8, 9, and 11. If the italicized
sequence is stored with the example set (and a different sequence must be stored for
each numeric attribute)—that is, instance 7 contains a pointer to instance 6, instance
6 points to instance 5, instance 5 points to instance 9, and so on—then it is a simple
matter to read off the examples for which outlook = sunny in order. All that is neces-
sary is to scan through the instances in the indicated order, checking the outlook
attribute for each and writing down the ones with the appropriate value:

9 8 11 2 1

Thus, repeated sorting can be avoided by storing with each subset of instances the
sort order for that subset according to each numeric attribute. The sort order must
be determined for each numeric attribute at the beginning; no further sorting is
necessary thereafter.

When a decision tree tests a nominal attribute as described in Section 4.3, a
branch is made for each possible value of the attribute. However, we have restricted
splits on numeric attributes to be binary. This creates an important difference between
numeric attributes and nominal ones: Once you have branched on a nominal attri-
bute, you have used all the information that it offers; however, successive splits on
a numeric attribute may continue to yield new information. Whereas a nominal
attribute can only be tested once on any path from the root of a tree to the leaf, a
numeric one can be tested many times. This can yield trees that are messy and dif-
ficult to understand because the tests on any single numeric attribute are not located
together but can be scattered along the path. An alternative, which is harder to
accomplish but produces a more readable tree, is to allow a multiway test on a
numeric attribute, testing against several different constants at a single node of the
tree. A simpler but less powerful solution is to prediscretize the attribute as described
in Section 7.2.

Missing Values

The next enhancement to the decision tree—building algorithm deals with the prob-
lems of missing values. Missing values are endemic in real-world datasets. As
explained in Chapter 2 (page 58), one way of handling them is to treat them as just
another possible value of the attribute; this is appropriate if the fact that the attribute
is missing is significant in some way. In that case, no further action need be taken.
But if there is no particular significance in the fact that a certain instance has a
missing attribute value, a more subtle solution is needed. It is tempting to simply
ignore all instances in which some of the values are missing, but this solution is
often too draconian to be viable. Instances with missing values often provide a good
deal of information. Sometimes the attributes with values that are missing play no
part in the decision, in which case these instances are as good as any other.

One question is how to apply a given decision tree to an instance in which some
of the attributes to be tested have missing values. We outlined a solution in Section

6.1 Decision Trees 195

3.3 that involves notionally splitting the instance into pieces, using a numeric
weighting scheme, and sending part of it down each branch in proportion to the
number of training instances going down that branch. Eventually, the various parts
of the instance will each reach a leaf node, and the decisions at these leaf nodes
must be recombined using the weights that have percolated to the leaves. The infor-
mation gain and gain ratio calculations described in Section 4.3 can also be applied
to partial instances. Instead of having integer counts, the weights are used when
computing both gain figures.

Another question is how to partition the training set once a splitting attribute has
been chosen, to allow recursive application of the decision tree formation procedure
on each of the daughter nodes. The same weighting procedure is used. Instances for
which the relevant attribute value is missing are notionally split into pieces, one
piece for each branch, in the same proportion as the known instances go down the
various branches. Pieces of the instance contribute to decisions at lower nodes in
the usual way through the information gain calculation, except that they are weighted
accordingly. They may be further split at lower nodes, of course, if the values of
other attributes are unknown as well.

Pruning

Fully expanded decision trees often contain unnecessary structure, and it is generally
advisable to simplify them before they are deployed. Now it is time to learn how to
prune decision trees.

By building the complete tree and pruning it afterward we are adopting a strategy
of postpruning (sometimes called backward pruning) rather than prepruning (or
forward pruning). Prepruning would involve trying to decide during the tree-
building process when to stop developing subtrees—quite an attractive prospect
because that would avoid all the work of developing subtrees only to throw them
away afterward. However, postpruning does seem to offer some advantages. For
example, situations occur in which two attributes individually seem to have nothing
to contribute but are powerful predictors when combined—a sort of combination-
lock effect in which the correct combination of the two attribute values is very
informative but the attributes taken individually are not. Most decision tree builders
postprune; however, prepruning can be a viable alternative when runtime is of
particular concern.

Two rather different operations have been considered for postpruning: subtree
replacement and subtree raising. At each node, a learning scheme might decide
whether it should perform subtree replacement, subtree raising, or leave the subtree
as it is, unpruned. Subtree replacement is the primary pruning operation, and we
look at it first. The idea is to select some subtrees and replace them with single
leaves. For example, the whole subtree in Figure 1.3(a), involving two internal nodes
and four leaf nodes, has been replaced by the single leaf bad. This will certainly
cause the accuracy on the training set to decrease if the original tree was produced
by the decision tree algorithm described previously, because that continued to build

196 CHAPTER 6 Implementations: Real Machine Learning Schemes

the tree until all leaf nodes were pure (or until all attributes had been tested).
However, it may increase the accuracy on an independently chosen test set.

When subtree replacement is implemented, it proceeds from the leaves and works
back up toward the root. In the Figure 1.3 example, the whole subtree in (a) would
not be replaced at once. First, consideration would be given to replacing the three
daughter nodes in the health plan contribution subtree with a single leaf node.
Assume that a decision is made to perform this replacement—we will explain how
this decision is made shortly. Then, continuing to work back from the leaves, con-
sideration would be given to replacing the working hours per week subtree, which
now has just two daughter nodes, by a single leaf node. In the Figure 1.3 example,
this replacement was indeed made, which accounts for the entire subtree in (a) being
replaced by a single leaf marked bad. Finally, consideration would be given to
replacing the two daughter nodes in the wage increase 1st year subtree with a single
leaf node. In this case, that decision was not made, so the tree remains as shown in
Figure 1.3(a). Again, we will examine how these decisions are actually made shortly.

The second pruning operation, subtree raising, is more complex, and it is not
clear that it is necessarily always worthwhile. However, because it is used in the
influential decision tree-building system C4.5, we describe it here. Subtree raising
does not occur in the Figure 1.3 example, so we use the artificial example of Figure
6.1 for illustration. Here, consideration is given to pruning the tree in Figure 6.1(a),
and the result is shown in Figure 6.1(b). The entire subtree from C downward has
been “raised” to replace the B subtree. Note that although the daughters of B and C
are shown as leaves, they can be entire subtrees. Of course, if we perform this raising
operation, it is necessary to reclassify the examples at the nodes marked 4 and 5 into
the new subtree headed by C. This is why the daughters of that node are marked
with primes—1’, 2, and 3’—to indicate that they are not the same as the original

4 5
I 2 3

(b)

(@)
FIGURE 6.1

Example of subtree raising, where (a) node C is “raised” to subsume node B (b).

6.1 Decision Trees 197

daughters 1, 2, and 3 but differ by the inclusion of the examples originally covered
by 4 and 5.

Subtree raising is a potentially time-consuming operation. In actual implementa-
tions it is generally restricted to raising the subtree of the most popular branch. That
is, we consider doing the raising illustrated in Figure 6.1 provided that the branch
from B to C has more training examples than the branches from B to node 4 or from
B to node 5. Otherwise, if (for example) node 4 were the majority daughter of B,
we would consider raising node 4 to replace B and reclassifying all examples under
C, as well as the examples from node 5, into the new node.

Estimating Error Rates

So much for the two pruning operations. Now we must address the question of how
to decide whether to replace an internal node by a leaf (for subtree replacement) or
whether to replace an internal node by one of the nodes below it (for subtree raising).
To make this decision rationally, it is necessary to estimate the error rate that would
be expected at a particular node given an independently chosen test set. We need to
estimate the error at internal nodes as well as at leaf nodes. If we had such an esti-
mate, it would be clear whether to replace, or raise, a particular subtree simply by
comparing the estimated error of the subtree with that of its proposed replacement.
Before estimating the error for a subtree proposed for raising, examples that lie under
siblings of the current node—the examples at 4 and 5 of Figure 6.1—would have
to be temporarily reclassified into the raised tree.

It is no use taking the training set error as the error estimate: That would not lead
to any pruning because the tree has been constructed expressly for that particular
training set. One way of coming up with an error estimate is the standard verification
technique: Hold back some of the data originally given and use it as an independent
test set to estimate the error at each node. This is called reduced-error pruning. It
suffers from the disadvantage that the actual tree is based on less data.

The alternative is to try to make some estimate of error based on the training
data itself. That is what C4.5 does, and we will describe its method here. It is a
heuristic based on some statistical reasoning, but the statistical underpinning is rather
weak. However, it seems to work well in practice. The idea is to consider the set of
instances that reach each node and imagine that the majority class is chosen to
represent that node. That gives us a certain number of “errors,” E, out of the total
number of instances, N. Now imagine that the true probability of error at the node
is ¢, and that the N instances are generated by a Bernoulli process with parameter
q, of which E turn out to be errors.

This is almost the same situation as we considered when looking at the holdout
method in Section 5.2, where we calculated confidence intervals on the true success
probability p given a certain observed success rate. There are two differences. One
is trivial: Here we are looking at the error rate ¢ rather than the success rate p; these
are simply related by p + ¢ = 1. The second is more serious: Here the figures E and
N are measured from the training data, whereas in Section 5.2 we were considering

198 CHAPTER 6 Implementations: Real Machine Learning Schemes

independent test data. Because of this difference we make a pessimistic estimate of
the error rate by using the upper confidence limit rather than stating the estimate as
a confidence range.

The mathematics involved is just the same as before. Given a particular confidence c (the
default figure used by C4.5 is ¢ = 25%), we find confidence limits z such that

f-gq }
Pri—————>2z|=c
L/q(l—q)/N
where N is the number of samples, f= E/N is the observed error rate, and g is the true

error rate. As before, this leads to an upper confidence limit for g. Now we use that upper
confidence limit as a (pessimistic) estimate for the error rate e at the node:

z° f o 2z
otz ==+
e 2N N N 4N

22

1+=—

N

Note the use of the + sign before the square root in the numerator to obtain the upper
confidence limit. Here, z is the number of standard deviations corresponding to the
confidence c, which for ¢ = 25% is z= 0.69.

To see how all this works in practice, let’s look again at the labor negotiations decision
tree of Figure 1.3, salient parts of which are reproduced in Figure 6.2 with the number of
training examples that reach the leaves added. We use the previous formula with a 25%
confidence figure—that is, with z= 0.69. Consider the lower left leaf, for which E=2, N
=6, and so f= 0.33. Plugging these figures into the formula, the upper confidence limit
is calculated as e = 0.47. That means that instead of using the training set error rate for
this leaf, which is 33%, we will use the pessimistic estimate of 47%. This is pessimistic
indeed, considering that it would be a bad mistake to let the error rate exceed 50% for a
two-class problem. But things are worse for the neighboring leaf, where E=1 and N = 2,
because the upper confidence limit becomes e = 0.72. The third leaf has the same value
of e as the first. The next step is to combine the error estimates for these three leaves in
the ratio of the number of examples they cover, 6:2:6, which leads to a combined error
estimate of 0.51. Now we consider the error estimate for the parent node, health plan
contribution. This covers nine bad examples and five good ones, so the training set error
rate is f=5/14. For these values, the previous formula yields a pessimistic error estimate
of e = 0.46. Because this is less than the combined error estimate of the three children,
they are pruned away.

The next step is to consider the working hours per week node, which now has two
children that are both leaves. The error estimate for the first, with E=1 and N=2, is
e = 0.72, while for the second it is e = 0.46, as we have just seen. Combining these in
the appropriate ratio of 2:14 leads to a value that is higher than the error estimate for
the working hours node, so the subtree is pruned away and replaced by a leaf node.

The estimated error figures obtained in these examples should be taken with a grain
of salt because the estimate is only a heuristic one and is based on a number of shaky
assumptions: the use of the upper confidence limit; the assumption of a normal
distribution; and the fact that statistics from the training set are used. However, the
qualitative behavior of the error formula is correct and the method seems to work
reasonably well in practice. If necessary, the underlying confidence level, which we have

taken to be 25%, can be tweaked to produce more satisfactory results.

6.1 Decision Trees 199

wage increase 1st year
>2.5
working hours per week

health plan contribution

full
4 bad 1 bad 4 bad
2 good 1 good 2 good

FIGURE 6.2

Pruning the labor negotiations decision tree.

Complexity of Decision Tree Induction

Now that we have learned how to accomplish the pruning operations, we have finally
covered all the central aspects of decision tree induction. Let’s take stock and
examine the computational complexity of inducing decision trees. We will use the
standard order notation: O(n) stands for a quantity that grows at most linearly with
n, O(n?) grows at most quadratically with n, and so on.

Suppose the training data contains » instances and m attributes. We need to make
some assumption about the size of the tree, and we will assume that its depth is on
the order of log n, that is O(log n). This is the standard rate of growth of a tree with
n leaves, provided that it remains “bushy” and doesn’t degenerate into a few very
long, stringy branches. Note that we are tacitly assuming that most of the instances
are different from each other and—this is almost the same thing—that the m attri-
butes provide enough tests to allow the instances to be differentiated. For example,
if there were only a few binary attributes, they would allow only so many instances
to be differentiated and the tree could not grow past a certain point, rendering an
“in the limit” analysis meaningless.

The computational cost of building the tree in the first place is O(mnlog n).
Consider the amount of work done for one attribute over all nodes of the tree. Not
all the examples need to be considered at each node, of course. But at each possible
tree depth, the entire set of n instances must be considered in the worst case. And
because there are log n different depths in the tree, the amount of work for this one
attribute is O(n log n). At each node all attributes are considered, so the total amount
of work is O(mn log n).

200 CHAPTER 6 Implementations: Real Machine Learning Schemes

This reasoning makes some assumptions. If some attributes are numeric, they
must be sorted, but once the initial sort has been done there is no need to re-sort at
each tree depth if the appropriate algorithm is used (described previously—see page
193). The initial sort takes O(n log n) operations for each of up to m attributes; thus,
the above complexity figure is unchanged. If the attributes are nominal, all attributes
do not have to be considered at each tree node because attributes that are used further
up the tree cannot be reused. However, if attributes are numeric, they can be reused
and so they have to be considered at every tree level.

Next, consider pruning by subtree replacement. First an error estimate must be
made for every tree node. Provided that counts are maintained appropriately, this is
linear in the number of nodes in the tree. Then each node needs to be considered
for replacement. The tree has at most n leaves, one for each instance. If it were a
binary tree, each attribute being numeric or two-valued, that would give it 2n — 1
nodes; multiway branches would only serve to decrease the number of internal
nodes. Thus, the complexity of subtree replacement is O(n).

Finally, subtree lifting has a basic complexity equal to subtree replacement. But
there is an added cost because instances need to be reclassified during the lifting
operation. During the whole process, each instance may have to be reclassified at
every node between its leaf and the root—that is, as many as O(log n) times. That
makes the total number of reclassifications O(n log n). And reclassification is not a
single operation: One that occurs near the root will take O(log n) operations, and
one of average depth will take half of this. Thus, the total complexity of subtree
lifting is as follows: O(n(log n)?).

Taking into account all these operations, the full complexity of decision tree
induction is

O(mnlogn)+O(n(logn))

From Trees to Rules

It is possible to read a set of rules directly off a decision tree, as noted in Section
3.4, by generating a rule for each leaf and making a conjunction of all the tests
encountered on the path from the root to that leaf. This produces rules that are
unambiguous in that it doesn’t matter in what order they are executed. However, the
rules are more complex than necessary.

The estimated error rate described previously provides exactly the mechanism
necessary to prune the rules. Given a particular rule, each condition in it is considered
for deletion by tentatively removing it, working out which of the training examples
are now covered by the rule, calculating from this a pessimistic estimate of the error
rate of the new rule, and comparing this with the pessimistic estimate for the original
rule. If the new rule is better, delete that condition and carry on, looking for other
conditions to delete. Leave the rule when there are no remaining conditions that will
improve it if they are removed. Once all rules have been pruned in this way, it is
necessary to see if there are any duplicates and remove them from the rule set.

6.1 Decision Trees 201

This is a greedy approach to detecting redundant conditions in a rule, and there
is no guarantee that the best set of conditions will be removed. An improvement
would be to consider all subsets of conditions, but this is usually prohibitively
expensive. Another solution might be to use an optimization technique such as
simulated annealing or a genetic algorithm to select the best version of this rule.
However, the simple greedy solution seems to produce quite good rule sets.

The problem, even with the greedy method, is computational cost. For every
condition that is a candidate for deletion, the effect of the rule must be reevalu-
ated on all the training instances. This means that rule generation from trees tends
to be very slow. The next section describes much faster methods that generate
classification rules directly without forming a decision tree first.

C4.5: Choices and Options

The decision tree program C4.5 and its successor C5.0 were devised by Ross Quinlan
over a 20-year period beginning in the late 1970s. A complete description of C4.5,
the early 1990s version, appears as an excellent and readable book (Quinlan, 1993),
along with the full source code. The more recent version, C5.0, is available com-
mercially. Its decision tree induction seems to be essentially the same as that used
by C4.5, and tests show some differences but negligible improvements. However,
its rule generation is greatly sped up and clearly uses a different technique, although
this has not been described in the open literature.

C4.5 works essentially as described in the previous sections. The default confi-
dence value is set at 25% and works reasonably well in most cases; possibly it should
be altered to a lower value, which causes more drastic pruning, if the actual error
rate of pruned trees on test sets is found to be much higher than the estimated error
rate. There is one other important parameter whose effect it is to eliminate tests for
which almost all of the training examples have the same outcome. Such tests are
often of little use. Consequently, tests are not incorporated into the decision tree
unless they have at least two outcomes that have at least a minimum number of
instances. The default value for this minimum is 2, but it is controllable and should
perhaps be increased for tasks that have a lot of noisy data.

Another heuristic in C4.5 is that candidate splits on numeric attributes are only
considered if they cut off a certain minimum number of instances: at least 10% of the
average number of instances per class at the current node, or 25 instances—whichever
value is smaller (but the minimum just mentioned, 2 by default, is also enforced).

C4.5 Release 8, the last noncommercial version of C4.5, includes an MDL-based
adjustment to the information gain for splits on numeric attributes. More specifically,
if there are S candidate splits on a certain numeric attribute at the node currently
considered for splitting, log,(S)/N is subtracted from the information gain, where N
is the number of instances at the node. This heuristic, described by Quinlan (1986),
is designed to prevent overfitting. The information gain may be negative after sub-
traction, and tree growing will stop if there are no attributes with positive informa-
tion gain—a form of prepruning. We mention this here because it can be surprising

202

CHAPTER 6 Implementations: Real Machine Learning Schemes

to obtain a pruned tree even if postpruning has been turned off! This heuristic is also
implemented in the software described in Part 3 of this book.

Cost-Complexity Pruning

As mentioned, the postpruning method in C4.5 is based on shaky statistical assump-
tions, and it turns out that it often does not prune enough. On the other hand, it is
very fast and thus popular in practice. However, in many applications it is worth-
while expending more computational effort to obtain a more compact decision tree.
Experiments have shown that C4.5’s pruning method can yield unnecessary addi-
tional structure in the final tree: Tree size continues to grow when more instances
are added to the training data even when this does not further increase performance
on independent test data. In that case, the more conservative cost-complexity pruning
method from the Classification and Regression Trees (CART) learning system may
be more appropriate.

Cost-complexity pruning is based on the idea of first pruning those subtrees that,
relative to their size, lead to the smallest increase in error on the training data. The
increase in error is measured by a quantity o that is defined to be the average error
increase per leaf of the subtree concerned. By monitoring this quantity as pruning
progresses, the algorithm generates a sequence of successively smaller pruned trees.
In each iteration it prunes all subtrees that exhibit the smallest value of &z among the
remaining subtrees in the current version of the tree.

Each candidate tree in the resulting sequence of pruned trees corresponds to one
particular threshold value, ¢;. The question becomes, which tree should be chosen
as the final classification model? To determine the most predictive tree, cost-
complexity pruning either uses a holdout set to estimate the error rate of each tree,
or, if data is limited, employs cross-validation.

Using a holdout set is straightforward. However, cross-validation poses the
problem of relating the o values observed in the sequence of pruned trees for train-
ing fold k of the cross-validation to the & values from the sequence of trees for the
full dataset: These values are usually different. This problem is solved by first com-
puting the geometric average of o; and ¢, for tree i from the full dataset. Then, for
each fold k of the cross-validation, the tree that exhibits the largest o value smaller
than this average is picked. The average of the error estimates for these trees from
the k folds, estimated from the corresponding test datasets, is the cross-validation
error for tree i from the full dataset.

Discussion

Top-down induction of decision trees is probably the most extensively researched
method of machine learning used in data mining. Researchers have investigated a
panoply of variations for almost every conceivable aspect of the learning process—
for example, different criteria for attribute selection or modified pruning methods.
However, they are rarely rewarded by substantial improvements in accuracy over a
spectrum of diverse datasets. As discussed, the pruning method used by the CART
system for learning decision trees (Breiman et al., 1984) can often produce smaller

6.2 Classification Rules 203

trees than C4.5’s pruning method. This has been investigated empirically by Oates
and Jensen (1997).

In our description of decision trees, we have assumed that only one attribute is
used to split the data into subsets at each node of the tree. However, it is possible
to allow tests that involve several attributes at a time. For example, with numeric
attributes each test can be on a linear combination of attribute values. Then the final
tree consists of a hierarchy of linear models of the kind we described in Section 4.6,
and the splits are no longer restricted to being axis-parallel. Trees with tests involv-
ing more than one attribute are called multivariate decision trees, in contrast to the
simple univariate trees that we normally use. The CART system has the option of
generating multivariate tests. They are often more accurate and smaller than univari-
ate trees but take much longer to generate and are also more difficult to interpret.
We briefly mention one way of generating them in the Principal Components Analy-
sis section in Section 7.3.

6.2 CLASSIFICATION RULES

We call the basic covering algorithm for generating rules that was described in
Section 4.4 a separate-and-conquer technique because it identifies a rule that covers
instances in a class (and excludes ones not in the class), separates them out, and
continues on those that are left. Such algorithms have been used as the basis of many
systems that generate rules. There, we described a simple correctness-based measure
for choosing what test to add to the rule at each stage. However, there are many
other possibilities, and the particular criterion that is used has a significant effect on
the rules produced. We examine different criteria for choosing tests in this section.
We also look at how the basic rule-generation algorithm can be extended to more
practical situations by accommodating missing values and numeric attributes.

But the real problem with all these rule-generation schemes is that they tend to
overfit the training data and do not generalize well to independent test sets, particularly
on noisy data. To be able to generate good rule sets for noisy data, it is necessary to
have some way of measuring the real worth of individual rules. The standard approach
to assessing the worth of rules is to evaluate their error rate on an independent set of
instances, held back from the training set, and we explain this next. After that, we
describe two industrial-strength rule learners: one that combines the simple separate-
and-conquer technique with a global optimization step, and another that works by
repeatedly building partial decision trees and extracting rules from them. Finally, we
consider how to generate rules with exceptions, and exceptions to the exceptions.

Criteria for Choosing Tests

When we introduced the basic rule learner in Section 4.4, we had to figure out a
way of deciding which of many possible tests to add to a rule to prevent it from
covering any negative examples. For this we used the test that maximizes the ratio
p/t, where t is the total number of instances that the new rule will cover, and p is

204 CHAPTER 6 Implementations: Real Machine Learning Schemes

the number of these that are positive—that is, belong to the class in question. This
attempts to maximize the “correctness” of the rule on the basis that the higher the
proportion of positive examples it covers, the more correct a rule is. One alternative
is to calculate an information gain:

p P
log——log—
p|1og2-tog T |

where p and ¢ are the number of positive instances and the total number of instances
covered by the new rule, as before, and P and T are the corresponding number of
instances that satisfied the rule before the new test was added. The rationale for this
is that it represents the total information gained regarding the current positive
examples, which is given by the number of them that satisfy the new test, multiplied
by the information gained regarding each one.

The basic criterion for choosing a test to add to a rule is to find one that covers
as many positive examples as possible while covering as few negative examples as
possible. The original correctness-based heuristic, which is just the percentage of
positive examples among all examples covered by the rule, attains a maximum when
no negative examples are covered regardless of the number of positive examples
covered by the rule. Thus, a test that makes the rule exact will be preferred to one
that makes it inexact, no matter how few positive examples the former rule covers
nor how many positive examples the latter covers. For example, if we consider a
test that covers one example that is positive, this criterion will prefer it over a test
that covers 1000 positive examples along with one negative one.

The information-based heuristic, on the other hand, places far more emphasis on
covering a large number of positive examples regardless of whether the rule so
created is exact. Of course, both algorithms continue adding tests until the final rule
produced is exact, which means that the rule will be finished earlier using the cor-
rectness measure whereas more terms will have to be added if the information-based
measure is used. Thus, the correctness-based measure might find special cases and
eliminate them completely, saving the larger picture for later (when the more general
rule might be simpler because awkward special cases have already been dealt with),
whereas the information-based one will try to generate high-coverage rules first and
leave the special cases until later. It is by no means obvious that either strategy is
superior to the other at producing an exact rule set. Moreover, the whole situation
is complicated by the fact that, as described in the following, rules may be pruned
and inexact ones tolerated.

Missing Values, Numeric Attributes

As with divide-and-conquer decision tree algorithms, the nasty practical consider-
ations of missing values and numeric attributes need to be addressed. In fact, there
is not much more to say. Now that we know how these problems can be solved for
decision tree induction, appropriate solutions for rule induction are easily given.

6.2 Classification Rules 205

When producing rules using covering algorithms, missing values can be best
treated as though they don’t match any of the tests. This is particularly suitable when
a decision list is being produced, because it encourages the learning algorithm to
separate out positive instances using tests that are known to succeed. It has the effect
either that instances with missing values are dealt with by rules involving other
attributes that are not missing, or that any decisions about them are deferred until
most of the other instances have been taken care of, at which time tests will probably
emerge that involve other attributes. Covering algorithms for decision lists have a
decided advantage over decision tree algorithms in this respect: Tricky examples
can be left until late in the process, at which time they will appear less tricky because
most of the other examples have already been classified and removed from the
instance set.

Numeric attributes can be dealt with in exactly the same way as they are dealt
with for trees. For each numeric attribute, instances are sorted according to the
attribute’s value and, for each possible threshold, a binary less-than/greater-than
test is considered and evaluated in exactly the same way that a binary attribute
would be.

Generating Good Rules

Suppose you don’t want to generate perfect rules that guarantee to give the correct
classification on all instances in the training set, but would rather generate “sensible”
ones that avoid overfitting the training set and thereby stand a better chance of
performing well on new test instances. How do you decide which rules are worth-
while? How do you tell when it becomes counterproductive to continue adding terms
to a rule to exclude a few pesky instances of the wrong type, all the while excluding
more and more instances of the correct type?

Let’s look at a few examples of possible rules—some good and some bad—for
the contact lens problem in Table 1.1. Consider first the rule

If astigmatism = yes and tear production rate = normal
then recommendation = hard

This gives a correct result for four out of the six cases that it covers; thus, its success
fraction is 4/6. Suppose we add a further term to make the rule a “perfect” one:

If astigmatism = yes and tear production rate = normal
and age = young then recommendation = hard

This improves accuracy to 2/2. Which rule is better? The second one is more accurate
on the training data but covers only two cases, whereas the first one covers six. It
may be that the second version is just overfitting the training data. For a practical
rule learner we need a principled way of choosing the appropriate version of a rule,
preferably one that maximizes accuracy on future test data.

Suppose we split the training data into two parts that we will call a growing set
and a pruning set. The growing set is used to form a rule using the basic covering

206 CHAPTER 6 Implementations: Real Machine Learning Schemes

algorithm. Then a test is deleted from the rule, and the effect is evaluated by trying
out the truncated rule on the pruning set and seeing whether it performs better than
the original rule. This pruning process repeats until the rule cannot be improved by
deleting any further tests. The whole procedure is repeated for each class, obtaining
one best rule for each class, and the overall best rule is established by evaluating
the rules on the pruning set. This rule is then added to the rule set, the instances
it covers are removed from the training data—from both growing and pruning
sets—and the process is repeated.

Why not do the pruning as we build up the rule, rather than building up the whole
thing and then throwing parts away? That is, why not preprune rather than post-
prune? Just as when pruning decision trees it is often best to grow the tree to its
maximum size and then prune back, so with rules it is often best to make a perfect
rule and then prune it. Who knows?—adding that last term may make a really good
rule, a situation that we might never have noticed had we adopted an aggressive
prepruning strategy.

It is essential that the growing and pruning sets are separate because it is mis-
leading to evaluate a rule on the very data that was used to form it: That would lead
to serious errors by preferring rules that were overfitted. Usually the training set is
split so that two-thirds of instances are used for growing and one-third for pruning.
A disadvantage, of course, is that learning occurs from instances in the growing set
only, so the algorithm might miss important rules because some key instances had
been assigned to the pruning set. Moreover, the wrong rule might be preferred
because the pruning set contains only one-third of the data and may not be com-
pletely representative. These effects can be ameliorated by resplitting the training
data into growing and pruning sets at each cycle of the algorithm—that is, after each
rule is finally chosen.

The idea of using a separate pruning set for pruning—which is applicable to
decision trees as well as rule sets—is called reduced-error pruning. The variant
previously described prunes a rule immediately after it has been grown; it is called
incremental reduced-error pruning. Another possibility is to build a full, unpruned,
rule set first, pruning it afterwards by discarding individual tests. However, this
method is much slower.

Of course, there are many different ways to assess the worth of a rule based on
the pruning set. A simple measure is to consider how well the rule would do at
discriminating the predicted class from other classes if it were the only rule in the
theory, operating under the closed-world assumption. Suppose it gets p instances
right out of the ¢ instances that it covers, and there are P instances of this class
out a total of T instances altogether. The instances that it does not cover include
N — n negative ones, where n =t — p is the number of negative instances that the
rule covers and N = T — P is the total number of negative instances. Thus, in total
the rule makes correct decisions on p + (N — n) instances, and so has an overall
success ratio of

[p+(N-n)/T

6.2 Classification Rules 207

This quantity, evaluated on the test set, has been used to evaluate the success of a
rule when using reduced-error pruning.

This measure is open to criticism because it treats noncoverage of negative
examples as being as important as coverage of positive ones, which is unrealistic in
a situation where what is being evaluated is one rule that will eventually serve
alongside many others. For example, a rule that gets p = 2000 instances right out of
a total coverage of 3000 (i.e., it gets n = 1000 wrong) is judged as more successful
than one that gets p = 1000 out of a total coverage of 1001 (i.e., n = 1 wrong), because
[p + (N — n))/T is [1000 + N]/T in the first case but only [999 + N]/T in the second.
This is counterintuitive: The first rule is clearly less predictive than the second
because it has a 33.3% as opposed to only a 0.1% chance of being incorrect.

Using the success rate p/t as a measure, as was done in the original formulation
of the covering algorithm (Figure 4.8), is not the perfect solution either because it
would prefer a rule that got a single instance right (p = 1) out of a total coverage of
1 (so n = 0) to the far more useful rule that got 1000 right out of 1001. Another
heuristic that has been used is (p — n)/t, but that suffers from exactly the same
problem because (p — n)/t = 2p/t — 1 and so the result, when comparing one rule
with another, is just the same as with the success rate. It seems hard to find a simple
measure of the worth of a rule that corresponds with intuition in all cases.

Whatever heuristic is used to measure the worth of a rule, the incremental
reduced-error pruning algorithm is the same. A possible rule-learning algorithm
based on this idea is given in Figure 6.3. It generates a decision list, creating rules
for each class in turn and choosing at each stage the best version of the rule accord-
ing to its worth on the pruning data. The basic covering algorithm for rule generation
(Figure 4.8) is used to come up with good rules for each class, choosing conditions
to add to the rule using the accuracy measure p/t that we described earlier.

Initialize E to the instance set
Split E into Grow and Prune in the ratio 2:1
For each class C for which Grow and Prune both contain an instance
Use the basic covering algorithm to create the best perfect rule
for class C
Calculate the worth w(R) for the rule on Prune, and for the rule
with the final condition omitted w(R-)
While w(R-) > w(R), remove the final condition from the rule and
repeat the previous step
From the rules generated, select the one with the largest w(R)
Print the rule
Remove the instances covered by the rule from E
Continue

FIGURE 6.3

Algorithm for forming rules by incremental reduced-error pruning.

208 CHAPTER 6 Implementations: Real Machine Learning Schemes

This method has been used to produce rule-induction schemes that can process
vast amounts of data and operate very quickly. It can be accelerated by generating
rules for the classes in order rather than generating a rule for each class at every
stage and choosing the best. A suitable ordering is the increasing order in which they
occur in the training set so that the rarest class is processed first and the most
common ones are processed later. Another significant speedup is obtained by stop-
ping the whole process when a rule of sufficiently low accuracy is generated, so as
not to spend time generating a lot of rules at the end with very small coverage.
However, very simple terminating conditions (such as stopping when the accuracy
for a rule is lower than the default accuracy for the class it predicts) do not give the
best performance. One criterion that seems to work well is a rather complicated one
based on the MDL principle, described later.

Using Global Optimization

In general, rules generated using incremental reduced-error pruning in this manner
seem to perform quite well, particularly on large datasets. However, it has been
found that a worthwhile performance advantage can be obtained by performing a
global optimization step on the set of rules induced. The motivation is to increase
the accuracy of the rule set by revising or replacing individual rules. Experiments
show that both the size and the performance of rule sets are significantly improved
by postinduction optimization. On the other hand, the process itself is rather complex.

To give an idea of how elaborate—and heuristic—industrial-strength rule learn-
ers become, Figure 6.4 shows an algorithm called RIPPER, an acronym for repeated
incremental pruning to produce error reduction. Classes are examined in increasing
size and an initial set of rules for a class is generated using incremental reduced-error
pruning. An extra stopping condition is introduced that depends on the description
length of the examples and rule set. The description-length DL is a complex formula
that takes into account the number of bits needed to send a set of examples with
respect to a set of rules, the number of bits required to send a rule with k conditions,
and the number of bits needed to send the integer k—times an arbitrary factor of
50% to compensate for possible redundancy in the attributes.

Having produced a rule set for the class, each rule is reconsidered and two
variants produced, again using reduced-error pruning—but at this stage, instances
covered by other rules for the class are removed from the pruning set, and success
rate on the remaining instances is used as the pruning criterion. If one of the two
variants yields a better description length, it replaces the rule. Next we reactivate
the original building phase to mop up any newly uncovered instances of the class.
A final check is made, to ensure that each rule contributes to the reduction of
description length, before proceeding to generate rules for the next class.

Obtaining Rules from Partial Decision Trees

There is an alternative approach to rule induction that avoids global optimization
but nevertheless produces accurate, compact rule sets. The method combines the
divide-and-conquer strategy for decision tree learning with the separate-and-conquer

Initialize E to the instance set
For each class C, from smallest to largest
BUILD:
Split E into Growing and Pruning sets in the ratio 2:1
Repeat until (a) there are no more uncovered examples of C; or
(b) the description length (DL) of ruleset and examples is
64 bits greater than the smallest DL found so far, or (c)
the error rate exceeds 50%:

GROW phase: Grow a rule by greedily adding conditions until the
rule is 100% accurate by testing every possible value of
each attribute and selecting the condition with greatest
information gain G

PRUNE phase: Prune conditions in last-to-first order. Continue
as long as the worth W of the rule increases

OPTIMIZE:
GENERATE VARIANTS:
For each rule R for class C,
Split E afresh into Growing and Pruning sets
Remove all instances from the Pruning set that are covered
by other rules for C
Use GROW and PRUNE to generate and prune two competing rules
from the newly split data:
Rl is a new rule, rebuilt from scratch;
R2 is generated by greedily adding antecedents to R.
Prune using the metric A (instead of W) on this reduced data
SELECT REPRESENTATIVE:
Replace R by whichever of R, Rl and R2 has the smallest DL.
MOP UP:

If there are residual uncovered instances of class C, return to
the BUILD stage to generate more rules based on these
instances.

CLEAN UP:

Calculate DL for the whole ruleset and for the ruleset with each
rule in turn omitted; delete any rule that increases the DL

Remove instances covered by the rules just generated

Continue
(@)
G = pllog(p/t)-log(P/T)]
p+l
W=t
p+n’ .
A = —7 i accuracy for this rule
p = number of positive examples covered by this rule (true
positives)
n = number of negative examples covered by this rule (false
negatives)
t = p + n; total number of examples covered by this rule
' = N - n; number of negative examples not covered by this rule
(true negatives)
P = number of positive examples of this class
N = number of negative examples of this class
T = P + N; total number of examples of this class
(b)
FIGURE 6.4

RIPPER: (a) algorithm for rule learning and (b) meaning of symbols.

210 CHAPTER 6 Implementations: Real Machine Learning Schemes

one for rule learning. It adopts the separate-and-conquer strategy in that it builds a
rule, removes the instances it covers, and continues creating rules recursively for
the remaining instances until none are left. However, it differs from the standard
approach in the way that each rule is created. In essence, to make a single rule a
pruned decision tree is built for the current set of instances, the leaf with the largest
coverage is made into a rule, and the tree is discarded.

The prospect of repeatedly building decision trees only to discard most of them
is not as bizarre as it first seems. Using a pruned tree to obtain a rule instead of
pruning a rule incrementally by adding conjunctions one at a time avoids a tendency
to overprune, which is a characteristic problem of the basic separate-and-conquer
rule learner. Using the separate-and-conquer methodology in conjunction with deci-
sion trees adds flexibility and speed. It is indeed wasteful to build a full decision
tree just to obtain a single rule, but the process can be accelerated significantly
without sacrificing the advantages.

The key idea is to build a partial decision tree instead of a fully explored one. A
partial decision tree is an ordinary decision tree that contains branches to undefined
subtrees. To generate such a tree, the construction and pruning operations are inte-
grated in order to find a “stable” subtree that can be simplified no further. Once this
subtree has been found, tree building ceases and a single rule is read off.

The tree-building algorithm is summarized in Figure 6.5: It splits a set of instances
recursively into a partial tree. The first step chooses a test and divides the instances
into subsets accordingly. The choice is made using the same information-gain heu-
ristic that is normally used for building decision trees (Section 4.3). Then the subsets
are expanded in increasing order of their average entropy. The reason for this is that
the later subsets will most likely not end up being expanded, and a subset with low-
average entropy is more likely to result in a small subtree and therefore produce a
more general rule. This proceeds recursively until a subset is expanded into a leaf,
and then continues further by backtracking. But as soon as an internal node appears
that has all its children expanded into leaves, the algorithm checks whether that node
is better replaced by a single leaf. This is just the standard subtree replacement

Expand-subset (S):
Choose a test T and use it to split the set of examples into subsets
Sort subsets into increasing order of average entropy
while (there is a subset X that has not yet been expanded
AND all subsets expanded so far are leaves)

expand-subset (X)

if (all the subsets expanded are leaves
AND estimated error for subtree 2 estimated error for node)
undo expansion into subsets and make node a leaf

FIGURE 6.5

Algorithm for expanding examples into a partial tree.

6.2 Classification Rules

operation of decision tree pruning (see Section 6.1). If replacement is performed the
algorithm backtracks in the standard way, exploring siblings of the newly replaced
node. However, if during backtracking a node is encountered all of whose children
expanded so far are not leaves—and this will happen as soon as a potential subtree
replacement is not performed—then the remaining subsets are left unexplored and
the corresponding subtrees are left undefined. Due to the recursive structure of the
algorithm, this event automatically terminates tree generation.

Figure 6.6 shows a step-by-step example. During the stages in Figure 6.6(a—c),
tree building continues recursively in the normal way—except that at each point the
lowest-entropy sibling is chosen for expansion: node 3 between stages (a) and (b).
Gray elliptical nodes are as yet unexpanded; rectangular ones are leaves. Between
stages (b) and (c), the rectangular node will have lower entropy than its sibling, node
5, but cannot be expanded further because it is a leaf. Backtracking occurs and node
5 is chosen for expansion. Once stage of Figure 6.6(c) is reached, there is a node—
node 5—that has all its children expanded into leaves, and this triggers pruning.
Subtree replacement for node 5 is considered and accepted, leading to stage (d).
Next node 3 is considered for subtree replacement, and this operation is again
accepted. Backtracking continues, and node 4, having lower entropy than node 2, is
expanded into two leaves. Now subtree replacement is considered for node 4, but
suppose that node 4 is not replaced. At this point, the process terminates with the
three-leaf partial tree of stage (e).

(1) . <,
COOOHO OCOH®
@

(a) (b)

. . g
@ OO OO

d) (¢)
FIGURE 6.6

Example of building a partial tree.

.
211

212

CHAPTER 6 Implementations: Real Machine Learning Schemes

If the data is noise-free and contains enough instances to prevent the algorithm
from doing any pruning, just one path of the full decision tree has to be explored.
This achieves the greatest possible performance gain over the naive method that
builds a full decision tree each time. The gain decreases as more pruning takes place.
For datasets with numeric attributes, the asymptotic time complexity of the algo-
rithm is the same as building the full decision tree because in this case the complexity
is dominated by the time required to sort the attribute values in the first place.

Once a partial tree has been built, a single rule is extracted from it. Each leaf
corresponds to a possible rule, and we seek the “best” leaf of those subtrees (typi-
cally a small minority) that have been expanded into leaves. Experiments show that
it is best to aim at the most general rule by choosing the leaf that covers the greatest
number of instances.

When a dataset contains missing values, they can be dealt with exactly as they
are when building decision trees. If an instance cannot be assigned to any given
branch because of a missing attribute value, it is assigned to each of the branches
with a weight proportional to the number of training instances going down that
branch, normalized by the total number of training instances with known values at
the node. During testing, the same procedure is applied separately to each rule, thus
associating a weight with the application of each rule to the test instance. That weight
is deducted from the instance’s total weight before it is passed to the next rule in
the list. Once the weight has reduced to 0, the predicted class probabilities are com-
bined into a final classification according to the weights.

This yields a simple but surprisingly effective method for learning decision lists
for noisy data. Its main advantage over other comprehensive rule-generation schemes
is simplicity, because other methods appear to require a complex global optimization
stage to achieve the same level of performance.

Rules with Exceptions

In Section 3.4 (page 73) we learned that a natural extension of rules is to allow them
to have exceptions, and exceptions to the exceptions, and so on—indeed, the whole
rule set can be considered as exceptions to a default classification rule that is used
when no other rules apply. The method of generating a “good” rule, using one of
the measures described previously, provides exactly the mechanism needed to gener-
ate rules with exceptions.

First, a default class is selected for the top-level rule: It is natural to use the class
that occurs most frequently in the training data. Then, a rule is found pertaining to
any class other than the default one. Of all such rules it is natural to seek the one
with the most discriminatory power—for example, the one with the best evaluation
on a test set. Suppose this rule has the form

if <condition> then class = <new class>

It is used to split the training data into two subsets: one containing instances for
which the rule’s condition is frue and the other containing those for which it is false.

6.2 Classification Rules 213

If either subset contains instances of more than one class, the algorithm is invoked
recursively on that subset. For the subset for which the condition is true, the “default
class” is the new class as specified by the rule; for the subset where the condition
is false, the default class remains as it was before.

Let’s examine how this algorithm would work for the rules with exceptions that
were given in Section 3.4 for the iris data of Table 1.4. We will represent the rules in
the graphical form shown in Figure 6.7, which is in fact equivalent to the textual rules
noted in Figure 3.8. The default of Iris setosa is the entry node at the top left. Hori-
zontal, dotted paths show exceptions, so the next box, which contains a rule that
concludes Iris versicolor, is an exception to the default. Below this is an alternative,
a second exception—alternatives are shown by vertical, solid lines—leading to the
conclusion Iris virginica. Following the upper path horizontally leads to an exception
to the Iris versicolor rule that overrides it whenever the condition in the top right box
holds, with the conclusion Iris virginica. Below this is an alternative, leading (as it
happens) to the same conclusion. Returning to the box at bottom center, this has its
own exception, the lower right box, which gives the conclusion Iris versicolor. The
numbers at the lower right of each box give the “coverage” of the rule, expressed as
the number of examples that satisfy it divided by the number that satisfy its condition
but not its conclusion. For example, the condition in the top center box applies to 52
of the examples, and 49 of them are Iris versicolor. The strength of this representation
is that you can get a very good feeling for the effect of the rules from the boxes toward
the left side; the boxes at the right cover just a few exceptional cases.

To create these rules, the default is first set to Iris sefosa by taking the most
frequently occurring class in the dataset. This is an arbitrary choice because, for this

petal length >=2.45 petal length = 4.95

i <
--> Iris setosa petal width < 1.75 petal width < 1.55
-------- = petal length <5.35 IR L
50/150 . . -->Iris virginica
-->Iris versicolor 2
49/52
sepal length <4.95

sepal width >=2.45
--> Iris virginica
1/1

petal length < 4.85
sepal length <5.95
--> Iris versicolor
1/1

petal length >=3.35
-->Iris virginica - - - ----- - -
47/48

FIGURE 6.7

Rules with exceptions for the iris data.

214 CHAPTER 6 Implementations: Real Machine Learning Schemes

dataset, all classes occur exactly 50 times; as shown in Figure 6.7 this default “rule”
is correct in 50 out of 150 cases. Then the best rule that predicts another class is
sought. In this case it is

if petal-length 2 2.45 and petal-length < 5.355
and petal-width < 1.75 then Iris-versicolor

This rule covers 52 instances, of which 49 are Iris versicolor. It divides the dataset
into two subsets: the 52 instances that satisfy the condition of the rule and the
remaining 98 that do not.

We work on the former subset first. The default class for these instances is Iris
versicolor: There are only three exceptions, all of which happen to be Iris virginica.
The best rule for this subset that does not predict Iris versicolor is

if petal-length 2 4.95 and petal-width < 1.55 then Iris-virginica

It covers two of the three Iris virginicas and nothing else. Again, it divides the subset
into two: those instances that satisfy its condition and those that do not. Fortunately,
in this case, all those instances that satisfy the condition do indeed have class Iris
virginica, so there is no need for a further exception. However, the remaining
instances still include the third Iris virginica, along with 49 Iris versicolors, which
are the default at this point. Again the best rule is sought:

if sepal-length < 4.95 and sepal-width 2 2.45 then Iris-virginica

This rule covers the remaining Iris virginica and nothing else, so it also has no
exceptions. Furthermore, all remaining instances in the subset that do not satisfy its
condition have the class Iris versicolor, which is the default, so no more needs to
be done.

Return now to the second subset created by the initial rule, the instances that do
not satisfy the condition

petal-length 2 2.45 and petal-length < 5.355 and petal-width < 1.75

Of the rules for these instances that do not predict the default class Iris sefosa, the
best is

if petal-length 2 3.35 then Iris-virginica

It covers all 47 Iris virginicas that are in the example set (3 were removed by the
first rule, as explained previously). It also covers 1 Iris versicolor. This needs to be
taken care of as an exception, by the final rule:

if petal-length < 4.85 and sepal-length < 5.95 then Iris-versicolor

Fortunately, the set of instances that do not satisfy its condition are all the default,
Iris setosa. Thus, the procedure is finished.

The rules that are produced have the property that most of the examples are
covered by the high-level rules and the lower-level ones really do represent excep-
tions. For example, the last exception clause and the deeply nested else clause both

6.2 Classification Rules

cover a solitary example, and removing them would have little effect. Even the
remaining nested exception rule covers only two examples. Thus, one can get an
excellent feeling for what the rules do by ignoring all the deeper structure and
looking only at the first level or two. That is the attraction of rules with exceptions.

Discussion

All algorithms for producing classification rules that we have described use the basic
covering or separate-and-conquer approach. For the simple, noise-free case this
produces PRISM (Cendrowska, 1987), an algorithm that is simple and easy to
understand. When applied to two-class problems with the closed-world assumption,
it is only necessary to produce rules for one class: Then the rules are in disjunctive
normal form and can be executed on test instances without any ambiguity arising.
When applied to multiclass problems, a separate rule set is produced for each class;
thus, a test instance may be assigned to more than one class, or to no class, and
further heuristics are necessary if a unique prediction is sought.

To reduce overfitting in noisy situations, it is necessary to produce rules that are
not “perfect” even on the training set. To do this it is necessary to have a measure
for the “goodness,” or worth, of a rule. With such a measure it is then possible to
abandon the class-by-class approach of the basic covering algorithm and start by
generating the very best rule, regardless of which class it predicts, and then remove
all examples covered by this rule and continue the process. This yields a method for
producing a decision list rather than a set of independent classification rules, and
decision lists have the important advantage that they do not generate ambiguities
when interpreted.

The idea of incremental reduced-error pruning is from Fiirnkranz and Widmer
(1994) and forms the basis for fast and effective rule induction. The RIPPER rule
learner is from Cohen (1995), although the published description appears to differ
from the implementation in precisely how the description length (DL) affects the
stopping condition. What we have presented here is the basic idea of the algorithm;
there are many more details in the implementation.

The whole question of measuring the value of a rule has not yet been satis-
factorily resolved. Many different measures have been proposed, some blatantly
heuristic and others based on information-theoretical or probabilistic grounds.
However, there seems to be no consensus on the best measure to use. An exten-
sive theoretical study of various criteria has been performed by Fiirnkranz and
Flach (2005).

The rule-learning scheme based on partial decision trees was developed by Frank
and Witten (1998). On standard benchmark datasets it produces rule sets that are as
accurate as rules generated by C4.5 and more accurate than those of RIPPER;
however, it produces larger rule sets than RIPPER. Its main advantage over other
schemes is not performance but simplicity: By combining top-down decision tree
induction with separate-and-conquer rule learning, it produces good rule sets without
any need for global optimization.

.
215

216 CHAPTER 6 Implementations: Real Machine Learning Schemes

The procedure for generating rules with exceptions was developed as an option in
the Induct system by Gaines and Compton (1995), who called them ripple-down rules.
In an experiment with a large medical dataset (22,000 instances, 32 attributes, and 60
classes), they found that people can understand large systems of rules with exceptions
more readily than equivalent systems of regular rules because that is the way they
think about the complex medical diagnoses that are involved. Richards and Compton
(1998) describe their role as an alternative to classic knowledge engineering.

6.3 ASSOCIATION RULES

In Section 4.5 we studied the Apriori algorithm for generating association rules that
meet minimum support and confidence thresholds. Apriori follows a generate-and-
test methodology for finding frequent item sets, generating successively longer
candidate item sets from shorter ones that are known to be frequent. Each different
size of candidate item set requires a scan through the dataset to determine whether
its frequency exceeds the minimum support threshold. Although some improvements
to the algorithm have been suggested to reduce the number of scans of the dataset,
the combinatorial nature of this generation process can prove costly, particularly if
there are many item sets or item sets are large. Both conditions readily occur even
for modest datasets when low support thresholds are used. Moreover, no matter
how high the threshold, if the data is too large to fit in main memory, it is undesir-
able to have to scan it repeatedly—and many association rule applications involve
truly massive datasets.

These effects can be ameliorated by using appropriate data structures. We
describe a method called FP-growth that uses an extended prefix tree—a frequent-
pattern tree, or FP-tree—to store a compressed version of the dataset in main
memory. Only two passes are needed to map a dataset into an FP-tree. The algorithm
then processes the tree in a recursive fashion to grow large item sets directly, instead
of generating candidate item sets and then having to test them against the entire
database.

Building a Frequent-Pattern Tree

Like Apriori, the FP-growth algorithm begins by counting the number of times
individual items (i.e., attribute—value pairs) occur in the dataset. After this initial
pass, a tree structure is created in a second pass. Initially, the tree is empty and the
structure emerges as each instance in the dataset is inserted into it.

The key to obtaining a compact tree structure that can be quickly processed to
find large item sets is to sort the items in each instance in descending order of their
frequency of occurrence in the dataset, which has already been recorded in the first
pass, before inserting them into the tree. Individual items in each instance that do
not meet the minimum support threshold are not inserted into the tree, effectively
removing them from the dataset. The hope is that many instances will share those

6.3 Association Rules 217

items that occur most frequently individually, resulting in a high degree of compres-
sion close to the tree’s root.

We illustrate the process with the weather data, reproduced in Table 6.1(a), using
a minimum support threshold of 6. The algorithm is complex, and its complexity
far exceeds what would be reasonable for such a trivial example, but a small illus-
tration is the best way of explaining it. Table 6.1(b) shows the individual items,
with their frequencies, that are collected in the first pass. They are sorted into
descending order and ones whose frequency exceeds the minimum threshold are
bolded. Table 6.1(c) shows the original instances, numbered as in Table 6.1(a), with
the items in each instance sorted into descending frequency order. Finally, to give

Table 6.1 Preparing Weather Data for Insertion into an FP-Tree

(a) Outlook Temperature Humidity Windy Play
1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rainy mild high false yes
5 rainy cool normal false yes
6 rainy cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false yes

10 rainy mild normal false yes

11 sunny mild normal true yes

12 overcast mild high true yes

13 overcast hot normal false yes

14 rainy mild high true no

(b)

play = yes 9

windy = false 8

humidity = normal 7

humidity = high 7

windy = true 6

temperature = mild 6

play = no 5

outlook = sunny 5

outlook = rainy 5

temperature = hot 4

temperature = cool 4

outlook = overcast 4

Continued

218 CHAPTER 6 Implementations: Real Machine Learning Schemes

Table 6.1 Preparing Weather Data for Insertion into an FP-Tree Continued
(c)
1 windy = false, humidity = high, play = no,
outlook = sunny, temperature = hot
2 humidity = high, windy = true, play = no,
outlook = sunny, temperature = hot
3 play = yes, windy = false, humidity = high,
temperature = hot, outlook = overcast
4 play = yes, windy = false, humidity = high,
temperature = mild, outlook = rainy
5 play = yes, windy = false, humidity = normal,
outlook = rainy, temperature = cool
6 humidity = normal, windy = true, play = no, outlook
= rainy, temperature = cool
7 play = yes, humidity = normal, windy = true,
temperature = cool, outlook = overcast
8 windy = false, humidity = high,
temperature = mild, play = no, outlook = sunny
9 play = yes, windy = false, humidity = normal,
outlook = sunny, temperature = cool
10 play = yes, windy = false, humidity = normal,
temperature = mild, outlook = rainy
11 play = yes, humidity = normal, windy = true,
temperature = mild, outlook = sunny
12 play = yes, humidity = high, windy = true,
temperature = mild, outlook = overcast
13 play = yes, windy = false, humidity = normal,
temperature = hot, outlook = overcast
14 humidity = high, windy = true, temperature = mild,
play = no, outlook = rainy
(d)
play = yes and windy = false 6
play = yes and humidity = normal 6
(a) The original data, (b) frequency ordering of items with frequent item sets in bold, (c) the data with
each instance sorted into frequency order, and (d) the two multiple-item frequent item sets.

an advance peek at the final outcome, Table 6.1(d) shows the only two multiple-
item sets whose frequency satisfies the minimum support threshold. Along with the
six single-item sets shown in bold in Table 6.1(b), these form the final answer: a
total of eight item sets. We are going to have to do a lot of work to find the two
multiple-item sets in Table 6.1(d) using the FP-tree method.

6.3 Association Rules 219

Figure 6.8(a) shows the FP-tree structure that results from this data with a
minimum support threshold of 6. The tree itself is shown with solid arrows. The
numbers at each node show how many times the sorted prefix of items, up to
and including the item at that node, occur in the dataset. For example, following
the third branch from the left in the tree we can see that, after sorting, two
instances begin with the prefix humidity = high—that is, the second and last
instances of Table 6.1(c). Continuing down that branch, the next node records
that the same two instances also have windy = true as their next most frequent
item. The lowest node in the branch shows that one of these two instances—
that is, the last in Table 6.1(c)—contains temperature = mild as well. The other
instance—that is, the second in Table 6.1(c)—drops out at this stage because its
next most frequent item does not meet the minimum support constraint and is
therefore omitted from the tree.

On the left side of the diagram a “header table” shows the frequencies of the
individual items in the dataset (Table 6.1(b)). These items appear in descending
frequency order, and only those with at least minimum support are included. Each
item in the header table points to its first occurrence in the tree, and subsequent
items in the tree with the same name are linked together to form a list. These
lists, emanating from the header table, are shown in Figure 6.8(a) by dashed
arrows.

It is apparent from the tree that only two nodes have counts that satisfy the
minimum support threshold, corresponding to the item sets play = yes (count of
9) and play = yes and windy = false (count of 6) in the leftmost branch. Each entry
in the header table is itself a single-item set that also satisfies the threshold. This
identifies as part of the final answer all the bold items in Table 6.1(b) and the first
item set in Table 6.1(d). Since we know the outcome in advance we can see that
there is only one more item set to go—the second in Table 6.1(d). But there is no
hint of it in the data structure of Figure 6.8(a), and we will have to do a lot of
work to discover it!

Finding Large Item Sets

The purpose of the links from the header table into the tree structure is to facili-
tate traversal of the tree to find other large item sets, apart from the two that are
already in the tree. This is accomplished by a divide-and-conquer approach that
recursively processes the tree to grow large item sets. Each header table list is
followed in turn, starting from the bottom of the table and working upward.
Actually, the header table can be processed in any order, but it is easier to think
about processing the longest paths in the tree first, and these correspond to the
lower-frequency items.

Starting from the bottom of the header table, we can immediately add fempera-
ture = mild to the list of large item sets. Figure 6.8(b) shows the result of the next
stage, which is an FP-tree for just those instances in the dataset that include

220

‘Jewou = Aypiwiny
Uo [BUOIIPUOD Blep 8Ul (D) pue ‘pji = ainjesads} UO [BUOIIPUOD B1ep sy} (4) ‘elep [N} aU} (B) ‘ejep Jayieam sy} Joj Soai) Xijaid papusix]

89 NI

(D

priw = axmesodud)

>~ (9) onn = Apuim

>~ (L) rewwiou = Aypruuny
[euLIOu = Ajrprumny

~ (L) ySiy = Anprumy
T (9) os[yy = Apuim

(6) S9K = Aeyd

221

()

as[ey = Apuim

=y

()]
sok = Keyd

@

M
Y31y = Ayprumy

S0 = Keyd

piuod ‘g"9 JYNII4

) 9s[eJ = Apuim

...................................... (9) sok = Aerd

222

CHAPTER 6 Implementations: Real Machine Learning Schemes

temperature =mild. This tree was not created by rescanning the dataset but by further
processing of the tree in Figure 6.8(a), as follows.

To see if a larger item set containing temperature = mild can be grown, we follow
its link from the header table. This allows us to find all instances that contain tempera-
ture = mild. From here the new tree in Figure 6.8(b) is created, with counts projected
from the original tree corresponding to the set of instances that are conditional on the
presence of temperature =mild. This is done by propagating the counts from the tem-
perature =mild nodes up the tree, each node receiving the sum of its children’s counts.

A quick glance at the header table for this new FP-tree shows that the temperature
=mild pattern cannot be grown any larger because there are no individual items, con-
ditional on femperature = mild, that meet the minimum support threshold. Note,
however, that it is necessary to create the whole Figure 6.8(b) tree in order to discover
this because it is effectively being created bottom up and the counts in the header table
to the left are computed from the numbers in the tree. The recursion exits at this point,
and processing continues on the remaining header table items in the original FP-tree.

Figure 6.8(c) shows a second example, the FP-tree that results from following
the header table link for humidity = normal. Here the windy = false node has a count
of 4, corresponding to the four instances that had humidity = normal in the node’s
left branch in the original tree. Similarly, play = yes has a count of 6, corresponding
to the four instances from windy = false and the two instances that contain humidity
=normal from the middle branch of the subtree rooted at play = yes in Figure 6.8(a).

Processing the header list for this FP-tree shows that the humidity = normal item
set can be grown to include play = yes since these two occur together six times,
which meets the minimum support constraint. This corresponds to the second item
set in Table 6.1(d), which in fact completes the output. However, in order to be sure
that there are no other eligible item sets it is necessary to continue processing the
entire header link table in Figure 6.8(a).

Once the recursive tree mining process is complete all large item sets that meet
the minimum support threshold have been found. Then association rules are created
using the approach explained in Section 4.5. Studies have claimed that the FP-growth
algorithm is up to an order of magnitude faster than Apriori at finding large item
sets, although this depends on the details of the implementation and the nature of
the dataset.

Discussion

The process of recursively creating projected FP-trees can be efficiently implemented
within a single prefix tree structure by having a list of frequencies, indexed by recur-
sion depth, at each node in the tree and each element of the header table. The tree
structure itself is usually far smaller than the original dataset, and if the dataset is
dense it achieves a high level of compression. This outweighs the overhead imposed
by the pointers and counters that must be maintained at each node. Only when the
support threshold is set very low does the FP-tree’s ability to compress the dataset
degrade. Under these conditions, the tree becomes bushy, with little node sharing.
On massive datasets for which the frequent-pattern tree exceeds main memory,

6.4 Extending Linear Models 223

disk-resident trees can be constructed using indexing techniques that have been
developed for relational database systems.

The FP-tree data structure and FP-growth algorithm for finding large item sets
without candidate generation were introduced by Han et al. (2000) following pio-
neering work by Zaki et al. (1997); Han et al. (2004) give a more comprehensive
description. It has been extended in various ways. Wang et al. (2003) develop an
algorithm called CLOSET+ to mine closed item sets—that is, sets for which there
is no proper superset that has the same support. Finding large closed item sets pro-
vides essentially the same information as finding the complete set of large item sets,
but produces few redundant rules and thus eases the task that users face when exam-
ining the output of the mining process. GSP (Generalized Sequential Patterns) is a
method based on the Apriori algorithm for mining patterns in databases of event
sequences (Srikant and Agrawal, 1996). A similar approach to FP-growth is used for
event sequences by algorithms called PrefixSpan (Pei et al., 2004) and CloSpan (Yan
et al., 2003), and for graph patterns by algorithms called gSpan (Yan and Han, 2002)
and CloseGraph (Yan and Han, 2003).

Ceglar and Roddick (2006) provide a comprehensive survey of association rule
mining. Some authors have worked on integrating association rule mining with
classification. For example, Liu et al. (1998) mine a kind of association rule that
they call a “class association rule,” and build a classifier on the rules that are found
using a technique they call CBA (Classification Based on Associations). Mutter
et al. (2004) use classification to evaluate the output of confidence-based association
rule mining, and find that standard learners for classification rules are generally
preferable to CBA when runtime and size of the rule sets is of concern.

6.4 EXTENDING LINEAR MODELS

Section 4.6 described how simple linear models can be used for classification in
situations where all attributes are numeric. Their biggest disadvantage is that they
can only represent linear boundaries between classes, which makes them too simple
for many practical applications. Support vector machines use linear models to imple-
ment nonlinear class boundaries. (Although it is a widely used term, support vector
machines is something of a misnomer: These are algorithms, not machines.) How
can this be possible? The trick is easy: Transform the input using a nonlinear
mapping. In other words, transform the instance space into a new space. With a
nonlinear mapping, a straight line in the new space doesn’t look straight in the
original instance space. A linear model constructed in the new space can represent
a nonlinear decision boundary in the original space.

Imagine applying this idea directly to the ordinary linear models in Section 4.6.
For example, the original set of attributes could be replaced by one giving all prod-
ucts of n factors that can be constructed from these attributes. An example for two
attributes, including all products with three factors, is

X =wa’ +wya’a, + wia,a,* +waay’

224 CHAPTER 6 Implementations: Real Machine Learning Schemes

Here, x is the outcome, a, and a, are the two attribute values, and there are four
weights w; to be learned. As described in Section 4.6, the result can be used for
classification by training one linear system for each class and assigning an unknown
instance to the class that gives the greatest output x—the standard technique of
multiresponse linear regression. Then, a; and a, will be the attribute values for the
test instance.

To generate a linear model in the space that is spanned by these products,
each training instance is mapped into the new space by computing all possible
three-factor products of its two attribute values. The learning algorithm is then
applied to the transformed instances. To classify an instance, it is processed by
the same transformation prior to classification. There is nothing to stop us from
adding in more synthetic attributes. For example, if a constant term were included,
the original attributes and all two-factor products of them would yield a total of
10 weights to be learned. (Alternatively, adding an additional attribute with a
value that was always a constant would have the same effect.) Indeed, polynomi-
als of sufficiently high degree can approximate arbitrary decision boundaries to
any required accuracy.

It seems too good to be true—and it is. As you will probably have guessed,
problems arise with this procedure due to the large number of coefficients introduced
by the transformation in any realistic setting. The first snag is computational com-
plexity. With 10 attributes in the original dataset, suppose we want to include all
products with five factors: then the learning algorithm will have to determine more
than 2000 coefficients. If its runtime is cubic in the number of attributes, as it is for
linear regression, training will be infeasible. That is a problem of practicality. The
second problem is one of principle: overfitting. If the number of coefficients is large
relative to the number of training instances, the resulting model will be “too
nonlinear”—it will overfit the training data. There are just too many parameters in
the model.

Maximum-Margin Hyperplane

Support vector machines address both problems. They are based on an algorithm
that finds a special kind of linear model: the maximum-margin hyperplane. We
already know what a hyperplane is—it’s just another term for a linear model. To
visualize a maximum-margin hyperplane, imagine a two-class dataset whose classes
are linearly separable—that is, there is a hyperplane in instance space that classifies
all training instances correctly. The maximum-margin hyperplane is the one that
gives the greatest separation between the classes—it comes no closer to either than
it has to. An example is shown in Figure 6.9, where the classes are represented by
open and filled circles, respectively. Technically, the convex hull of a set of points
is the tightest enclosing convex polygon: Its outline emerges when you connect every
point of the set to every other point. Because we have supposed that the two classes
are linearly separable, their convex hulls cannot overlap. Among all hyperplanes that
separate the classes, the maximum-margin hyperplane is the one that is as far as

6.4 Extending Linear Models 225

possible from both convex hulls—it is
the perpendicular bisector of the short-
est line connecting the hulls (shown
dashed in the figure).

The instances that are closest to
the maximum-margin hyperplane—
the ones with the minimum distance to
it—are called support vectors. There
is always at least one support vector
for each class, and often there are
more. The important thing is that the
set of support vectors uniquely defines
FIGURE 6.9 the maximum-margin hyperplane for
A maximum-margin hyperplane. the learning problem. Given the sup-

port vectors for the two classes, we
can easily construct the maximum-margin hyperplane. All other training instances
are irrelevant—they can be deleted without changing the position and orientation of
the hyperplane.

maximum margin hyperplane \

support vectors

A hyperplane separating the two classes might be written as
X =Wo + W8 +W,a,

in the two-attribute case, where a; and a, are the attribute values and there are three
weights w; to be learned. However, the equation defining the maximum-margin hyperplane
can be written in another form, in terms of the support vectors. Write the class value y of
a training instance as either 1 (for yes, it is in this class) or =1 (for no, it is not). Then
the maximum-margin hyperplane can be written as

x=b+ Y ayal)ea
i is support vector

Here, y; is the class value of training instance a(i), while b and o; are numeric parameters
that have to be determined by the learning algorithm. Note that a(i) and a are vectors. The
vector a represents a test instance—just as the vector [a;, a.] represented a test instance
in the earlier formulation. The vectors a(i) are the support vectors, those circled in Figure
6.9; they are selected members of the training set. The term a(i) ¢ a represents the dot
product of the test instance with one of the support vectors: a(i) ® a = Za(/);a;. If you are
not familiar with dot product notation, you should still be able to understand the gist of
what follows: Just think of a(i) as the whole set of attribute values for the ith support
vector. Finally, b and o; are parameters that determine the hyperplane, just as the weights
Wy, Wi, and w, are parameters that determine the hyperplane in the earlier formulation.

It turns out that finding the support vectors for the training instances and determining
the parameters b and o; belongs to a standard class of optimization problems known as
constrained quadratic optimization. There are off-the-shelf software packages for solving
these problems (see Fletcher, 1987, for a comprehensive and practical account of solution
methods). However, the computational complexity can be reduced, and learning accelerated,
if special-purpose algorithms for training support vector machines are applied—but the
details of these algorithms lie beyond the scope of this book (see Platt, 1998).

226 CHAPTER 6 Implementations: Real Machine Learning Schemes

Nonlinear Class Boundaries

We motivated the introduction of support vector machines by claiming that they can
be used to model nonlinear class boundaries. However, so far we have only described
the linear case. Consider what happens when an attribute transformation, as described
before, is applied to the training data before determining the maximum-margin
hyperplane. Recall that there are two problems with the straightforward application
of such transformations to linear models: computational complexity on the one hand
and overfitting on the other.

With support vectors, overfitting is unlikely to occur. The reason is that it is
inevitably associated with instability: With an algorithm that overfits, changing one
or two instance vectors will make sweeping changes to large sections of the decision
boundary. But the maximum-margin hyperplane is relatively stable: It only moves
if training instances are added or deleted that are support vectors—and this is true
even in the high-dimensional space spanned by the nonlinear transformation. Over-
fitting is caused by too much flexibility in the decision boundary. The support vectors
are global representatives of the whole set of training points, and there are usually
few of them, which gives little flexibility. Thus, overfitting is less likely to occur.

What about computational complexity? This is still a problem. Suppose that the
transformed space is a high-dimensional one so that the transformed support vectors
and test instance have many components. According to the preceding equation, every
time an instance is classified its dot product with all support vectors must be calcu-
lated. In the high-dimensional space produced by the nonlinear mapping this is rather
expensive. Obtaining the dot product involves one multiplication and one addition
for each attribute, and the number of attributes in the new space can be huge. This
problem occurs not only during classification but also during training because the
optimization algorithms have to calculate the same dot products very frequently.
Fortunately, it turns out that it is possible to calculate the dot product before the
nonlinear mapping is performed, on the original attribute set, using a so-called kernel
function based on the dot product.

A high-dimensional version of the preceding equation is simply
x=b+ 2 o, yi(a(i) e a)”

where n is chosen as the number of factors in the transformation (three in the example
we used earlier). If you expand the term (a(i) e a)", you will find that it contains all the
high-dimensional terms that would have been involved if the test and training vectors were
first transformed by including all products of n factors and the dot product of the result
was taken. (If you actually do the calculation, you will notice that some constant
factors—binomial coefficients—are introduced. However, these do not matter: It is the
dimensionality of the space that concerns us; the constants merely scale the axes.)
Because of this mathematical equivalence, the dot products can be computed in the
original low-dimensional space, and the problem becomes feasible. In implementation
terms, you take a software package for constrained quadratic optimization and every time

6.4 Extending Linear Models 227

a(i) » a is evaluated you evaluate (a(i) ® a)” instead. It's as simple as that because in both
the optimization and the classification algorithms these vectors are only used in this dot
product form. The training vectors, including the support vectors, and the test instance all
remain in the original low-dimensional space throughout the calculations.

The function (x * y)", which computes the dot product of two vectors x and y
and raises the result to the power n, is called a polynomial kernel. A good way of
choosing the value of 7 is to start with 1 (a linear model) and increment it until the
estimated error ceases to improve. Usually, quite small values suffice. To include
lower-order terms, we can use the kernel (x ¢y + 1)".

Other kernel functions can be used instead to implement different nonlinear
mappings. Two that are often suggested are the radial basis function (RBF) kernel
and the sigmoid kernel. Which one produces the best results depends on the applica-
tion, although the differences are rarely large in practice. It is interesting to note that
a support vector machine with the RBF kernel is simply a type of neural network
called an RBF network (which we describe later), and one with the sigmoid kernel
implements another type of neural network, a multilayer perceptron with one hidden
layer (also described later).

Mathematically, any function K(x, y) is a kernel function if it can be written as
K(x,y) = D(x) * D(y), where @ is a function that maps an instance into a (potentially
high-dimensional) feature space. In other words, the kernel function represents a dot
product in the feature space created by @. Practitioners sometimes apply functions
that are not proper kernel functions (the sigmoid kernel with certain parameter set-
tings is an example). Despite the lack of theoretical guarantees, this can nevertheless
produce accurate classifiers.

Throughout this section, we have assumed that the training data is linearly
separable—either in the instance space or in the new space spanned by the nonlinear
mapping. It turns out that support vector machines can be generalized to the case
where the training data is not separable. This is accomplished by placing an upper
bound on the coefficients ¢;. Unfortunately, this parameter must be chosen by the
user, and the best setting can only be determined by experimentation. Also, except
in trivial cases it is not possible to determine a priori whether the data is linearly
separable or not.

Finally, we should mention that compared with other methods such as decision
tree learners, even the fastest training algorithms for support vector machines are slow
when applied in the nonlinear setting. However, they often produce very accurate
classifiers because subtle and complex decision boundaries can be obtained.

Support Vector Regression

The maximum-margin hyperplane concept only applies to classification. However,
support vector machine algorithms have been developed for numeric prediction
that share many of the properties encountered in the classification case: They

228 CHAPTER 6 Implementations: Real Machine Learning Schemes

produce a model that can usually be expressed in terms of a few support vectors
and can be applied to nonlinear problems using kernel functions. As with regular
support vector machines, we will describe the concepts involved, but will not
attempt to describe the algorithms that actually perform the work.

As with linear regression, covered in Section 4.6, the basic idea is to find a
function that approximates the training points well by minimizing the prediction
error. The crucial difference is that all deviations up to a user-specified parameter
€ are simply discarded. Also, when minimizing the error, the risk of overfitting is
reduced by simultaneously trying to maximize the flatness of the function. Another
difference is that what is minimized is normally the predictions’ absolute error
instead of the squared error used in linear regression. (There are, however, versions
of the algorithm that use the squared error instead.)

A user-specified parameter € defines a tube around the regression function in
which errors are ignored: For linear support vector regression, the tube is a cylinder.
If all training points can fit within a tube of width 2¢, the algorithm outputs the
function in the middle of the flattest tube that encloses them. In this case the total
perceived error is 0. Figure 6.10(a) shows a regression problem with one attribute,

T —
§ b X
v 6 - X
E Oy
S|
4 b —
2 2
0 0
0 2 4 6 8 10 0) 7 : . |
Attribute Attribute
(@) -

Class

0 2 4 6 8 10
Attribute

(©)
FIGURE 6.10

Support vector regression: (a) e=1, (b) e=2, and (c) e=0.5.

6.4 Extending Linear Models 229

a numeric class, and eight instances. In this case € was set to 1, so the width of the
tube around the regression function (indicated by dotted lines) is 2. Figure 6.10(b)
shows the outcome of the learning process when € is set to 2. As you can see, the
wider tube makes it possible to learn a flatter function.

The value of € controls how closely the function will fit the training data. Too
large a value will produce a meaningless predictor—in the extreme case, when 2¢
exceeds the range of class values in the training data, the regression line is horizontal
and the algorithm just predicts the mean class value. On the other hand, for small
values of € there may be no tube that encloses all the data. In that case, some train-
ing points will have nonzero error, and there will be a tradeoff between the prediction
error and the tube’s flatness. In Figure 6.10(c), € was set to 0.5 and there is no tube
of width 1 that encloses all the data.

For the linear case, the support vector regression function can be written as

x=b+ Y oa()ea

i is support vector

As with classification, the dot product can be replaced by a kernel function for
nonlinear problems. The support vectors are all those points that do not fall strictly
within the tube—that is, the points outside the tube and on its border. As with
classification, all other points have coefficient 0 and can be deleted from the train-
ing data without changing the outcome of the learning process. In contrast to the
classification case, the ¢; may be negative.

We have mentioned that as well as minimizing the error, the algorithm simultane-
ously tries to maximize the flatness of the regression function. In Figures 6.10(a)
and (b), where there is a tube that encloses all the training data, the algorithm simply
outputs the flattest tube that does so. However, in Figure 6.10(c), there is no tube
with error 0, and a tradeoff is struck between the prediction error and the tube’s
flatness. This tradeoff is controlled by enforcing an upper limit C on the absolute
value of the coefficients ¢;. The upper limit restricts the influence of the support
vectors on the shape of the regression function and is a parameter that the user must
specify in addition to €. The larger C is, the more closely the function can fit the
data. In the degenerate case € =0, the algorithm simply performs least-absolute-error
regression under the coefficient size constraint and all training instances become
support vectors. Conversely, if € is large enough that the tube can enclose all the
data, the error becomes 0, there is no tradeoff to make, and the algorithm outputs
the flattest tube that encloses the data irrespective of the value of C.

Kernel Ridge Regression

Chapter 4 introduced classic least-squares linear regression as a technique for pre-
dicting numeric quantities. In the previous section we saw how the powerful idea
of support vector machines can be applied to regression and, furthermore, how
nonlinear problems can be tackled by replacing the dot product in the support vector
formulation by a kernel function—this is often known as the “kernel trick.” For

230 CHAPTER 6 Implementations: Real Machine Learning Schemes

classic linear regression using squared loss, only simple matrix operations are needed
to find the model, but this is not the case for support vector regression with the
user-specified loss parameter €. It would be nice to combine the power of the kernel
trick with the simplicity of standard least-squares regression. Kernel ridge regression
does just that. In contrast to support vector regression, it does not ignore errors
smaller than &, and the squared error is used instead of the absolute error.

Instead of expressing the linear regression model’s predicted class value for a given test
instance a as a weighted sum of the attribute values, as in Chapter 4, it can be expressed
as a weighted sum over the dot products of each training instance a; and the test instance
in question:

n
za/‘aj ea
j=0

where we assume that the function goes through the origin and an intercept is not
required. This involves a coefficient ¢; for each training instance, which resembles the
situation with support vector machines—except that here j ranges over all instances in the
training data, not just the support vectors. Again, the dot product can be replaced by a
kernel function to yield a nonlinear model.

The sum of the squared errors of the model’s predictions on the training data is given by

n n 2

(y, - aja oa,]
i=1 j=0
This is the squared loss, just as in Chapter 4, and again we seek to minimize it by
choosing appropriate «;'s. But now there is a coefficient for each training instance, not
just for each attribute, and most data sets have far more instances than attributes. This
means that there is a serious risk of overfitting the training data when a kernel function is
used instead of the dot product to obtain a nonlinear model.

That is where the ridge part of kernel ridge regression comes in. Instead of minimizing
the squared loss, we trade closeness of fit against model complexity by introducing a
penalty term:

n n 2 n
Z[y,—Za,a, -a,) +AY aoja; e a

=1 j=0 ij=1

The second sum penalizes large coefficients. This prevents the model from placing too much
emphasis on individual training instances by giving them large coefficients, unless this yields
a correspondingly large drop in error. The parameter A controls the tradeoff between closeness
of fit and model complexity. When matrix operations are used to solve for the coefficients of
the model, the ridge penalty also has the added benefit of stabilizing degenerate cases. For
this reason, it is often applied in standard least-squares linear regression as well.

Although kernel ridge regression has the advantage over support vector machines
of computational simplicity, one disadvantage is that there is no sparseness in the
vector of coefficients—in other words, no concept of “support vectors.” This makes
a difference at prediction time because support vector machines have to sum only
over the set of support vectors, not the entire training set.

6.4 Extending Linear Models

In a typical situation with more instances than attributes, kernel ridge regression
is more computationally expensive than standard linear regression, even when using
the dot product rather than a kernel. This is because of the complexity of the matrix
inversion operation used to find the model’s coefficient vector. Standard linear regres-
sion requires inverting an m x m matrix, which has complexity O(m*), where m is the
number of attributes in the data. Kernel ridge regression, on the other hand, involves
an n X n matrix, with complexity O(n*) where n is the number of instances in the train-
ing data. Nevertheless, it is advantageous to use kernel ridge regression in cases where
a nonlinear fit is desired, or where there are more attributes than training instances.

Kernel Perceptron

In Section 4.6 we introduced the perceptron algorithm for learning a linear classifier.
It turns out that the kernel trick can also be used to upgrade this algorithm to learn
nonlinear decision boundaries.

To see this, we first revisit the linear case. The perceptron algorithm repeatedly iterates
through the training data instance by instance and updates the weight vector every time
one of these instances is misclassified based on the weights learned so far. The weight
vector is updated simply by adding or subtracting the instance’s attribute values to or
from it. This means that the final weight vector is just the sum of the instances that
have been misclassified. The perceptron makes its predictions based on whether

Ziwf‘a’

is greater or less than 0, where w; is the weight for the jth attribute and a; the corresponding
attribute value of the instance that we wish to classify. Instead, we could use

PIDIIHE(NES

Here, a’(j) is the jth misclassified training instance, a'(j); its ith attribute value, and y(j)
its class value (either +1 or —1). To implement this we no longer keep track of an explicit
weight vector: We simply store the instances that have been misclassified so far and use
the previous expression to make a prediction.

It looks like we've gained nothing—in fact, the algorithm is much slower because it
iterates through all misclassified training instances every time a prediction is made.
However, closer inspection of this formula reveals that it can be expressed in terms of dot
products between instances. First, swap the summation signs to yield

Zl.y(j)z/a'(/),a,
The second sum is just a dot product between two instances and can be written as
2. ya(ea

This rings a bell! A similar expression for support vector machines enabled the use of
kernels. Indeed, we can apply exactly the same trick here and use a kernel function
instead of the dot product. Writing this function as K(...) gives

> YK@(), 2)

In this way the perceptron algorithm can learn a nonlinear classifier simply by keeping
track of the instances that have been misclassified during the training process and using
this expression to form each prediction.

.
231

232

CHAPTER 6 Implementations: Real Machine Learning Schemes

If a separating hyperplane exists in the high-dimensional space implicitly created
by the kernel function, this algorithm will learn one. However, it won’t learn the
maximum-margin hyperplane found by a support vector machine classifier. This
means that classification performance is usually worse. On the plus side, the
algorithm is easy to implement and supports incremental learning.

This classifier is called the kernel perceptron. It turns out that all sorts of algo-
rithms for learning linear models can be upgraded by applying the kernel trick in a
similar fashion. For example, logistic regression can be turned into kernel logistic
regression. As we saw before, the same applies to regression problems: Linear
regression can also be upgraded using kernels. Again, a drawback of these advanced
methods for linear and logistic regression (if they are done in a straightforward
manner) is that the solution is not “sparse”: Every training instance contributes to
the solution vector. In support vector machines and the kernel perceptron, only some
of the training instances affect the solution, and this can make a big difference in
computational efficiency.

The solution vector found by the perceptron algorithm depends greatly on the
order in which the instances are encountered. One way to make the algorithm more
stable is to use all the weight vectors encountered during learning, not just the final
one, letting them vote on a prediction. Each weight vector contributes a certain
number of votes. Intuitively, the “correctness” of a weight vector can be measured
roughly as the number of successive trials after its inception in which it correctly
classified subsequent instances and thus didn’t have to be changed. This measure
can be used as the number of votes given to the weight vector, giving an algorithm
known as the voted perceptron that performs almost as well as a support vector
machine. (Note that, as mentioned earlier, the various weight vectors in the voted
perceptron don’t need to be stored explicitly, and the kernel trick can be applied
here too.)

Multilayer Perceptrons

Using a kernel is not the only way to create a nonlinear classifier based on the per-
ceptron. In fact, kernel functions are a recent development in machine learning.
Previously, neural network proponents used a different approach for nonlinear clas-
sification: They connected many simple perceptron-like models in a hierarchical
structure. This can represent nonlinear decision boundaries.

Section 4.6 explained that a perceptron represents a hyperplane in instance
space. We mentioned there that it is sometimes described as an artificial “neuron.”
Of course, human and animal brains successfully undertake very complex clas-
sification tasks—for example, image recognition. The functionality of each indi-
vidual neuron that is in a brain is certainly not sufficient to perform these feats.
How can they be solved by brainlike structures? The answer must lie in the
fact that the neurons in the brain are massively interconnected, allowing a problem
to be decomposed into subproblems that can be solved at the neuron level.

6.4 Extending Linear Models 233

This observation inspired the development of artificial networks of neurons—
neural nets.

Consider the simple dataset in Figure 6.11. Part (a) shows a two-dimensional
instance space with four instances having classes 0 and 1, represented by white and
black dots, respectively. No matter how you draw a straight line through this space,
you will not be able to find one that separates all the black points from all the white
ones. In other words, the problem is not linearly separable, and the simple percep-
tron algorithm will fail to generate a separating hyperplane (in this two-dimensional
instance space a hyperplane is just a straight line). The situation is different in
Figure 6.11(b) and Figure 6.11(c): Both these problems are linearly separable. The
same holds for Figure 6.11(d), which shows two points in a one-dimensional
instance space (in the case of one dimension the separating hyperplane degenerates
to a separating point).

If you are familiar with propositional logic, you may have noticed that the four
situations in Figure 6.11 correspond to four types of logical connectives. Figure
6.11(a) represents a logical XOR (exclusive-OR), where the class is 1 if and only
if exactly one of the attributes has value 1. Figure 6.11(b) represents logical AND,
where the class is 1 if and only if both attributes have value 1. Figure 6.11(c)
represents OR, where the class is O only if both attributes have value 0. Figure
6.11(d) represents NOT, where the class is O if and only if the attribute has value
1. Because the last three are linearly separable, a perceptron can represent AND,
OR, and NOT. Indeed, perceptrons for the corresponding datasets are shown in
Figures 6.11(f-h), respectively. However, a simple perceptron cannot represent
XOR because that is not linearly separable. To build a classifier for this type of
problem a single perceptron is not sufficient—we need several of them.

Figure 6.11(e) shows a network with three perceptrons, or units, labeled A, B, and
C. The first two are connected to what is sometimes called the input layer of the
network, representing the attributes in the data. As in a simple perceptron, the input
layer has an additional constant input called the bias. However, the third unit does not
have any connections to the input layer. Its input consists of the output of units A and
B (either O or 1) and another constant bias unit. These three units make up the hidden
layer of the multilayer perceptron. They are called “hidden” because the units have
no direct connection to the environment. This layer is what enables the system to
represent XOR. You can verify this by trying all four possible combinations of input
signals. For example, if attribute a, has value 1 and a, has value 1, then unit A will
output 1 (because 1 X 1+ 1 x 1 +—0.5x 1 > 0), unit B will output O (because —1 x 1
+-1Xx1+4+-1.5x%x1<0), and unit C will output 0 (because I X 1 + 1 x0+-1.5x 1<
0). This is the correct answer. Closer inspection of the behavior of the three units
reveals that the first one represents OR, the second represents NAND (NOT com-
bined with AND), and the third represents AND. Together they represent the expres-
sion (a; OR a,) AND (a; NAND a,), which is precisely the definition of XOR.

As this example illustrates, any expression from propositional calculus can be
converted into a multilayer perceptron, because the three connectives AND, OR, and

234 CHAPTER 6 Implementations: Real Machine Learning Schemes

14 @ o) 140 ° 14 ® °
0 o ° 04 O o 04 O ®
T T T T T T
0 1 0 1 0 1
(a) (b) ©
C
<15
1 1
1 {I) \15
1 1 \ 1
(“bias™) ttribut ttribut !
A B attribute attribute (“bias”)
a ar
1.5
1 -1 1 -1 <0.5 ®
attribute attribute . .1 -
0 f p P (“bias”)
1 2
d) (e

e TN

. . 1 . 1
attribute attribute (“bias”) attribute (“bias”)
aj ap ai
(2 (h)

FIGURE 6.11

Example datasets and corresponding perceptrons.

6.4 Extending Linear Models 235

NOT are sufficient for this and we have seen how each can be represented using a
perceptron. Individual units can be connected together to form arbitrarily complex
expressions. Hence, a multilayer perceptron has the same expressive power as, say,
a decision tree. In fact, it turns out that a two-layer perceptron (not counting the
input layer) is sufficient. In this case, each unit in the hidden layer corresponds to a
variant of AND—because we assume that it may negate some of the inputs before
forming the conjunction—joined by an OR that is represented by a single unit in
the output layer. In other words, each node in the hidden layer has the same role as
a leaf in a decision tree or a single rule in a set of decision rules.

The big question is how to learn a multilayer perceptron. There are two aspects to
the problem: learning the structure of the network and learning the connection
weights. It turns out that there is a relatively simple algorithm for determining the
weights given a fixed network structure. This algorithm is called backpropagation and
is described in the next section. However, although there are many algorithms that
attempt to identify network structure, this aspect of the problem is commonly solved
by experimentation—perhaps combined with a healthy dose of expert knowledge.
Sometimes the network can be separated into distinct modules that represent identifi-
able subtasks (e.g., recognizing different components of an object in an image recogni-
tion problem), which opens up a way of incorporating domain knowledge into the
learning process. Often a single hidden layer is all that is necessary, and an appropriate
number of units for that layer is determined by maximizing the estimated accuracy.

Backpropagation

Suppose we have some data and seek a multilayer perceptron that is an accurate
predictor for the underlying classification problem. Given a fixed network structure,
we must determine appropriate weights for the connections in the network. In the
absence of hidden layers, the perceptron learning rule from Section 4.6 can be used
to find suitable values. But suppose there are hidden units. We know what the output
unit should predict and could adjust the weights of the connections leading to that
unit based on the perceptron rule. But the correct outputs for the hidden units are
unknown, so the rule cannot be applied there.

It turns out that, roughly speaking, the solution is to modify the weights of the
connections leading to the hidden units based on the strength of each unit’s contribu-
tion to the final prediction. There is a standard mathematical optimization algorithm,
called gradient descent, which achieves exactly that. Unfortunately, it requires
taking derivatives, and the step function that the simple perceptron uses to convert
the weighted sum of the inputs into a 0/1 prediction is not differentiable. We need
to see whether the step function can be replaced by something else.

Figure 6.12(a) shows the step function: If the input is smaller than 0, it outputs O;
otherwise, it outputs 1. We want a function that is similar in shape but differentiable. A
commonly used replacement is shown in Figure 6.12(b). In neural networks terminol-
ogy itis called the sigmoid function, and the version we consider here is defined by

1
1+e™*

fx)=

236 CHAPTER 6 Implementations: Real Machine Learning Schemes

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-10 s 0 5 10 -10 s 0 5 10
(a) (b)
FIGURE 6.12

Step versus sigmoid: (a) step function and (b) sigmoid function.

We encountered it in Section 4.6 when we described the logit transform used in
logistic regression. In fact, learning a multilayer perceptron is closely related to
logistic regression.

To apply the gradient descent procedure, the error function—the thing that is to
be minimized by adjusting the weights—must also be differentiable. The number of
misclassifications—measured by the discrete O — 1 loss mentioned in Section 5.6—
does not fulfill this criterion. Instead, multilayer perceptrons are usually trained by
minimizing the squared error of the network’s output, essentially treating it as an
estimate of the class probability. (Other loss functions are also applicable. For
example, if the negative log-likelihood is used instead of the squared error, learning
a sigmoi