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The convergence of computing and communication has produced a society that feeds 
on information. Yet most of the information is in its raw form: data. If data is char-
acterized as recorded facts, then information is the set of patterns, or expectations, 
that underlie the data. There is a huge amount of information locked up in data-
bases—information that is potentially important but has not yet been discovered or 
articulated. Our mission is to bring it forth.

Data mining is the extraction of implicit, previously unknown, and potentially 
useful information from data. The idea is to build computer programs that sift 
through databases automatically, seeking regularities or patterns. Strong patterns, if 
found, will likely generalize to make accurate predictions on future data. Of course, 
there will be problems. Many patterns will be banal and uninteresting. Others will 
be spurious, contingent on accidental coincidences in the particular dataset used. 
And real data is imperfect: Some parts will be garbled, some missing. Anything that 
is discovered will be inexact: There will be exceptions to every rule and cases not 
covered by any rule. Algorithms need to be robust enough to cope with imperfect 
data and to extract regularities that are inexact but useful.

Machine learning provides the technical basis of data mining. It is used to extract 
information from the raw data in databases—information that is expressed in a 
comprehensible form and can be used for a variety of purposes. The process is one 
of abstraction: taking the data, warts and all, and inferring whatever structure under-
lies it. This book is about the tools and techniques of machine learning that are used 
in practical data mining for finding, and describing, structural patterns in data.

As with any burgeoning new technology that enjoys intense commercial atten-
tion, the use of data mining is surrounded by a great deal of hype in the technical—
and sometimes the popular—press. Exaggerated reports appear of the secrets that 
can be uncovered by setting learning algorithms loose on oceans of data. But there 
is no magic in machine learning, no hidden power, no alchemy. Instead, there is an 
identifiable body of simple and practical techniques that can often extract useful 
information from raw data. This book describes these techniques and shows how 
they work.

We interpret machine learning as the acquisition of structural descriptions from 
examples. The kind of descriptions that are found can be used for prediction, expla-
nation, and understanding. Some data mining applications focus on prediction:  
They forecast what will happen in new situations from data that describe what hap-
pened in the past, often by guessing the classification of new examples. But we are 
equally—perhaps more—interested in applications where the result of “learning” is 
an actual description of a structure that can be used to classify examples. This struc-
tural description supports explanation and understanding as well as prediction. In 
our experience, insights gained by the user are of most interest in the majority of 
practical data mining applications; indeed, this is one of machine learning’s major 
advantages over classical statistical modeling.

Preface
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The book explains a wide variety of machine learning methods. Some are peda-
gogically motivated: simple schemes that are designed to explain clearly how the 
basic ideas work. Others are practical: real systems that are used in applications 
today. Many are contemporary and have been developed only in the last few years.

A comprehensive software resource has been created to illustrate the ideas in this 
book. Called the Waikato Environment for Knowledge Analysis, or Weka1 for short, 
it is available as Java source code at www.cs.waikato.ac.nz/ml/weka. It is a full, 
industrial-strength implementation of essentially all the techniques that are covered 
in this book. It includes illustrative code and working implementations of machine 
learning methods. It offers clean, spare implementations of the simplest techniques, 
designed to aid understanding of the mechanisms involved. It also provides a work-
bench that includes full, working, state-of-the-art implementations of many popular 
learning schemes that can be used for practical data mining or for research. Finally, 
it contains a framework, in the form of a Java class library, that supports applications 
that use embedded machine learning and even the implementation of new learning 
schemes.

The objective of this book is to introduce the tools and techniques for machine 
learning that are used in data mining. After reading it, you will understand what 
these techniques are and appreciate their strengths and applicability. If you wish to 
experiment with your own data, you will be able to do this easily with the Weka 
software.

The book spans the gulf between the intensely practical approach taken by trade 
books that provide case studies on data mining and the more theoretical, principle-
driven exposition found in current textbooks on machine learning. (A brief descrip-
tion of these books appears in the Further Reading section at the end of Chapter 1.) 
This gulf is rather wide. To apply machine learning techniques productively, you 
need to understand something about how they work; this is not a technology that 
you can apply blindly and expect to get good results. Different problems yield to 
different techniques, but it is rarely obvious which techniques are suitable for a given 
situation: You need to know something about the range of possible solutions. And 
we cover an extremely wide range of techniques. We can do this because, unlike 
many trade books, this volume does not promote any particular commercial software 
or approach. We include a large number of examples, but they use illustrative data-
sets that are small enough to allow you to follow what is going on. Real datasets 
are far too large to show this (and in any case are usually company confidential). 
Our datasets are chosen not to illustrate actual large-scale practical problems but to 
help you understand what the different techniques do, how they work, and what their 
range of application is.

The book is aimed at the technically aware general reader who is interested in 
the principles and ideas underlying the current practice of data mining. It will also 

1Found only on the islands of New Zealand, the weka (pronounced to rhyme with “Mecca”) is a 
flightless bird with an inquisitive nature.
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be of interest to information professionals who need to become acquainted with this 
new technology, and to all those who wish to gain a detailed technical understanding 
of what machine learning involves. It is written for an eclectic audience of informa-
tion systems practitioners, programmers, consultants, developers, information tech-
nology managers, specification writers, patent examiners, and curious lay people, as 
well as students and professors, who need an easy-to-read book with lots of illustra-
tions that describes what the major machine learning techniques are, what they do, 
how they are used, and how they work. It is practically oriented, with a strong “how 
to” flavor, and includes algorithms, code, and implementations. All those involved 
in practical data mining will benefit directly from the techniques described. The book 
is aimed at people who want to cut through to the reality that underlies the hype 
about machine learning and who seek a practical, nonacademic, unpretentious 
approach. We have avoided requiring any specific theoretical or mathematical 
knowledge, except in some sections that are marked by a box around the text. These 
contain optional material, often for the more technically or theoretically inclined 
reader, and may be skipped without loss of continuity.

The book is organized in layers that make the ideas accessible to readers who 
are interested in grasping the basics, as well as accessible to those who would like 
more depth of treatment, along with full details on the techniques covered. We 
believe that consumers of machine learning need to have some idea of how the 
algorithms they use work. It is often observed that data models are only as good as 
the person who interprets them, and that person needs to know something about how 
the models are produced to appreciate the strengths, and limitations, of the technol-
ogy. However, it is not necessary for all users to have a deep understanding of the 
finer details of the algorithms.

We address this situation by describing machine learning methods at successive 
levels of detail. The book is divided into three parts. Part I is an introduction to data 
mining. The reader will learn the basic ideas, the topmost level, by reading the first 
three chapters. Chapter 1 describes, through examples, what machine learning is and 
where it can be used; it also provides actual practical applications. Chapters 2 and 
3 cover the different kinds of input and output, or knowledge representation, that 
are involved—different kinds of output dictate different styles of algorithm. Chapter 
4 describes the basic methods of machine learning, simplified to make them easy to 
comprehend. Here, the principles involved are conveyed in a variety of algorithms 
without getting involved in intricate details or tricky implementation issues. To make 
progress in the application of machine learning techniques to particular data mining 
problems, it is essential to be able to measure how well you are doing. Chapter 5, 
which can be read out of sequence, equips the reader to evaluate the results that are 
obtained from machine learning, addressing the sometimes complex issues involved 
in performance evaluation.

Part II introduces advanced techniques of data mining. At the lowest and most 
detailed level, Chapter 6 exposes in naked detail the nitty-gritty issues of implement-
ing a spectrum of machine learning algorithms, including the complexities that are 
necessary for them to work well in practice (but omitting the heavy mathematical 
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machinery that is required for a few of the algorithms). Although many readers may 
want to ignore such detailed information, it is at this level that the full, working, 
tested Java implementations of machine learning schemes are written. Chapter 7 
describes practical topics involved with engineering the input and output to machine 
learning—for example, selecting and discretizing attributes—while Chapter 8  
covers techniques of “ensemble learning,” which combine the output from different 
learning techniques. Chapter 9 looks to the future.

The book describes most methods used in practical machine learning. However, 
it does not cover reinforcement learning because that is rarely applied in practical 
data mining; nor does it cover genetic algorithm approache, because these are 
really an optimization technique, or relational learning and inductive logic pro-
gramming because they are not very commonly used in mainstream data mining 
applications.

Part III describes the Weka data mining workbench, which provides implementa-
tions of almost all of the ideas described in Parts I and II. We have done this in order 
to clearly separate conceptual material from the practical aspects of how to use 
Weka. At the end of each chapter in Parts I and II are pointers to related Weka 
algorithms in Part III. You can ignore these, or look at them as you go along, or skip 
directly to Part III if you are in a hurry to get on with analyzing your data and don’t 
want to be bothered with the technical details of how the algorithms work.

Java has been chosen for the implementations of machine learning techniques 
that accompany this book because, as an object-oriented programming language, it 
allows a uniform interface to learning schemes and methods for pre- and postpro-
cessing. We chose it over other object-oriented languages because programs written 
in Java can be run on almost any computer without having to be recompiled, having 
to go through complicated installation procedures, or—worst of all—having to 
change the code itself. A Java program is compiled into byte-code that can be 
executed on any computer equipped with an appropriate interpreter. This interpreter 
is called the Java virtual machine. Java virtual machines—and, for that matter, Java 
compilers—are freely available for all important platforms.

Of all programming languages that are widely supported, standardized, and 
extensively documented, Java seems to be the best choice for the purpose of this 
book. However, executing a Java program is slower than running a corresponding 
program written in languages like C or C++ because the virtual machine has to 
translate the byte-code into machine code before it can be executed. This penalty 
used to be quite severe, but Java implementations have improved enormously over 
the past two decades, and in our experience it is now less than a factor of two if the 
virtual machine uses a just-in-time compiler. Instead of translating each byte-code 
individually, a just-in-time compiler translates whole chunks of byte-code into 
machine code, thereby achieving significant speedup. However, if this is still too 
slow for your application, there are compilers that translate Java programs directly 
into machine code, bypassing the byte-code step. Of course, this code cannot be 
executed on other platforms, thereby sacrificing one of Java’s most important 
advantages.
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UPDATED AND REVISED CONTENT
We finished writing the first edition of this book in 1999, the second edition in 
early 2005, and now, in 2011, we are just polishing this third edition. How things 
have changed over the past decade! While the basic core of material remains the 
same, we have made the most opportunities to both update it and to add new 
material. As a result the book has close to doubled in size to reflect the changes 
that have taken place. Of course, there have also been errors to fix, errors that we 
had accumulated in our publicly available errata file (available through the book’s 
home page at http://www.cs.waikato.ac.nz/ml/weka/book.html).

Second Edition
The major change in the second edition of the book was a separate part at the end that 
included all the material on the Weka machine learning workbench. This allowed the 
main part of the book to stand alone, independent of the workbench, which we have 
continued in this third edition. At that time, Weka, a widely used and popular feature 
of the first edition, had just acquired a radical new look in the form of an interactive 
graphical user interface—or, rather, three separate interactive interfaces—which 
made it far easier to use. The primary one is the Explorer interface, which gives access 
to all of Weka’s facilities using menu selection and form filling. The others are the 
Knowledge Flow interface, which allows you to design configurations for streamed 
data processing, and the Experimenter interface, with which you set up automated 
experiments that run selected machine learning algorithms with different parameter 
settings on a corpus of datasets, collect performance statistics, and perform signifi-
cance tests on the results. These interfaces lower the bar for becoming a practicing 
data miner, and the second edition included a full description of how to use them.

It also contained much new material that we briefly mention here. We extended 
the sections on rule learning and cost-sensitive evaluation. Bowing to popular 
demand, we added information on neural networks: the perceptron and the closely 
related Winnow algorithm, and the multilayer perceptron and the backpropagation 
algorithm. Logistic regression was also included. We described how to implement 
nonlinear decision boundaries using both the kernel perceptron and radial basis 
function networks, and also included support vector machines for regression. We 
incorporated a new section on Bayesian networks, again in response to readers’ 
requests and Weka’s new capabilities in this regard, with a description of how to 
learn classifiers based on these networks and how to implement them efficiently 
using AD-trees.

The previous five years (1999–2004) had seen great interest in data mining for 
text, and this was reflected in the introduction of string attributes in Weka, multino-
mial Bayes for document classification, and text transformations. We also described 
efficient data structures for searching the instance space: kD-trees and ball trees for 
finding nearest neighbors efficiently and for accelerating distance-based clustering. 
We described new attribute selection schemes, such as race search and the use of 
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support vector machines, and new methods for combining models such as additive 
regression, additive logistic regression, logistic model trees, and option trees. We 
also covered recent developments in using unlabeled data to improve classification, 
including the co-training and co-EM methods.

Third Edition
For this third edition, we thoroughly edited the second edition and brought it up to 
date, including a great many new methods and algorithms. Our basic philosophy has 
been to bring the book and the Weka software even closer together. Weka now 
includes implementations of almost all the ideas described in Parts I and II, and vice 
versa—pretty well everything currently in Weka is covered in this book. We have 
also included far more references to the literature: This third edition practically 
triples the number of references that were in the first edition.

As well as becoming far easier to use, Weka has grown beyond recognition over 
the last decade, and has matured enormously in its data mining capabilities. It now 
incorporates an unparalleled range of machine learning algorithms and related tech-
niques. This growth has been partly stimulated by recent developments in the field 
and partly user-led and demand-driven. This puts us in a position where we know a 
lot about what actual users of data mining want, and we have capitalized on this 
experience when deciding what to include in this book.

As noted earlier, this new edition is split into three parts, which has involved a 
certain amount of reorganization. More important, a lot of new material has been 
added. Here are a few of the highlights.

Chapter 1 includes a section on web mining, and, under ethics, a discussion of 
how individuals can often be “reidentified” from supposedly anonymized data. A 
major addition describes techniques for multi-instance learning, in two new sections: 
basic methods in Section 4.9 and more advanced algorithms in Section 6.10. Chapter 
5 contains new material on interactive cost–benefit analysis. There have been a great 
number of other additions to Chapter 6: cost-complexity pruning, advanced associ-
ation-rule algorithms that use extended prefix trees to store a compressed version of 
the dataset in main memory, kernel ridge regression, stochastic gradient descent, and 
hierarchical clustering methods. The old chapter Engineering the Input and Output 
has been split into two: Chapter 7 on data transformations (which mostly concern 
the input) and Chapter 8 on ensemble learning (the output). To the former we have 
added information on partial least-squares regression, reservoir sampling, one-class 
learning, decomposing multiclass classification problems into ensembles of nested 
dichotomies, and calibrating class probabilities. To the latter we have added new 
material on randomization versus bagging and rotation forests. New sections on data 
stream learning and web mining have been added to the last chapter of Part II.

Part III, on the Weka data mining workbench, contains a lot of new information. 
Weka includes many new filters, machine learning algorithms, and attribute selection 
algorithms, and many new components such as converters for different file formats 
and parameter optimization algorithms. Indeed, within each of these categories Weka 
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contains around 50% more algorithms than in the version described in the second 
edition of this book. All these are documented here. In response to popular demand 
we have given substantially more detail about the output of the different classifiers 
and what it all means. One important change is the inclusion of a brand new Chapter 
17 that gives several tutorial exercises for the Weka Explorer interface (some of 
them quite challenging), which we advise new users to work though to get an idea 
of what Weka can do.
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CHAPTER 

1 

What’s It All About?

Human in vitro fertilization involves collecting several eggs from a woman’s ovaries, 
which, after fertilization with partner or donor sperm, produce several embryos. 
Some of these are selected and transferred to the woman’s uterus. The challenge is 
to select the “best” embryos to use—the ones that are most likely to survive. Selec-
tion is based on around 60 recorded features of the embryos—characterizing their 
morphology, oocyte, and follicle, and the sperm sample. The number of features is 
large enough to make it difficult for an embryologist to assess them all simultane-
ously and correlate historical data with the crucial outcome of whether that embryo 
did or did not result in a live child. In a research project in England, machine learn-
ing has been investigated as a technique for making the selection, using historical 
records of embryos and their outcome as training data.

Every year, dairy farmers in New Zealand have to make a tough business deci-
sion: which cows to retain in their herd and which to sell off to an abattoir. Typically, 
one-fifth of the cows in a dairy herd are culled each year near the end of the milking 
season as feed reserves dwindle. Each cow’s breeding and milk production history 
influences this decision. Other factors include age (a cow nears the end of its pro-
ductive life at eight years), health problems, history of difficult calving, undesirable 
temperament traits (kicking or jumping fences), and not being pregnant with calf 
for the following season. About 700 attributes for each of several million cows have 
been recorded over the years. Machine learning has been investigated as a way of 
ascertaining what factors are taken into account by successful farmers—not to 
automate the decision but to propagate their skills and experience to others.

Life and death. From Europe to the Antipodes. Family and business. Machine 
learning is a burgeoning new technology for mining knowledge from data, a 
technology that a lot of people are starting to take seriously.

1.1  DATA MINING AND MACHINE LEARNING
We are overwhelmed with data. The amount of data in the world and in our lives 
seems ever-increasing—and there’s no end in sight. Omnipresent computers make 
it too easy to save things that previously we would have trashed. Inexpensive disks 
and online storage make it too easy to postpone decisions about what to do with all 
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this stuff—we simply get more memory and keep it all. Ubiquitous electronics 
record our decisions, our choices in the supermarket, our financial habits, our 
comings and goings. We swipe our way through the world, every swipe a record in 
a database. The World Wide Web (WWW) overwhelms us with information; mean-
while, every choice we make is recorded. And all of these are just personal choices—
they have countless counterparts in the world of commerce and industry. We could 
all testify to the growing gap between the generation of data and our understanding 
of it. As the volume of data increases, inexorably, the proportion of it that people 
understand decreases alarmingly. Lying hidden in all this data is information—
potentially useful information—that is rarely made explicit or taken advantage of.

This book is about looking for patterns in data. There is nothing new about this. 
People have been seeking patterns in data ever since human life began. Hunters seek 
patterns in animal migration behavior, farmers seek patterns in crop growth, politi-
cians seek patterns in voter opinion, and lovers seek patterns in their partners’ 
responses. A scientist’s job (like a baby’s) is to make sense of data, to discover the 
patterns that govern how the physical world works and encapsulate them in theories 
that can be used for predicting what will happen in new situations. The entrepre-
neur’s job is to identify opportunities—that is, patterns in behavior that can be turned 
into a profitable business—and exploit them.

In data mining, the data is stored electronically and the search is automated—or 
at least augmented—by computer. Even this is not particularly new. Economists, 
statisticians, forecasters, and communication engineers have long worked with the 
idea that patterns in data can be sought automatically, identified, validated, and used 
for prediction. What is new is the staggering increase in opportunities for finding 
patterns in data. The unbridled growth of databases in recent years, databases for 
such everyday activities as customer choices, brings data mining to the forefront of 
new business technologies. It has been estimated that the amount of data stored in 
the world’s databases doubles every 20 months, and although it would surely be 
difficult to justify this figure in any quantitative sense, we can all relate to the pace 
of growth qualitatively. As the flood of data swells and machines that can undertake 
the searching become commonplace, the opportunities for data mining increase. As 
the world grows in complexity, overwhelming us with the data it generates, data 
mining becomes our only hope for elucidating hidden patterns. Intelligently analyzed 
data is a valuable resource. It can lead to new insights, and, in commercial settings, 
to competitive advantages.

Data mining is about solving problems by analyzing data already present in 
databases. Suppose, to take a well-worn example, the problem is fickle customer 
loyalty in a highly competitive marketplace. A database of customer choices, along 
with customer profiles, holds the key to this problem. Patterns of behavior of former 
customers can be analyzed to identify distinguishing characteristics of those likely 
to switch products and those likely to remain loyal. Once such characteristics are 
found, they can be put to work to identify present customers who are likely to jump 
ship. This group can be targeted for special treatment, treatment too costly to apply 
to the customer base as a whole. More positively, the same techniques can be used 
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to identify customers who might be attracted to another service the enterprise pro-
vides, one they are not presently enjoying, to target them for special offers that 
promote this service. In today’s highly competitive, customer-centered, service-
oriented economy, data is the raw material that fuels business growth—if only it can 
be mined.

Data mining is defined as the process of discovering patterns in data. The process 
must be automatic or (more usually) semiautomatic. The patterns discovered must 
be meaningful in that they lead to some advantage, usually an economic one. The 
data is invariably present in substantial quantities.

And how are the patterns expressed? Useful patterns allow us to make nontrivial 
predictions on new data. There are two extremes for the expression of a pattern: as 
a black box whose innards are effectively incomprehensible, and as a transparent 
box whose construction reveals the structure of the pattern. Both, we are assuming, 
make good predictions. The difference is whether or not the patterns that are mined 
are represented in terms of a structure that can be examined, reasoned about, and 
used to inform future decisions. Such patterns we call structural because they 
capture the decision structure in an explicit way. In other words, they help to explain 
something about the data.

Now, again, we can say what this book is about: It is about techniques for finding 
and describing structural patterns in data. Most of the techniques that we cover have 
developed within a field known as machine learning. But first let us look at what 
structural patterns are.

Describing Structural Patterns
What is meant by structural patterns? How do you describe them? And what form 
does the input take? We will answer these questions by way of illustration rather 
than by attempting formal, and ultimately sterile, definitions. There will be plenty 
of examples later in this chapter, but let’s examine one right now to get a feeling 
for what we’re talking about.

Look at the contact lens data in Table 1.1. It gives the conditions under which 
an optician might want to prescribe soft contact lenses, hard contact lenses, or no 
contact lenses at all; we will say more about what the individual features mean later. 
Each line of the table is one of the examples. Part of a structural description of this 
information might be as follows:

If tear production rate = reduced then recommendation = none
Otherwise, if age = young and astigmatic = no then 
recommendation = soft

Structural descriptions need not necessarily be couched as rules such as these. Deci-
sion trees, which specify the sequences of decisions that need to be made along with 
the resulting recommendation, are another popular means of expression.

This example is a very simplistic one. For a start, all combinations of possible 
values are represented in the table. There are 24 rows, representing three possible 
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Table 1.1  Contact Lens Data

Age
Spectacle 
Prescription Astigmatism

Tear Production 
Rate

Recommended 
Lenses

young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

values of age and two values each for spectacle prescription, astigmatism, and tear 
production rate (3 × 2 × 2 × 2 = 24). The rules do not really generalize from the 
data; they merely summarize it. In most learning situations, the set of examples given 
as input is far from complete, and part of the job is to generalize to other, new 
examples. You can imagine omitting some of the rows in the table for which the tear 
production rate is reduced and still coming up with the rule

If tear production rate = reduced then recommendation = none

This would generalize to the missing rows and fill them in correctly. Second, values 
are specified for all the features in all the examples. Real-life datasets invariably 
contain examples in which the values of some features, for some reason or other, 
are unknown—for example, measurements were not taken or were lost. Third, the 



preceding rules classify the examples correctly, whereas often, because of errors or 
noise in the data, misclassifications occur even on the data that is used to create the 
classifier.

Machine Learning
Now that we have some idea of the inputs and outputs, let’s turn to machine learn-
ing. What is learning, anyway? What is machine learning? These are philosophical 
questions, and we will not be too concerned with philosophy in this book; our 
emphasis is firmly on the practical. However, it is worth spending a few moments 
at the outset on fundamental issues, just to see how tricky they are, before rolling 
up our sleeves and looking at machine learning in practice.

Our dictionary defines “to learn” as

•	 To get knowledge of something by study, experience, or being taught.
•	 To become aware by information or from observation
•	 To commit to memory
•	 To be informed of or to ascertain
•	 To receive instruction

These meanings have some shortcomings when it comes to talking about computers. 
For the first two, it is virtually impossible to test whether learning has been achieved 
or not. How do you know whether a machine has got knowledge of something? You 
probably can’t just ask it questions; even if you could, you wouldn’t be testing its 
ability to learn but its ability to answer questions. How do you know whether it has 
become aware of something? The whole question of whether computers can be 
aware, or conscious, is a burning philosophical issue.

As for the last three meanings, although we can see what they denote in human 
terms, merely committing to memory and receiving instruction seem to fall far short 
of what we might mean by machine learning. They are too passive, and we know 
that computers find these tasks trivial. Instead, we are interested in improvements 
in performance, or at least in the potential for performance, in new situations. You 
can commit something to memory or be informed of something by rote learning 
without being able to apply the new knowledge to new situations. In other words, 
you can receive instruction without benefiting from it at all.

Earlier we defined data mining operationally, as the process of discovering pat-
terns, automatically or semiautomatically, in large quantities of data—and the pat-
terns must be useful. An operational definition can be formulated in the same way 
for learning:

•	 Things learn when they change their behavior in a way that makes them 
perform better in the future

This ties learning to performance rather than knowledge. You can test learning by 
observing present behavior and comparing it with past behavior. This is a much more 
objective kind of definition and appears to be far more satisfactory.
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But still there’s a problem. Learning is a rather slippery concept. Lots of things 
change their behavior in ways that make them perform better in the future, yet we 
wouldn’t want to say that they have actually learned. A good example is a comfort-
able slipper. Has it learned the shape of your foot? It has certainly changed its 
behavior to make it perform better as a slipper! Yet we would hardly want to call 
this learning. In everyday language, we often use the word training to denote a 
mindless kind of learning. We train animals and even plants, although it would be 
stretching the word a bit to talk of training objects such as slippers, which are not 
in any sense alive. But learning is different. Learning implies thinking and purpose. 
Something that learns has to do so intentionally. That is why we wouldn’t say that 
a vine has learned to grow around a trellis in a vineyard—we’d say it has been 
trained. Learning without purpose is merely training. Or, more to the point, in 
learning the purpose is the learner’s, whereas in training it is the teacher’s.

Thus, on closer examination the second definition of learning, in operational, 
performance-oriented terms, has its own problems when it comes to talking about 
computers. To decide whether something has actually learned, you need to see 
whether it intended to, whether there was any purpose involved. That makes the 
concept moot when applied to machines because whether artifacts can behave pur-
posefully is unclear. Philosophical discussions of what is really meant by learning, 
like discussions of what is really meant by intention or purpose, are fraught with 
difficulty. Even courts of law find intention hard to grapple with.

Data Mining
Fortunately, the kind of learning techniques explained in this book do not present 
these conceptual problems—they are called machine learning without really presup-
posing any particular philosophical stance about what learning actually is. Data 
mining is a topic that involves learning in a practical, nontheoretical sense. We are 
interested in techniques for finding and describing structural patterns in data, as a 
tool for helping to explain that data and make predictions from it. The data will take 
the form of a set of examples, such as customers who have switched loyalties, for 
instance, or situations in which certain kinds of contact lenses can be prescribed. 
The output takes the form of predictions about new examples—a prediction of 
whether a particular customer will switch or a prediction of what kind of lens will 
be prescribed under given circumstances. But because this book is about finding and 
describing patterns in data, the output may also include an actual description of a 
structure that can be used to classify unknown examples. As well as performance, 
it is helpful to supply an explicit representation of the knowledge that is acquired. 
In essence, this reflects both definitions of learning considered above: the acquisition 
of knowledge and the ability to use it.

Many learning techniques look for structural descriptions of what is learned—
descriptions that can become fairly complex and are typically expressed as sets of 
rules, such as the ones described previously or the decision trees described later in 
this chapter. Because they can be understood by people, these descriptions serve to 



	 1.2  Simple Examples: The Weather and Other Problems� 9

explain what has been learned—in other words, to explain the basis for new predic-
tions. Experience shows that in many applications of machine learning to data 
mining, the explicit knowledge structures that are acquired, the structural descrip-
tions, are at least as important as the ability to perform well on new examples. People 
frequently use data mining to gain knowledge, not just predictions. Gaining knowl-
edge from data certainly sounds like a good idea if you can do it. To find out how, 
read on!

1.2  SIMPLE EXAMPLES: THE WEATHER 
AND OTHER PROBLEMS
We will be using a lot of examples in this book, which seems particularly appropriate 
considering that the book is all about learning from examples! There are several 
standard datasets that we will come back to repeatedly. Different datasets tend to 
expose new issues and challenges, and it is interesting and instructive to have in 
mind a variety of problems when considering learning methods. In fact, the need to 
work with different datasets is so important that a corpus containing around 100 
example problems has been gathered together so that different algorithms can be 
tested and compared on the same set of problems.

The set of problems in this section are all unrealistically simple. Serious appli-
cation of data mining involves thousands, hundreds of thousands, or even millions 
of individual cases. But when explaining what algorithms do and how they work, 
we need simple examples that capture the essence of the problem but are small 
enough to be comprehensible in every detail. We will be working with the datasets 
in this section throughout the book, and they are intended to be “academic” in the 
sense that they will help us to understand what is going on. Some actual fielded 
applications of learning techniques are discussed in Section 1.3, and many more 
are covered in the books mentioned in Section 1.7, Further reading, at the end of 
the chapter.

Another problem with actual real-life datasets is that they are often proprietary. 
No one is going to share their customer and product choice database with you so 
that you can understand the details of their data mining application and how it works. 
Corporate data is a valuable asset, the value of which has increased enormously with 
the development of data mining techniques such as those described in this book. 
Yet, we are concerned here with understanding how the methods used for data 
mining work, and understanding the details of these methods so that we can trace 
their operation on actual data. That is why our illustrative datasets are simple ones. 
But they are not simplistic: They exhibit the features of real datasets.

The Weather Problem
The weather problem is a tiny dataset that we will use repeatedly to illustrate 
machine learning methods. Entirely fictitious, it supposedly concerns the conditions 
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Table 1.2  Weather Data

Outlook Temperature Humidity Windy Play

Sunny hot high false no
Sunny hot high true no
Overcast hot high false yes
Rainy mild high false yes
Rainy cool normal false yes
Rainy cool normal true no
Overcast cool normal true yes
Sunny mild high false no
Sunny cool normal false yes
Rainy mild normal false yes
Sunny mild normal true yes
Overcast mild high true yes
Overcast hot normal false yes
Rainy mild high true no

that are suitable for playing some unspecified game. In general, instances in a dataset 
are characterized by the values of features, or attributes, that measure different 
aspects of the instance. In this case there are four attributes: outlook, temperature, 
humidity, and windy. The outcome is whether to play or not.

In its simplest form, shown in Table 1.2, all four attributes have values that are 
symbolic categories rather than numbers. Outlook can be sunny, overcast, or rainy; 
temperature can be hot, mild, or cool; humidity can be high or normal; and windy 
can be true or false. This creates 36 possible combinations (3 × 3 × 2 × 2 = 36), of 
which 14 are present in the set of input examples.

A set of rules learned from this information—not necessarily a very good one—
might look like this:

If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true	 then play = no
If outlook = overcast	 then play = yes
If humidity = normal	 then play = yes
If none of the above	 then play = yes

These rules are meant to be interpreted in order: The first one; then, if it doesn’t 
apply, the second; and so on. A set of rules that are intended to be interpreted in 
sequence is called a decision list. Interpreted as a decision list, the rules correctly 
classify all of the examples in the table, whereas taken individually, out of context, 
some of the rules are incorrect. For example, the rule if humidity = normal then play 
= yes gets one of the examples wrong (check which one). The meaning of a set of 
rules depends on how it is interpreted—not surprisingly!

In the slightly more complex form shown in Table 1.3, two of the attributes—
temperature and humidity—have numeric values. This means that any learning 



Table 1.3  Weather Data with Some Numeric Attributes

Outlook Temperature Humidity Windy Play

Sunny 85 85 false no
Sunny 80 90 true no
Overcast 83 86 false yes
Rainy 70 96 false yes
Rainy 68 80 false yes
Rainy 65 70 true no
Overcast 64 65 true yes
Sunny 72 95 false no
Sunny 69 70 false yes
Rainy 75 80 false yes
Sunny 75 70 true yes
Overcast 72 90 true yes
Overcast 81 75 false yes
Rainy 71 91 true no

scheme must create inequalities involving these attributes rather than simple  
equality tests as in the former case. This is called a numeric-attribute problem—in 
this case, a mixed-attribute problem because not all attributes are numeric.

Now the first rule given earlier might take the form

If outlook = sunny and humidity > 83 then play = no

A slightly more complex process is required to come up with rules that involve 
numeric tests.

The rules we have seen so far are classification rules: They predict the classifica-
tion of the example in terms of whether to play or not. It is equally possible to 
disregard the classification and just look for any rules that strongly associate different 
attribute values. These are called association rules. Many association rules can be 
derived from the weather data in Table 1.2. Some good ones are

If temperature = cool	 then humidity = normal
If humidity = normal and windy = false then play = yes
If outlook = sunny and play = no	 then humidity = high
If windy = false and play = no	 then outlook = sunny and 

humidity = high

All these rules are 100% correct on the given data; they make no false predic-
tions. The first two apply to four examples in the dataset, the third to three examples, 
and the fourth to two examples. And there are many other rules. In fact, nearly 60 
association rules can be found that apply to two or more examples of the weather 
data and are completely correct on this data. And if you look for rules that are less 
than 100% correct, then you will find many more. There are so many because, unlike 
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FIGURE 1.1 

Rules for the contact lens data. 

If tear production rate = reduced then recommendation = none. 
If age = young and astigmatic = no and tear production rate = normal
   then recommendation = soft 
If age = pre-presbyopic and astigmatic = no and tear production 
   rate = normal then recommendation = soft 
If age = presbyopic and spectacle prescription = myope and 
   astigmatic = no then recommendation = none 
If spectacle prescription = hypermetrope and astigmatic = no and 
   tear production rate = normal then recommendation = soft 
If spectacle prescription = myope and astigmatic = yes and 
   tear production rate = normal then recommendation = hard 
If age = young and astigmatic = yes and tear production rate = normal
   then recommendation = hard 
If age = pre-presbyopic and spectacle prescription = hypermetrope 
   and astigmatic = yes then recommendation = none 
If age = presbyopic and spectacle prescription = hypermetrope 
   and astigmatic = yes then recommendation = none 

classification rules, association rules can “predict” any of the attributes, not just a 
specified class, and can even predict more than one thing. For example, the fourth 
rule predicts both that outlook will be sunny and that humidity will be high.

Contact Lenses: An Idealized Problem
The contact lens data introduced earlier tells you the kind of contact lens to prescribe, 
given certain information about a patient. Note that this example is intended for 
illustration only: It grossly oversimplifies the problem and should certainly not be 
used for diagnostic purposes!

The first column of Table 1.1 gives the age of the patient. In case you’re wonder-
ing, presbyopia is a form of longsightedness that accompanies the onset of middle 
age. The second gives the spectacle prescription: Myope means shortsighted and 
hypermetrope means longsighted. The third shows whether the patient is astigmatic, 
while the fourth relates to the rate of tear production, which is important in this 
context because tears lubricate contact lenses. The final column shows which kind 
of lenses to prescribe, whether hard, soft, or none. All possible combinations of the 
attribute values are represented in the table.

A sample set of rules learned from this information is shown in Figure 1.1. This 
is a rather large set of rules, but they do correctly classify all the examples. These 
rules are complete and deterministic: They give a unique prescription for every 
conceivable example. Generally this is not the case. Sometimes there are situations 
in which no rule applies; other times more than one rule may apply, resulting in 



FIGURE 1.2 

Decision tree for the contact lens data. 
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conflicting recommendations. Sometimes probabilities or weights may be associated 
with the rules themselves to indicate that some are more important, or more reliable, 
than others.

You might be wondering whether there is a smaller rule set that performs as well. 
If so, would you be better off using the smaller rule set, and, if so, why? These are 
exactly the kinds of questions that will occupy us in this book. Because the examples 
form a complete set for the problem space, the rules do no more than summarize all 
the information that is given, expressing it in a different and more concise way. Even 
though it involves no generalization, this is often a very useful thing to do! People 
frequently use machine learning techniques to gain insight into the structure of their 
data rather than to make predictions for new cases. In fact, a prominent and success-
ful line of research in machine learning began as an attempt to compress a huge 
database of possible chess endgames and their outcomes into a data structure of 
reasonable size. The data structure chosen for this enterprise was not a set of rules 
but a decision tree.

Figure 1.2 shows a structural description for the contact lens data in the form of 
a decision tree, which for many purposes is a more concise and perspicuous repre-
sentation of the rules and has the advantage that it can be visualized more easily. 
(However, this decision tree, in contrast to the rule set given in Figure 1.1, classifies 
two examples incorrectly.) The tree calls first for a test on the tear production rate, 
and the first two branches correspond to the two possible outcomes. If the tear 
production rate is reduced (the left branch), the outcome is none. If it is normal 
(the right branch), a second test is made, this time on astigmatism. Eventually, 
whatever the outcome of the tests, a leaf of the tree is reached that dictates the 
contact lens recommendation for that case. The question of what is the most natural 

and easily understood format for 
the output from a machine learning 
scheme is one that we will return 
to in Chapter 3.

Irises: A Classic  
Numeric Dataset
The iris dataset, which dates back 
to seminal work by the eminent 
statistician R. A. Fisher in the mid-
1930s and is arguably the most 
famous dataset used in data mining, 
contains 50 examples of each of 
three types of plant: Iris setosa, 
Iris versicolor, and Iris virginica. 
It is excerpted in Table 1.4. There 
are four attributes: sepal length, 
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Table 1.4  Iris Data

Sepal 
Length (cm)

Sepal 
Width (cm)

Petal 
Length (cm)

Petal 
Width (cm) Type

1 5.1 3.5 1.4 0.2 Iris setosa
2 4.9 3.0 1.4 0.2 Iris setosa
3 4.7 3.2 1.3 0.2 Iris setosa
4 4.6 3.1 1.5 0.2 Iris setosa
5 5.0 3.6 1.4 0.2 Iris setosa
…
51 7.0 3.2 4.7 1.4 Iris versicolor
52 6.4 3.2 4.5 1.5 Iris versicolor
53 6.9 3.1 4.9 1.5 Iris versicolor
54 5.5 2.3 4.0 1.3 Iris versicolor
55 6.5 2.8 4.6 1.5 Iris versicolor
…
101 6.3 3.3 6.0 2.5 Iris virginica
102 5.8 2.7 5.1 1.9 Iris virginica
103 7.1 3.0 5.9 2.1 Iris virginica
104 6.3 2.9 5.6 1.8 Iris virginica
105 6.5 3.0 5.8 2.2 Iris virginica
…

sepal width, petal length, and petal width (all measured in centimeters). Unlike 
previous datasets, all attributes have values that are numeric.

The following set of rules might be learned from this dataset:

If petal-length < 2.45 then Iris-setosa
If sepal-width < 2.10 then Iris-versicolor
If sepal-width < 2.45 and petal-length < 4.55 then Iris-versicolor
If sepal-width < 2.95 and petal-width < 1.35 then Iris-versicolor
If petal-length ≥ 2.45 and petal-length < 4.45 then Iris-versicolor
If sepal-length ≥ 5.85 and petal-length < 4.75 then Iris-versicolor
If sepal-width < 2.55 and petal-length < 4.95 and 

petal-width < 1.55 then Iris-versicolor
If petal-length ≥ 2.45 and petal-length < 4.95 and 

petal-width < 1.55 then Iris-versicolor
If sepal-length ≥ 6.55 and petal-length < 5.05 then Iris-versicolor
If sepal-width < 2.75 and petal-width < 1.65 and 

sepal-length < 6.05 then Iris-versicolor
If sepal-length ≥ 5.85 and sepal-length < 5.95 and 

petal-length < 4.85 then Iris-versicolor
If petal-length ≥ 5.15 then Iris-virginica
If petal-width ≥ 1.85 then Iris-virginica
If petal-width ≥ 1.75 and sepal-width < 3.05 then Iris-virginica
If petal-length ≥ 4.95 and petal-width < 1.55 then Iris-virginica



These rules are very cumbersome, and we will see in Chapter 3 how more compact 
rules can be expressed that convey the same information.

CPU Performance: Introducing Numeric Prediction
Although the iris dataset involves numeric attributes, the outcome—the type of 
iris—is a category, not a numeric value. Table 1.5 shows some data for which both 
the outcome and the attributes are numeric. It concerns the relative performance of 
computer processing power on the basis of a number of relevant attributes; each row 
represents one of 209 different computer configurations.

The classic way of dealing with continuous prediction is to write the outcome 
as a linear sum of the attribute values with appropriate weights, for example,

PRP MYCT MMIN MMAX
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= − + + +
+ −

55 9 0 0489 0 0153 0 0056
0 6410

. . . .
. 00 2700 1 480. .  CHMIN CHMAX+

(The abbreviated variable names are given in the second row of the table.) This is 
called a regression equation, and the process of determining the weights is called 
regression, a well-known procedure in statistics that we will review in Chapter 4. 
However, the basic regression method is incapable of discovering nonlinear relation-
ships (although variants do exist—indeed, one will be described in Section 6.4), and 
in Chapter 3 we will examine different representations that can be used for predicting 
numeric quantities.

In the iris and central processing unit (CPU) performance data, all the attributes 
have numeric values. Practical situations frequently present a mixture of numeric 
and nonnumeric attributes.

Labor Negotiations: A More Realistic Example
The labor negotiations dataset in Table 1.6 summarizes the outcome of Canadian 
contract negotiations in 1987 and 1988. It includes all collective agreements reached 
in the business and personal services sector for organizations with at least 500 
members (teachers, nurses, university staff, police, etc.). Each case concerns one 
contract, and the outcome is whether the contract is deemed acceptable or unaccept-
able. The acceptable contracts are ones in which agreements were accepted by both 
labor and management. The unacceptable ones are either known offers that fell 
through because one party would not accept them or acceptable contracts that had 
been significantly perturbed to the extent that, in the view of experts, they would 
not have been accepted.

There are 40 examples in the dataset (plus another 17 that are normally reserved 
for test purposes). Unlike the other tables here, Table 1.6 presents the examples 
as columns rather than as rows; otherwise, it would have to be stretched over 
several pages. Many of the values are unknown or missing, as indicated by ques-
tion marks. This is a much more realistic dataset than the others we have seen. 
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FIGURE 1.3 

Decision trees for the labor negotiations data. 
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It contains many missing values, and it seems unlikely that an exact classification 
can be obtained.

Figure 1.3 shows two decision trees that represent the dataset. Figure 1.3(a) is 
simple and approximate—it doesn’t represent the data exactly. For example, it will 
predict bad for some contracts that are actually marked good. However, it does make 
intuitive sense: A contract is bad (for the employee!) if the wage increase in the first 
year is too small (less than 2.5%). If the first-year wage increase is larger than this, 
it is good if there are lots of statutory holidays (more than 10 days). Even if there 
are fewer statutory holidays, it is good if the first-year wage increase is large enough 
(more than 4%).

Figure 1.3(b) is a more complex decision tree that represents the same dataset. 
Take a detailed look down the left branch. At first sight it doesn’t seem to make 
sense intuitively that, if the working hours exceed 36, a contract is bad if there is 
no health-plan contribution or a full health-plan contribution, but is good if there is 
a half health-plan contribution. It is certainly reasonable that the health-plan contri-
bution plays a role in the decision, but it seems anomalous that half is good and both 
full and none are bad. However, on reflection this could make sense after all, because 
“good” contracts are ones that have been accepted by both parties: labor and man-
agement. Perhaps this structure reflects compromises that had to be made to reach 
agreement. This kind of detailed reasoning about what parts of decision trees mean 
is a good way of getting to know your data and thinking about the underlying 
problem.

In fact, Figure 1.3(b) is a more accurate representation of the training dataset 
than Figure 1.3(a). But it is not necessarily a more accurate representation of the 
underlying concept of good versus bad contracts. Although it is more accurate on 
the data that was used to train the classifier, it may perform less well on an inde-
pendent set of test data. It may be “overfitted” to the training data—following it too 



slavishly. The tree in Figure 1.3(a) is obtained from the one in Figure 1.3(b) by a 
process of pruning, which we will learn more about in Chapter 6.

Soybean Classification: A Classic Machine Learning Success
An often quoted early success story in the application of machine learning to practi-
cal problems is the identification of rules for diagnosing soybean diseases. The data 
is taken from questionnaires describing plant diseases. There are about 680 exam-
ples, each representing a diseased plant. Plants were measured on 35 attributes, each 
one having a small set of possible values. Examples are labeled with the diagnosis 
of an expert in plant biology: There are 19 disease categories altogether—horrible-
sounding diseases such as diaporthe stem canker, rhizoctonia root rot, and bacterial 
blight, to mention just a few.

Table 1.7 gives the attributes, the number of different values that each can have, 
and a sample record for one particular plant. The attributes are placed in different 
categories just to make them easier to read.

Here are two example rules, learned from this data:

If   leaf condition = normal and
	 stem condition = abnormal and
	 stem cankers = below soil line and
	 canker lesion color = brown
then
	 diagnosis is rhizoctonia root rot

If   leaf malformation = absent and
	 stem condition = abnormal and
	 stem cankers = below soil line and
	 canker lesion color = brown
then
	 diagnosis is rhizoctonia root rot

These rules nicely illustrate the potential role of prior knowledge—often called 
domain knowledge—in machine learning, for in fact the only difference between the 
two descriptions is leaf condition is normal versus leaf malformation is absent. Now, 
in this domain, if the leaf condition is normal then leaf malformation is necessarily 
absent, so one of these conditions happens to be a special case of the other. Thus, 
if the first rule is true, the second is necessarily true as well. The only time the second 
rule comes into play is when leaf malformation is absent but leaf condition is not 
normal—that is, when something other than malformation is wrong with the leaf. 
This is certainly not apparent from a casual reading of the rules.

Research on this problem in the late 1970s found that these diagnostic rules could 
be generated by a machine learning algorithm, along with rules for every other 
disease category, from about 300 training examples. These training examples were 
carefully selected from the corpus of cases as being quite different from one 
another—“far apart” in the example space. At the same time, the plant pathologist 
who had produced the diagnoses was interviewed, and his expertise was translated 
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Table 1.7  Soybean Data

Attribute
Number  
of Values Sample Value

environment time of occurrence 7 July
precipitation 3 above normal
temperature 3 normal
cropping history 4 same as last year
hail damage 2 yes
damaged area 4 scattered
severity 3 severe
plant height 2 normal
plant growth 2 abnormal
seed treatment 3 fungicide
germination 3 less than 80%

seed condition 2 normal
mold growth 2 absent
discoloration 2 absent
size 2 normal
shriveling 2 absent

fruit condition of fruit pods 3 normal
fruit spots 5 —

leaves condition 2 abnormal
leaf spot size 3 —
yellow leaf spot halo 3 absent
leaf spot margins 3 —
shredding 2 absent
leaf malformation 2 absent
leaf mildew growth 3 absent

stem condition 2 abnormal
stem lodging 2 yes
stem cankers 4 above soil line
canker lesion color 3 —
fruiting bodies on stems 2 present
external decay of stem 3 firm and dry
mycelium on stem 2 absent
internal discoloration 3 none
sclerotia 2 absent

roots condition 3 normal

diagnosis 19 diaporthe stem canker
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into diagnostic rules. Surprisingly, the computer-generated rules outperformed the 
expert-derived rules on the remaining test examples. The correct disease was ranked 
at the top 97.5% of the time compared with only 72% for the expert-derived rules. 
Furthermore, not only did the learning algorithm find rules that outperformed  
those of the expert collaborator, but the same expert was so impressed that he  
allegedly adopted the discovered rules in place of his own!

1.3  FIELDED APPLICATIONS
The examples that we opened with are speculative research projects, not production 
systems. And the previous figures are toy problems: They are deliberately chosen to 
be small so that we can use them to work through algorithms later in the book. 
Where’s the beef? Here are some applications of machine learning that have actually 
been put into use.

Being fielded applications, the examples that follow tend to stress the use of 
learning in performance situations, in which the emphasis is on the ability to perform 
well on new examples. This book also describes the use of learning systems to gain 
knowledge from decision structures that are inferred from the data. We believe that 
this is as important—probably even more important in the long run—a use of the 
technology as making high-performance predictions. Still, it will tend to be under-
represented in fielded applications because when learning techniques are used to 
gain insight, the result is not normally a system that is put to work as an application 
in its own right. Nevertheless, in three of the following examples, the fact that the 
decision structure is comprehensible is a key feature in the successful adoption of 
the application.

Web Mining
Mining information on the World Wide Web is an exploding growth area. Search 
engine companies examine the hyperlinks in web pages to come up with a measure 
of “prestige” for each web page and web site. Dictionaries define prestige as “high 
standing achieved through success or influence.” A metric called PageRank, intro-
duced by Google’s founders and also used in various guises by other search engine 
developers, attempts to measure the standing of a web page. The more pages that 
link to your web site, the higher its prestige, especially if the pages that link in have 
high prestige themselves. The definition sounds circular, but it can be made to work. 
Search engines use PageRank (among other things) to sort web pages into order 
before displaying the results of your search.

Another way in which search engines tackle the problem of how to rank web 
pages is to use machine learning based on a training set of example queries—
documents that contain the terms in the query and human judgments about how 
relevant the documents are to that query. Then a learning algorithm analyzes this 
training data and comes up with a way to predict the relevance judgment for any 
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document and query. For each document, a set of feature values is calculated that 
depends on the query term—for example, whether it occurs in the title tag, whether 
it occurs in the document’s URL, how often it occurs in the document itself, and 
how often it appears in the anchor text of hyperlinks that point to the document. For 
multiterm queries, features include how often two different terms appear close 
together in the document, and so on. There are many possible features—typical 
algorithms for learning ranks use hundreds or thousands of them.

Search engines mine the content of the Web. They also mine the content of your 
queries—the terms you search for—to select advertisements that you might be 
interested in. They have a strong incentive to do this accurately because they get 
paid by advertisers only when users click on their links. Search engine companies 
mine your clicks because knowledge of which results you click on can be used to 
improve the search next time. Online booksellers mine the purchasing database to 
come up with recommendations such as “users who bought this book also bought 
these ones”; again, they have a strong incentive to present you with compelling, 
personalized choices. Movie sites recommend movies based on your previous 
choices and other people’s choices—they win if they make recommendations that 
keep customers coming back to their web site.

And then there are social networks and other personal data. We live in the age 
of self-revelation: People share their innermost thoughts in blogs and tweets; their 
photographs, their music and movie tastes, their opinions of books, software, 
gadgets, and hotels; their social life. They may believe they are doing this anony-
mously, or pseudonymously, but often they are incorrect (see Section 1.6). There is 
huge commercial interest in making money by mining the Web.

Decisions Involving Judgment
When you apply for a loan, you have to fill out a questionnaire asking for relevant 
financial and personal information. This information is used by the loan company 
as the basis for its decision as to whether to lend you money. Such decisions are 
typically made in two stages. First, statistical methods are used to determine clear 
“accept” and “reject” cases. The remaining borderline cases are more difficult and 
call for human judgment.

For example, one loan company uses a statistical decision procedure to calculate 
a numeric parameter based on the information supplied in their questionnaire. Appli-
cants are accepted if this parameter exceeds a preset threshold and rejected if it falls 
below a second threshold. This accounts for 90% of cases, and the remaining 10% 
are referred to loan officers for a decision. On examining historical data on whether 
applicants did indeed repay their loans, however, it turned out that half of the bor-
derline applicants who were granted loans actually defaulted. Although it would be 
tempting simply to deny credit to borderline customers, credit industry professionals 
point out that if only their repayment future could be reliably determined, it is pre-
cisely these customers whose business should be wooed; they tend to be active 
customers of a credit institution because their finances remain in a chronically 
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volatile condition. A suitable compromise must be reached between the viewpoint 
of a company accountant, who dislikes bad debt, and that of a sales executive, who 
dislikes turning business away.

Enter machine learning. The input was 1000 training examples of borderline 
cases for which a loan had been made that specified whether the borrower had finally 
paid off or defaulted. For each training example, about 20 attributes were extracted 
from the questionnaire, such as age, years with current employer, years at current 
address, years with the bank, and other credit cards possessed. A machine learning 
procedure was used to produce a small set of classification rules that made correct 
predictions on two-thirds of the borderline cases in an independently chosen test set. 
Not only did these rules improve the success rate of the loan decisions, but the 
company also found them attractive because they could be used to explain to appli-
cants the reasons behind the decision. Although the project was an exploratory one 
that took only a small development effort, the loan company was apparently so 
pleased with the result that the rules were put into use immediately.

Screening Images
Since the early days of satellite technology, environmental scientists have been 
trying to detect oil slicks from satellite images to give early warning of ecological 
disasters and deter illegal dumping. Radar satellites provide an opportunity for 
monitoring coastal waters day and night, regardless of weather conditions. Oil slicks 
appear as dark regions in the image, the size and shape of which evolve depending 
on weather and sea conditions. However, other look-alike dark regions can be caused 
by local weather conditions such as high wind. Detecting oil slicks is an expensive 
manual process requiring highly trained personnel who assess each region in the 
image.

A hazard detection system has been developed to screen images for subsequent 
manual processing. Intended to be marketed worldwide to a wide variety of users—
government agencies and companies—with different objectives, applications, and 
geographical areas, this system needs to be highly customizable to individual cir-
cumstances. Machine learning allows the system to be trained on examples of spills 
and nonspills supplied by the user and lets the user control the tradeoff between 
undetected spills and false alarms. Unlike other machine learning applications, 
which generate a classifier that is then deployed in the field, here it is the learning 
scheme itself that will be deployed.

The input is a set of raw pixel images from a radar satellite, and the output is a 
much smaller set of images with putative oil slicks marked by a colored border. 
First, standard image-processing operations are applied to normalize the image.  
Then suspicious dark regions are identified. Several dozen attributes are extracted 
from each region, characterizing its size, shape, area, intensity, sharpness and jag-
gedness of the boundaries, proximity to other regions, and information about the 
background in the vicinity of the region. Finally, standard learning techniques are 
applied to the resulting attribute vectors.
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Several interesting problems were encountered. One was the scarcity of training 
data. Oil slicks are (fortunately) very rare, and manual classification is extremely 
costly. Another was the unbalanced nature of the problem: Of the many dark regions 
in the training data, only a very small fraction were actual oil slicks. A third is that 
the examples grouped naturally into batches, with regions drawn from each image 
forming a single batch, and background characteristics varied from one batch to 
another. Finally, the performance task was to serve as a filter, and the user had to be 
provided with a convenient means of varying the false-alarm rate.

Load Forecasting
In the electricity supply industry, it is important to determine future demand for 
power as far in advance as possible. If accurate estimates can be made for the 
maximum and minimum load for each hour, day, month, season, and year, utility 
companies can make significant economies in areas such as setting the operating 
reserve, maintenance scheduling, and fuel inventory management.

An automated load forecasting assistant has been operating at a major utility 
supplier for more than a decade to generate hourly forecasts two days in advance. 
The first step was to use data collected over the previous 15 years to create a sophis-
ticated load model manually. This model had three components: base load for the 
year, load periodicity over the year, and the effect of holidays. To normalize for  
the base load, the data for each previous year was standardized by subtracting the 
average load for that year from each hourly reading and dividing by the standard 
deviation over the year.

Electric load shows periodicity at three fundamental frequencies: diurnal, where 
usage has an early morning minimum and midday and afternoon maxima; weekly, 
where demand is lower at weekends; and seasonal, where increased demand during 
winter and summer for heating and cooling, respectively, creates a yearly cycle. 
Major holidays, such as Thanksgiving, Christmas, and New Year’s Day, show sig-
nificant variation from the normal load and are each modeled separately by averag-
ing hourly loads for that day over the past 15 years. Minor official holidays, such 
as Columbus Day, are lumped together as school holidays and treated as an offset 
to the normal diurnal pattern. All of these effects are incorporated by reconstructing 
a year’s load as a sequence of typical days, fitting the holidays in their correct 
position, and denormalizing the load to account for overall growth.

Thus far, the load model is a static one, constructed manually from historical 
data, and it implicitly assumes “normal” climatic conditions over the year. The final 
step was to take weather conditions into account by locating the previous day most 
similar to the current circumstances and using the historical information from that 
day as a predictor. The prediction is treated as an additive correction to the static 
load model. To guard against outliers, the eight most similar days are located and 
their additive corrections averaged. A database was constructed of temperature, 
humidity, wind speed, and cloud cover at three local weather centers for each hour 
of the 15-year historical record, along with the difference between the actual load 
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and that predicted by the static model. A linear regression analysis was performed 
to determine the relative effects of these parameters on load, and the coefficients 
were used to weight the distance function used to locate the most similar days.

The resulting system yielded the same performance as that of trained human 
forecasters but was far quicker—taking seconds rather than hours to generate a daily 
forecast. Human operators can analyze the forecast’s sensitivity to simulated changes 
in weather and bring up for examination the “most similar” days that the system 
used for weather adjustment.

Diagnosis
Diagnosis is one of the principal application areas of expert systems. Although the 
handcrafted rules used in expert systems often perform well, machine learning can 
be useful in situations in which producing rules manually is too labor intensive.

Preventative maintenance of electromechanical devices such as motors and gen-
erators can forestall failures that disrupt industrial processes. Technicians regularly 
inspect each device, measuring vibrations at various points to determine whether the 
device needs servicing. Typical faults include shaft misalignment, mechanical loos-
ening, faulty bearings, and unbalanced pumps. A particular chemical plant uses more 
than 1000 different devices, ranging from small pumps to very large turbo-alternators, 
which until recently were diagnosed by a human expert with 20 years or more of 
experience. Faults are identified by measuring vibrations at different places on the 
device’s mounting and using Fourier analysis to check the energy present in three 
different directions at each harmonic of the basic rotation speed. This information, 
which is very noisy because of limitations in the measurement and recording pro-
cedure, is studied by the expert to arrive at a diagnosis. Although handcrafted expert 
system rules had been developed for some situations, the elicitation process would 
have to be repeated several times for different types of machinery; so a learning 
approach was investigated.

Six hundred faults, each comprising a set of measurements along with the 
expert’s diagnosis, were available, representing 20 years of experience. About half 
were unsatisfactory for various reasons and had to be discarded; the remainder were 
used as training examples. The goal was not to determine whether or not a fault 
existed but to diagnose the kind of fault, given that one was there. Thus, there was 
no need to include fault-free cases in the training set. The measured attributes were 
rather low level and had to be augmented by intermediate concepts—that is, func-
tions of basic attributes—which were defined in consultation with the expert and 
embodied some causal domain knowledge. The derived attributes were run through 
an induction algorithm to produce a set of diagnostic rules. Initially, the expert was 
not satisfied with the rules because he could not relate them to his own knowledge 
and experience. For him, mere statistical evidence was not, by itself, an adequate 
explanation. Further background knowledge had to be used before satisfactory rules 
were generated. Although the resulting rules were quite complex, the expert liked 
them because he could justify them in light of his mechanical knowledge. He was 
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pleased that a third of the rules coincided with ones he used himself and was 
delighted to gain new insight from some of the others.

Performance tests indicated that the learned rules were slightly superior to the 
handcrafted ones that had previously been elicited from the expert, and this result 
was confirmed by subsequent use in the chemical factory. It is interesting to note, 
however, that the system was put into use not because of its good performance but 
because the domain expert approved of the rules that had been learned.

Marketing and Sales
Some of the most active applications of data mining have been in the area of 
marketing and sales. These are domains in which companies possess massive 
volumes of precisely recorded data, which, it has only recently been realized, is 
potentially extremely valuable. In these applications, predictions themselves are 
the chief interest: The structure of how decisions are made is often completely 
irrelevant.

We have already mentioned the problem of fickle customer loyalty and the chal-
lenge of detecting customers who are likely to defect so that they can be wooed back 
into the fold by giving them special treatment. Banks were early adopters of data 
mining technology because of their successes in the use of machine learning for 
credit assessment. Data mining is now being used to reduce customer attrition by 
detecting changes in individual banking patterns that may herald a change of bank, 
or even life changes, such as a move to another city, that can result in a different 
bank being chosen. It may reveal, for example, a group of customers with above-
average attrition rate who do most of their banking by phone after hours when 
telephone response is slow. Data mining may determine groups for whom new ser-
vices are appropriate, such as a cluster of profitable, reliable customers who rarely 
get cash advances from their credit cards except in November and December, when 
they are prepared to pay exorbitant interest rates to see them through the holiday 
season.

In another domain, cellular phone companies fight churn by detecting patterns 
of behavior that could benefit from new services, and then advertise such services 
to retain their customer base. Incentives provided specifically to retain existing 
customers can be expensive, and successful data mining allows them to be precisely 
targeted to those customers who are likely to yield maximum benefit.

Market basket analysis is the use of association techniques to find groups of items 
that tend to occur together in transactions, typically supermarket checkout data. For 
many retailers this is the only source of sales information that is available for data 
mining. For example, automated analysis of checkout data may uncover the fact that 
customers who buy beer also buy chips, a discovery that could be significant from 
the supermarket operator’s point of view (although rather an obvious one that prob-
ably does not need a data mining exercise to discover). Or analysis may come up 
with the fact that on Thursdays customers often purchase diapers and beer together, 
an initially surprising result that, on reflection, makes some sense as young parents 
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stock up for a weekend at home. Such information could be used for many purposes: 
planning store layouts, limiting special discounts to just one of a set of items that 
tend to be purchased together, offering coupons for a matching product when one of 
them is sold alone, and so on.

There is enormous added value in being able to identify individual customer’s 
sales histories. Discount or “loyalty” cards let retailers identify all the purchases that 
each individual customer makes. This personal data is far more valuable than the 
cash value of the discount. Identification of individual customers not only allows 
historical analysis of purchasing patterns but also permits precisely targeted special 
offers to be mailed out to prospective customers—or perhaps personalized coupons 
can be printed in real time at the checkout for use during the next grocery run. 
Supermarkets want you to feel that although we may live in a world of inexorably 
rising prices, they don’t increase so much for you because the bargains offered by 
personalized coupons make it attractive for you to stock up on things that you 
wouldn’t normally have bought.

Direct marketing is another popular domain for data mining. Bulk-mail promo-
tional offers are expensive and have a low—but highly profitable—response rate. 
Anything that helps focus promotions, achieving the same or nearly the same 
response from a smaller sample, is valuable. Commercially available databases 
containing demographic information that characterizes neighborhoods based on zip 
codes can be correlated with information on existing customers to predict what kind 
of people might buy which items. This model can be trialed on information gained 
in response to an initial mailout, where people send back a response card or call an 
800 number for more information, to predict likely future customers. Unlike 
shopping-mall retailers, direct-mail companies have complete purchasing histories 
for each individual customer and can use data mining to determine those likely to 
respond to special offers. Targeted campaigns save money by directing offers only 
to those likely to want the product.

Other Applications
There are countless other applications of machine learning. We briefly mention a 
few more areas to illustrate the breadth of what has been done.

Sophisticated manufacturing processes often involve tweaking control parame-
ters. Separating crude oil from natural gas is an essential prerequisite to oil refine-
ment, and controlling the separation process is a tricky job. British Petroleum used 
machine learning to create rules for setting the parameters. This now takes just 10 
minutes, whereas previously human experts took more than a day. Westinghouse 
faced problems in their process for manufacturing nuclear fuel pellets and used 
machine learning to create rules to control the process. This was reported to have 
saved them more than $10 million per year (in 1984). The Tennessee printing 
company R. R. Donnelly applied the same idea to control rotogravure printing 
presses to reduce artifacts caused by inappropriate parameter settings, reducing the 
number of artifacts from more than 500 each year to less than 30.
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In the realm of customer support and service, we have already described adju-
dicating loans and marketing and sales applications. Another example arises when 
a customer reports a telephone problem and the company must decide what kind of 
technician to assign to the job. An expert system developed by Bell Atlantic in 1991 
to make this decision was replaced in 1999 by a set of rules developed using machine 
learning, which saved more than $10 million per year by making fewer incorrect 
decisions.

There are many scientific applications. In biology, machine learning is used to 
help identify the thousands of genes within each new genome. In biomedicine, it is 
used to predict drug activity by analyzing not just the chemical properties of drugs 
but also their three-dimensional structure. This accelerates drug discovery and 
reduces its cost. In astronomy, machine learning has been used to develop a fully 
automatic cataloging system for celestial objects that are too faint to be seen by 
visual inspection. In chemistry, it has been used to predict the structure of certain 
organic compounds from magnetic resonance spectra. In all of these applications, 
machine learning techniques have attained levels of performance—or should we say 
skill?—that rival or surpass those of human experts.

Automation is especially welcome in situations involving continuous monitoring, 
a job that is time consuming and exceptionally tedious for humans. Ecological 
applications include the oil spill monitoring described earlier. Other applications 
are rather less consequential—for example, machine learning is being used to predict 
preferences for TV programs based on past choices and to advise viewers about 
available channels. Still other applications may save lives. Intensive-care patients 
may be monitored to detect changes in variables that cannot be explained by cir-
cadian rhythm, medication, and so on, raising an alarm when appropriate. Finally, 
in a world that relies on vulnerable networked computer systems and is increasingly 
concerned about cybersecurity, machine learning is used to detect intrusion by 
recognizing unusual patterns of operation.

1.4  MACHINE LEARNING AND STATISTICS
What is the difference between machine learning and statistics? Cynics, looking 
wryly at the explosion of commercial interest (and hype) in this area, equate 
data mining to statistics plus marketing. In truth, you should not look for a 
dividing line between machine learning and statistics because there is a continuum—
and a multidimensional one at that—of data analysis techniques. Some derive 
from the skills taught in standard statistics courses, and others are more closely 
associated with the kind of machine learning that has arisen out of computer 
science. Historically, the two sides have had rather different traditions. If forced 
to point to a single difference of emphasis, it might be that statistics has been 
more concerned with testing hypotheses, whereas machine learning has been more 
concerned with formulating the process of generalization as a search through 
possible hypotheses. But this is a gross oversimplification: Statistics is far more 



	 1.5  Generalization as Search� 29

than just hypothesis testing, and many machine learning techniques do not involve 
any searching at all.

In the past, very similar schemes have developed in parallel in machine learning 
and statistics. One is decision tree induction. Four statisticians (Breiman et al., 
1984) published a book, Classification and regression trees, in the mid-1980s, and 
throughout the 1970s and early 1980s a prominent machine learning researcher,  
J. Ross Quinlan, was developing a system for inferring classification trees from 
examples. These two independent projects produced quite similar schemes for  
generating trees from examples, and the researchers only became aware of one 
another’s work much later.

A second area where similar methods have arisen involves the use of nearest-
neighbor methods for classification. These are standard statistical techniques that 
have been extensively adapted by machine learning researchers, both to improve 
classification performance and to make the procedure more efficient computation-
ally. We will examine both decision tree induction and nearest-neighbor methods in 
Chapter 4.

But now the two perspectives have converged. The techniques we will examine 
in this book incorporate a great deal of statistical thinking. Right from the beginning, 
when constructing and refining the initial example set, standard statistical methods 
apply: visualization of data, selection of attributes, discarding outliers, and so on. 
Most learning algorithms use statistical tests when constructing rules or trees and 
for correcting models that are “overfitted” in that they depend too strongly on the 
details of the particular examples used to produce them (we have already seen an 
example of this in the two decision trees in Figure 1.3 for the labor negotiations 
problem). Statistical tests are used to validate machine learning models and to evalu-
ate machine learning algorithms. In our study of practical techniques for data mining, 
we will learn a great deal about statistics.

1.5  GENERALIZATION AS SEARCH

One way of visualizing the problem of learning—and one that distinguishes it from 
statistical approaches—is to imagine a search through a space of possible concept 
descriptions for one that fits the data. Although the idea of generalization as search is  
a powerful conceptual tool for thinking about machine learning, it is not essential for 
understanding the practical schemes described in this book. That is why this section is  
set apart (boxed), suggesting that it is optional.

Suppose, for definiteness, that concept descriptions—the result of learning—are 
expressed as rules such as the ones given for the weather problem in Section 1.2 
(although other concept description languages would do just as well). Suppose that we  
list all possible sets of rules and then look for ones that satisfy a given set of examples.  
A big job? Yes. An infinite job? At first glance it seems so because there is no limit to the 
number of rules there might be. But actually the number of possible rule sets is finite. 
Note first that each rule is no greater than a fixed maximum size, with at most one term 
for each attribute: For the weather data of Table 1.2 this involves four terms in all. 
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Because the number of possible rules is finite, the number of possible rule sets is finite 
too, although extremely large. However, we’d hardly be interested in sets that contained a 
very large number of rules. In fact, we’d hardly be interested in sets that had more rules 
than there are examples because it is difficult to imagine needing more than one rule for 
each example. So if we were to restrict consideration to rule sets smaller than that, the 
problem would be substantially reduced, although still very large.

The threat of an infinite number of possible concept descriptions seems more serious 
for the second version of the weather problem in Table 1.3 because these rules contain 
numbers. If they are real numbers, you can’t enumerate them, even in principle. However, 
on reflection the problem again disappears because the numbers really just represent 
breakpoints in the numeric values that appear in the examples. For instance, consider the 
temperature attribute in Table 1.3. It involves the numbers 64, 65, 68, 69, 70, 71, 72, 
75, 80, 81, 83, and 85—12 different numbers. There are 13 possible places in which we 
might want to put a breakpoint for a rule involving temperature. The problem isn’t infinite 
after all.

So the process of generalization can be regarded as a search through an enormous, but 
finite, search space. In principle, the problem can be solved by enumerating descriptions 
and striking out those that do not fit the examples presented. A positive example 
eliminates all descriptions that it does not match, and a negative one eliminates those it 
does match. With each example the set of remaining descriptions shrinks (or stays the 
same). If only one is left, it is the target description—the target concept.

If several descriptions are left, they may still be used to classify unknown objects. An 
unknown object that matches all remaining descriptions should be classified as matching 
the target; if it fails to match any description it should be classified as being outside the 
target concept. Only when it matches some descriptions but not others is there ambiguity. 
In this case if the classification of the unknown object were revealed, it would cause the 
set of remaining descriptions to shrink because rule sets that classified the object the 
wrong way would be rejected.

Enumerating the Concept Space
Regarding it as search is a good way of looking at the learning process. However, the 
search space, although finite, is extremely big, and it is generally quite impractical to 
enumerate all possible descriptions and then see which ones fit. In the weather problem 
there are 4 × 4 × 3 × 3 × 2 = 288 possibilities for each rule. There are four possibilities 
for the outlook attribute: sunny, overcast, rainy, or it may not participate in the rule at all. 
Similarly, there are four for temperature, three each for windy and humidity and two for 
the class. If we restrict the rule set to contain no more than 14 rules (because there are 
14 examples in the training set), there are around 2.7 × 1034 possible different rule sets. 
That’s a lot to enumerate, especially for such a patently trivial problem.

Although there are ways of making the enumeration procedure more feasible, a serious 
problem remains: In practice, it is rare for the process to converge on a unique acceptable 
description. Either many descriptions are still in the running after the examples are 
processed or the descriptors are all eliminated. The first case arises when the examples 
are not sufficiently comprehensive to eliminate all possible descriptions except for the 
“correct” one. In practice, people often want a single “best” description, and it is 
necessary to apply some other criteria to select the best one from the set of remaining 
descriptions. The second problem arises either because the description language is not 
expressive enough to capture the actual concept or because of noise in the examples.  
If an example comes in with the “wrong” classification because of an error in some of the 
attribute values or in the class that is assigned to it, this will likely eliminate the correct 
description from the space. The result is that the set of remaining descriptions becomes 
empty. This situation is very likely to happen if the examples contain any noise at all, 
which inevitably they do except in artificial situations.



Another way of looking at generalization as search is to imagine it not as a process of 
enumerating descriptions and striking out those that don’t apply but as a kind of  
hill climbing in description space to find the description that best matches the set of 
examples according to some prespecified matching criterion. This is the way that most 
practical machine learning methods work. However, except in the most trivial cases, it is 
impractical to search the whole space exhaustively; most practical algorithms involve 
heuristic search and cannot guarantee to find the optimal description.

Bias
Viewing generalization as a search in a space of possible concepts makes it clear that the 
most important decisions in a machine learning system are:

•	 The concept description language
•	 The order in which the space is searched
•	 The way that overfitting to the particular training data is avoided

These three properties are generally referred to as the bias of the search and are called 
language bias, search bias, and overfitting-avoidance bias. You bias the learning scheme 
by choosing a language in which to express concepts, by searching in a particular way for 
an acceptable description, and by deciding when the concept has become so complex that 
it needs to be simplified.

Language Bias
The most important question for language bias is whether the concept description 
language is universal or whether it imposes constraints on what concepts can be learned. 
If you consider the set of all possible examples, a concept is really just a division of that 
set into subsets. In the weather example, if you were to enumerate all possible weather 
conditions, the play concept is a subset of possible weather conditions. A “universal” 
language is one that is capable of expressing every possible subset of examples. In 
practice, the set of possible examples is generally huge, and in this respect our 
perspective is a theoretical, not a practical, one.

If the concept description language permits statements involving logical or—that is, 
disjunctions—then any subset can be represented. If the description language is rule-
based, disjunction can be achieved by using separate rules. For example, one possible 
concept representation is just to enumerate the examples:

If outlook = overcast and temperature = hot and humidity = high

   and windy = false then play = yes

If outlook = rainy and temperature = mild and humidity = high

   and windy = false then play = yes

If outlook = rainy and temperature = cool and humidity = normal

   and windy = false then play = yes

If outlook = overcast and temperature = cool and humidity = normal

   and windy = true then play = yes

…

If none of the above then play = no

This is not a particularly enlightening concept description: It simply records the positive 
examples that have been observed and assumes that all the rest are negative. Each 
positive example is given its own rule, and the concept is the disjunction of the rules. 
Alternatively, you could imagine having individual rules for each of the negative examples, 
too—an equally uninteresting concept. In either case, the concept description does not 
perform any generalization; it simply records the original data.

On the other hand, if disjunction is not allowed, some possible concepts—sets of 
examples—may not be able to be represented at all. In that case, a machine learning 
scheme may simply be unable to achieve good performance.
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Another kind of language bias is that obtained from knowledge of the particular 
domain being used. For example, it may be that some combinations of attribute values 
can never happen. This would be the case if one attribute implied another. We saw an 
example of this when considering the rules for the soybean problem described in Section 
1.2. Then it would be pointless to even consider concepts that involved redundant or 
impossible combinations of attribute values. Domain knowledge can be used to cut down 
the search space. Knowledge is power: A little goes a long way, and even a small hint can 
reduce the search space dramatically.

Search Bias
In realistic data mining problems, there are many alternative concept descriptions that fit 
the data, and the problem is to find the “best” one according to some criterion—usually 
simplicity. We use the term fit in a statistical sense; we seek the best description that fits 
the data reasonably well. Moreover, it is often computationally infeasible to search the 
whole space and guarantee that the description found really is the best. Consequently, the 
search procedure is heuristic, and no guarantees can be made about the optimality of the 
final result. This leaves plenty of room for bias: Different search heuristics bias the search 
in different ways.

For example, a learning algorithm might adopt a “greedy” search for rules by trying to 
find the best rule at each stage and adding it to the rule set. However, it may be that the 
best pair of rules is not just the two rules that are individually found best. Or when 
building a decision tree, a commitment to split early on using a particular attribute might 
turn out later to be ill-considered in light of how the tree develops below that node. To get 
around these problems, a beam search could be used where irrevocable commitments are 
not made but instead a set of several active alternatives—the number of which is the 
beam width—are pursued in parallel. This will complicate the learning algorithm quite 
considerably but has the potential to avoid the myopia associated with a greedy search. Of 
course, if the beam width is not large enough, myopia may still occur. There are more 
complex search strategies that help to overcome this problem.

A more general and higher-level kind of search bias concerns whether the search is 
done by starting with a general description and refining it or by starting with a specific 
example and generalizing it. The former is called a general-to-specific search bias; the 
latter, a specific-to-general one. Many learning algorithms adopt the former policy, starting 
with an empty decision tree, or a very general rule, and specializing it to fit the examples. 
However, it is perfectly possible to work in the other direction. Instance-based methods 
start with a particular example and see how it can be generalized to cover other nearby 
examples in the same class.

Overfitting-Avoidance Bias
Overfitting-avoidance bias is often just another kind of search bias. However, because it 
addresses a rather special problem, we treat it separately. Recall the disjunction problem 
described previously. The problem is that if disjunction is allowed, useless concept 
descriptions that merely summarize the data become possible, whereas if it is prohibited, 
some concepts are unlearnable. To get around this problem, it is common to search the 
concept space starting with the simplest concept descriptions and proceeding to more 
complex ones: simplest-first ordering. This biases the search in favor of simple concept 
descriptions.

Using a simplest-first search and stopping when a sufficiently complex concept 
description is found is a good way of avoiding overfitting. It is sometimes called forward 
pruning or prepruning because complex descriptions are pruned away before they are 
reached. The alternative, backward pruning or postpruning, is also viable. Here, we first 
find a description that fits the data well and then prune it back to a simpler description 
that also fits the data. This is not as redundant as it sounds: Often the best way to arrive 
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at a simple theory is to find a complex one and then simplify it. Forward and backward 
pruning are both a kind of overfitting-avoidance bias.

In summary, although generalization as search is a nice way to think about the 
learning problem, bias is the only way to make it feasible in practice. Different learning 
algorithms correspond to different concept description spaces searched with different 
biases. This is what makes it interesting: Different description languages and biases serve 
some problems well and other problems badly. There is no universal “best” learning 
method—as every teacher knows!

1.6  DATA MINING AND ETHICS
The use of data—particularly data about people—for data mining has serious ethical 
implications, and practitioners of data mining techniques must act responsibly by 
making themselves aware of the ethical issues that surround their particular 
application.

When applied to people, data mining is frequently used to discriminate—who 
gets the loan, who gets the special offer, and so on. Certain kinds of discrimination—
racial, sexual, religious, and so on—are not only unethical but also illegal. However, 
the situation is complex: Everything depends on the application. Using sexual and 
racial information for medical diagnosis is certainly ethical, but using the same infor-
mation when mining loan payment behavior is not. Even when sensitive information 
is discarded, there is a risk that models will be built that rely on variables that can be 
shown to substitute for racial or sexual characteristics. For example, people fre-
quently live in areas that are associated with particular ethnic identities, and so using 
a zip code in a data mining study runs the risk of building models that are based on 
race—even though racial information has been explicitly excluded from the data.

Reidentification
Recent work in what are being called reidentification techniques has provided 
sobering insights into the difficulty of anonymizing data. It turns out, for example, 
that over 85% of Americans can be identified from publicly available records using 
just three pieces of information: five-digit zip code, birth date (including year), and 
sex. Don’t know the zip code?—over half of Americans can be identified from  
just city, birth date, and sex. When the Commonwealth of Massachusetts released 
medical records summarizing every state employee’s hospital record in the mid-
1990s, the governor gave a public assurance that it had been anonymized by remov-
ing all identifying information such as name, address, and social security number. 
He was surprised to receive his own health records (which included diagnoses and 
prescriptions) in the mail.

Stories abound of companies releasing allegedly anonymous data in good faith, 
only to find that many individuals are easily identifiable. In 2006, an Internet services 
company released to the research community the records of 20 million user searches. 
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The records were anonymized by removing all personal information—or so the 
company thought. But pretty soon journalists from The New York Times were able 
to identify the actual person corresponding to user number 4417749 (they sought 
her permission before exposing her). They did so by analyzing the search terms she 
used, which included queries for landscapers in her hometown and for several people 
with the same last name as hers, which reporters correlated with public databases.

Two months later, Netflix, an online movie rental service, released 100 million 
records of movie ratings (from 1 to 5) with their dates. To their surprise, it turned 
out to be quite easy to identify people in the database and thus discover all the movies 
they had rated. For example, if you know approximately when (give or take two 
weeks) a person in the database rated six movies and you know the ratings, you can 
identify 99% of the people in the database. By knowing only two movies with their 
ratings and dates, give or take three days, nearly 70% of people can be identified. 
From just a little information about your friends (or enemies) you can determine all 
the movies they have rated on Netflix.

The moral is that if you really do remove all possible identification information 
from a database, you will probably be left with nothing useful.

Using Personal Information
It is widely accepted that before people make a decision to provide personal infor-
mation they need to know how it will be used and what it will be used for, what 
steps will be taken to protect its confidentiality and integrity, what the consequences 
of supplying or withholding the information are, and any rights of redress they may 
have. Whenever such information is collected, individuals should be told these 
things—not in legalistic small print but straightforwardly in plain language they can 
understand.

The potential use of data mining techniques means that the ways in which a 
repository of data can be used may stretch far beyond what was conceived when the 
data was originally collected. This creates a serious problem: It is necessary to 
determine the conditions under which the data was collected and for what purposes 
it may be used. Does the ownership of data bestow the right to use it in ways other 
than those purported when it was originally recorded? Clearly, in the case of explic-
itly collected personal data, it does not. But in general the situation is complex.

Surprising things emerge from data mining. For example, it has been reported 
that one of the leading consumer groups in France has found that people with red 
cars are more likely to default on their car loans. What is the status of such a “dis-
covery”? What information is it based on? Under what conditions was that informa-
tion collected? In what ways is it ethical to use it? Clearly, insurance companies are 
in the business of discriminating among people based on stereotypes—young males 
pay heavily for automobile insurance—but such stereotypes are not based solely on 
statistical correlations; they also draw on commonsense knowledge about the world 
as well. Whether the preceding finding says something about the kind of person who 
chooses a red car, or whether it should be discarded as an irrelevancy, is a matter 



for human judgment based on knowledge of the world rather than on purely statisti-
cal criteria.

When presented with data, you need to ask who is permitted to have access to 
it, for what purpose it was collected, and what kind of conclusions are legitimate to 
draw from it. The ethical dimension raises tough questions for those involved in 
practical data mining. It is necessary to consider the norms of the community that 
is used to dealing with the kind of data involved, standards that may have evolved 
over decades or centuries but ones that may not be known to the information special-
ist. For example, did you know that in the library community it is taken for granted 
that the privacy of readers is a right that is jealously protected? If you call your 
university library and ask who has such-and-such a textbook out on loan, they will 
not tell you. This prevents a student being subjected to pressure from an irate profes-
sor to yield access to a book that she desperately needs for her latest grant applica-
tion. It also prohibits enquiry into the dubious recreational reading tastes of the 
university ethics committee chairperson. Those who build, say, digital libraries may 
not be aware of these sensitivities and might incorporate data mining systems that 
analyze and compare individuals’ reading habits to recommend new books—perhaps 
even selling the results to publishers!

Wider Issues
In addition to various community standards for the use of data, logical and sci-
entific standards must be adhered to when drawing conclusions from it. If you 
do come up with conclusions (e.g., red car owners being greater credit risks), 
you need to attach caveats to them and back them up with arguments other than 
purely statistical ones. The point is that data mining is just a tool in the whole 
process. It is people who take the results, along with other knowledge, and decide 
what action to apply.

Data mining prompts another question, which is really a political one concerning 
the use to which society’s resources are being put. We mentioned earlier the applica-
tion of data mining to basket analysis, where supermarket checkout records are 
analyzed to detect associations among items that people purchase. What use should 
be made of the resulting information? Should the supermarket manager place the 
beer and chips together, to make it easier for shoppers, or farther apart to make it 
less convenient for them, to maximize their time in the store and therefore their 
likelihood of being drawn into further purchases? Should the manager move the 
most expensive, most profitable diapers near the beer, increasing sales to harried 
fathers of a high-margin item, and add further luxury baby products nearby?

Of course, anyone who uses advanced technologies should consider the wisdom 
of what they are doing. If data is characterized as recorded facts, then information 
is the set of patterns, or expectations, that underlie the data. You could go on to 
define knowledge as the accumulation of your set of expectations and wisdom as the 
value attached to knowledge. Although we will not pursue it further here, this issue 
is worth pondering.
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As we saw at the very beginning of this chapter, the techniques described in this 
book may be called upon to help make some of the most profound and intimate deci-
sions that life presents. Data mining is a technology that we need to take seriously.

1.7  FURTHER READING
To avoid breaking up the flow of the main text, all references are collected in a 
section at the end of each chapter. This section describes papers, books, and other 
resources relevant to the material covered in this chapter. The human in vitro fertil-
ization research mentioned in the opening was undertaken by the Oxford University 
Computing Laboratory, and the research on cow culling was performed in the Com-
puter Science Department at Waikato University, New Zealand.

The weather problem is from Quinlan (1986) and has been widely used to explain 
machine learning schemes. The corpus of example problems mentioned in the intro-
duction to Section 1.2 is available from Asuncion and Newman (2007). The contact 
lens example is from Cendrowska (1987), who introduced the PRISM rule-learning 
algorithm that we will encounter in Chapter 4. The iris dataset was described in a 
classic early paper on statistical inference (Fisher, 1936). The labor negotiations data 
is from the Collective Bargaining Review, a publication of Labour Canada issued 
by the Industrial Relations Information Service (BLI 1988), and the soybean problem 
was first described by Michalski and Chilausky (1980).

Some of the applications in Section 1.3 are covered in an excellent paper that 
gives plenty of other applications of machine learning and rule induction (Langley 
and Simon, 1995); another source of fielded applications is a special issue of the 
Machine Learning Journal (Kohavi and Provost, 1998). Chakrabarti (2003) has 
written an excellent and comprehensive book on techniques of web mining; another, 
more recent, book is Liu’s Web data mining (2009). The loan company application 
is described in more detail by Michie (1989), the oil slick detector is from Kubat 
et al. (1998), the electric load forecasting work is by Jabbour et al. (1988), and the 
application to preventative maintenance of electromechanical devices is from Saitta 
and Neri (1998). Fuller descriptions of some of the other projects mentioned in 
Section 1.3 (including the figures of dollar amounts saved and related literature refer-
ences) appear at the web site of the Alberta Ingenuity Centre for Machine Learning. 
Luan (2002) describes applications for data mining in higher education. Dasu et al. 
(2006) have some recommendations for successful data mining. Another special 
issue of the Machine Learning Journal addresses the lessons that have been learned 
from data mining applications and collaborative problem solving (Lavrac et al., 
2004).

The “diapers and beer” story is legendary. According to an article in London’s 
Financial Times (February 7, 1996),

The oft-quoted example of what data mining can achieve is the case of a large 
US supermarket chain which discovered a strong association for many customers 
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between a brand of babies’ nappies (diapers) and a brand of beer. Most customers 
who bought the nappies also bought the beer. The best hypothesisers in the world 
would find it difficult to propose this combination but data mining showed it 
existed, and the retail outlet was able to exploit it by moving the products closer 
together on the shelves.

However, it seems that it is just a legend after all; Power (2002) traces its history.
The book Classification and regression trees, mentioned in Section 1.4, is by 

Breiman et al. (1984), and Quinlan’s independently derived but similar scheme was 
described in a series of papers that eventually led to a book (Quinlan, 1993).

The first book on data mining was written by Piatetsky-Shapiro and Frawley 
(1991)—a collection of papers presented at a workshop on knowledge discovery in 
databases in the late 1980s. Another book from the same stable has appeared since 
(Fayyad et al., 1996) from a 1994 workshop. There followed a rash of business-
oriented books on data mining, focusing mainly on practical aspects of how it can 
be put into practice with only rather superficial descriptions of the technology that 
underlies the methods used. They are valuable sources of applications and inspira-
tion. For example, Adriaans and Zantige (1996) from Syllogic, a European systems 
and database consultancy, is an early introduction to data mining. Berry and Linoff 
(1997), from a Pennsylvania-based firm specializing in data warehousing and data 
mining, give an excellent and example-studded review of data mining techniques 
for marketing, sales, and customer support. Cabena et al. (1998), written by people 
from five international IBM laboratories, contains an overview of the data mining 
process with many examples of real-world applications.

Dhar and Stein (1997) give a business perspective on data mining and include 
broad-brush, popularized reviews of many of the technologies involved. Groth 
(1998), working for a provider of data mining software, gives a brief introduction to 
data mining and then a fairly extensive review of data mining software products; the 
book includes a CD-ROM containing a demo version of his company’s product. 
Weiss and Indurkhya (1998) look at a wide variety of statistical techniques for making 
predictions from what they call “big data.” Han and Kamber (2006) cover data mining 
from a database perspective, focusing on the discovery of knowledge in large corpo-
rate databases; they also discuss mining complex types of data. Hand et al. (2001) 
produced an interdisciplinary book on data mining from an international group of 
authors who are well respected in the field. Finally, Nisbet et al. (2009) have produced 
a comprehensive handbook of statistical analysis and data mining applications.

Books on machine learning, on the other hand, tend to be academic texts suited 
for use in university courses rather than as practical guides. Mitchell (1997) wrote 
an excellent book that covers many techniques of machine learning, including 
some—notably genetic algorithms and reinforcement learning—that are not covered 
here. Langley (1996) offers another good text. Although the previously mentioned 
book by Quinlan (1993) concentrates on a particular learning algorithm, C4.5, which 
we will cover in detail in Chapters 4 and 6, it is a good introduction to some of the 
problems and techniques of machine learning. An absolutely excellent book on 
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machine learning from a statistical perspective is Hastie et al. (2009). This is quite 
a theoretically oriented work, and is beautifully produced with apt and telling figures. 
Russell and Norvig’s Artificial intelligence: A modern approach (2009) is the third 
edition of a classic text that includes a great deal of information on machine learning 
and data mining.

Pattern recognition is a topic that is closely related to machine learning, and 
many of the same techniques apply. Duda et  al. (2001) is the second edition of 
a classic and successful book on pattern recognition (Duda and Hart, 1973). 
Ripley (1996) and Bishop (1995) describe the use of neural networks for pattern 
recognition; Bishop has a more recent book, Pattern recognition and machine 
learning (2006). Data mining with neural networks is the subject of a 1996 book 
by Bigus of IBM, which features the IBM Neural Network Utility Product that 
he developed.

There is a great deal of current interest in support vector machines. Cristianini 
and Shawe-Taylor (2000) give a nice introduction, and a follow-up work generalizes 
this to cover additional algorithms, kernels, and solutions with applications to pattern 
discovery problems in fields such as bioinformatics, text analysis, and image analysis 
(Shawe-Taylor and Cristianini, 2004). Schölkopf and Smola (2002) provide a com-
prehensive introduction to support vector machines and related kernel methods by 
two young researchers who did their Ph.D. research in this rapidly developing area.

The emerging area of reidentification techniques is explored, along with its 
implications for anonymization, by Ohm (2009).
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CHAPTER 

2 

Input: Concepts, Instances,  
and Attributes

Before delving into the question of how machine learning schemes operate, we begin 
by looking at the different forms the input might take and, in Chapter 3, the different 
kinds of output that might be produced. With any software system, understanding 
what the inputs and outputs are is far more important than knowing what goes on 
in between, and machine learning is no exception.

The input takes the form of concepts, instances, and attributes. We call the thing 
that is to be learned a concept description. The idea of a concept, like the very idea 
of learning in the first place, is hard to pin down precisely, and we won’t spend time 
philosophizing about just what it is and isn’t. In a sense, what we are trying to 
find—the result of the learning process—is a description of the concept that is intel-
ligible in that it can be understood, discussed, and disputed, and operational in that 
it can be applied to actual examples. The next section explains some distinctions 
among different kinds of learning problems—distinctions that are very concrete and 
very important in practical data mining.

The information that the learner is given takes the form of a set of instances. 
In the examples in Chapter 1, each instance was an individual, independent example 
of the concept to be learned. Of course, there are many things you might like to 
learn for which the raw data cannot be expressed as individual, independent 
instances. Perhaps background knowledge should be taken into account as part of 
the input. Perhaps the raw data is an agglomerated mass that cannot be fragmented 
into individual instances. Perhaps it is a single sequence—say a time sequence—
that cannot meaningfully be cut into pieces. This book is about simple, practical 
methods of data mining, and we focus on situations where the information can be 
supplied in the form of individual examples. However, we do introduce one slightly 
more complicated scenario where the examples for learning contain multiple 
instances.

Each instance is characterized by the values of attributes that measure different 
aspects of the instance. There are many different types of attributes, although 
typical data mining schemes deal only with numeric and nominal, or categorical, 
ones.

Finally, we examine the question of preparing input for data mining and introduce 
a simple format—the one that is used by the Weka system that accompanies this 
book—for representing the input information as a text file.
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2.1  WHAT’S A CONCEPT?
Four basically different styles of learning appear in data mining applications. In 
classification learning, the learning scheme is presented with a set of classified 
examples from which it is expected to learn a way of classifying unseen examples. 
In association learning, any association among features is sought, not just ones that 
predict a particular class value. In clustering, groups of examples that belong 
together are sought. In numeric prediction, the outcome to be predicted is not a 
discrete class but a numeric quantity. Regardless of the type of learning involved, 
we call the thing to be learned the concept and the output produced by a learning 
scheme the concept description.

Most of the examples in Chapter 1 are classification problems. The weather data 
(Tables 1.2 and 1.3) presents a set of days together with a decision for each as to 
whether to play the game or not. The problem is to learn how to classify new days 
as play or don’t play. Given the contact lens data (Table 1.1), the problem is to learn 
how to determine a lens recommendation for a new patient—or more precisely, since 
every possible combination of attributes is present in the data, the problem is to learn 
a way of summarizing the given data. For the irises (Table 1.4), the problem is to 
learn how to determine whether a new iris flower is setosa, versicolor, or virginica, 
given its sepal length and width and petal length and width. For the labor negotia-
tions data (Table 1.6), the problem is to determine whether a new contract is accept-
able or not, on the basis of its duration; wage increase in the first, second, and third 
years; cost of living adjustment; and so forth.

We assume throughout this book that each example belongs to one, and only 
one, class. However, there exist classification scenarios in which individual exam-
ples may belong to multiple classes. In technical jargon, these are called multilabeled 
instances. One simple way to deal with such situations is to treat them as several 
different classification problems, one for each possible class, where the problem is 
to determine whether instances belong to that class or not.

Classification learning is sometimes called supervised, because, in a sense, the 
scheme operates under supervision by being provided with the actual outcome for 
each of the training examples—the play or don’t play judgment, the lens recom-
mendation, the type of iris, the acceptability of the labor contract. This outcome is 
called the class of the example. The success of classification learning can be judged 
by trying out the concept description that is learned on an independent set of test 
data for which the true classifications are known but not made available to the 
machine. The success rate on test data gives an objective measure of how well the 
concept has been learned. In many practical data mining applications, success is 
measured more subjectively in terms of how acceptable the learned description—
such as the rules or decision tree—is to a human user.

Most of the examples in Chapter 1 can be used equally well for association 
learning, in which there is no specified class. Here, the problem is to discover any 
structure in the data that is “interesting.” Some association rules for the weather data 
were given in Section 1.2. Association rules differ from classification rules in two 
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Table 2.1  Iris Data as a Clustering Problem

Sepal Length Sepal Width Petal Length Petal Width

1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
…
51 7.0 3.2 4.7 1.4
52 6.4 3.2 4.5 1.5
53 6.9 3.1 4.9 1.5
54 5.5 2.3 4.0 1.3
55 6.5 2.8 4.6 1.5
…
101 6.3 3.3 6.0 2.5
102 5.8 2.7 5.1 1.9
103 7.1 3.0 5.9 2.1
104 6.3 2.9 5.6 1.8
105 6.5 3.0 5.8 2.2
…

ways: They can “predict” any attribute, not just the class, and they can predict more 
than one attribute’s value at a time. Because of this there are far more association 
rules than classification rules, and the challenge is to avoid being swamped by them. 
For this reason, association rules are often limited to those that apply to a certain 
minimum number of examples—say 80% of the dataset—and have greater than a 
certain minimum accuracy level—say 95% accurate. Even then, there are usually 
lots of them, and they have to be examined manually to determine whether they are 
meaningful or not. Association rules usually involve only nonnumeric attributes; 
thus, you wouldn’t normally look for association rules in the iris dataset.

When there is no specified class, clustering is used to group items that seem to 
fall naturally together. Imagine a version of the iris data in which the type of iris is 
omitted, such as in Table 2.1. Then it is likely that the 150 instances fall into natural 
clusters corresponding to the three iris types. The challenge is to find these clusters 
and assign the instances to them—and to be able to assign new instances to the 
clusters as well. It may be that one or more of the iris types splits naturally into 
subtypes, in which case the data will exhibit more than three natural clusters. The 
success of clustering is often measured subjectively in terms of how useful the result 
appears to be to a human user. It may be followed by a second step of classification 
learning in which rules are learned that give an intelligible description of how new 
instances should be placed into the clusters.
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Numeric prediction is a variant of classification learning in which the outcome 
is a numeric value rather than a category. The CPU performance problem is one 
example. Another, shown in Table 2.2, is a version of the weather data in which 
what is to be predicted is not play or don’t play but rather the time (in minutes) to 
play. With numeric prediction problems, as with other machine learning situations, 
the predicted value for new instances is often of less interest than the structure of 
the description that is learned, expressed in terms of what the important attributes 
are and how they relate to the numeric outcome.

2.2  WHAT’S IN AN EXAMPLE?
The input to a machine learning scheme is a set of instances. These instances are 
the things that are to be classified or associated or clustered. Although until now  
we have called them examples, henceforth we will generally use the more specific 
term instances to refer to the input. In the standard scenario, each instance is an 
individual, independent example of the concept to be learned. Instances are charac-
terized by the values of a set of predetermined attributes. This was the case in all of 
the sample datasets described in Chapter 1 (i.e., the weather, the contact lens, the 
iris, and the labor negotiations problems). Each dataset is represented as a matrix of 
instances versus attributes, which in database terms is a single relation, or a flat file.

Expressing the input data as a set of independent instances is by far the most 
common situation for practical data mining. However, it is a rather restrictive way of 
formulating problems, and it is worth spending some time reviewing why. Problems 
often involve relationships between objects rather than separate, independent 

Table 2.2  Weather Data with a Numeric Class

Outlook Temperature Humidity Windy Play Time

Sunny 85 85 false 5
Sunny 80 90 true 0
Overcast 83 86 false 55
Rainy 70 96 false 40
Rainy 68 80 false 65
Rainy 65 70 true 45
Overcast 64 65 true 60
Sunny 72 95 false 0
Sunny 69 70 false 70
Rainy 75 80 false 45
Sunny 75 70 true 50
Overcast 72 90 true 55
Overcast 81 75 false 75
Rainy 71 91 true 10
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FIGURE 2.1 

A family tree and two ways of expressing the sister-of relation. 

Peter
M

= =

=

Peggy
F

Grace
F

Ray
M

Steven
M

Graham
M

Pam
F

Anna
F

Nikki
F

Ian
M

Pippa
F

Brian
M

First person Second person Sister of? First person Second person Sister of?

Steven Grace no all the rest no 

Peter Peggy no Steven  Pam  yes
Peter Steven no Graham  Pam  yes 
… … … Ian  Pippa  yes 
Steven Peter no Brian  Pippa  yes 
Steven Graham no Anna  Nikki  yes 
Steven Pam yes Nikki  Anna  yes 

… … …
yesPippaIan
………
yesNikkiAnna
………
yesAnnaNikki

instances. Suppose, to take a specific situation, a family tree is given and we want to 
learn the concept of sister. Imagine your own family tree, with your relatives (and 
their genders) placed at the nodes. This tree is the input to the learning process, along 
with a list of pairs of people and an indication of whether they are sisters or not.

Relations
Figure 2.1 shows part of a family tree, below which are two tables that each define 
sisterhood in a slightly different way. A yes in the third column of the individual 
tables means that the person in the second column is a sister of the person in the 
first column (that’s just an arbitrary decision we’ve made in setting up this example).

The first thing to notice is that there are a lot of nos in the third column of the 
table on the left, because there are 12 people and 12 × 12 = 144 pairs of people in 
all, and most pairs of people aren’t sisters. The table on the right, which gives the 
same information, records only the positive examples and assumes that all others 
are negative. The idea of specifying only positive examples and adopting a standing 
assumption that the rest are negative is called the closed-world assumption. It is 
frequently assumed in theoretical studies; however, it is not of much practical use 
in real-life problems because they rarely involve “closed” worlds in which you can 
be certain that all cases are covered.
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Table 2.3  Family Tree

Name Gender Parent 1 Parent 2

Peter male ? ?
Peggy female ? ?
Steven male Peter Peggy
Graham male Peter Peggy
Pam female Peter Peggy
Ian male Grace Ray
…

Neither table in Figure 2.1 is of any use without the family tree itself. This tree 
can also be expressed in the form of a table, part of which is shown in Table 2.3. 
Now the problem is expressed in terms of two relationships, Parent 1 and Parent 2. 
But these tables do not contain independent sets of instances because values in the 
Name, Parent 1, and Parent 2 columns of the sister-of relation refer to rows of the 
family tree relation. We can make them into a single set of instances by collapsing 
the two tables into a single one, as shown in Table 2.4.

We have at last succeeded in transforming the original relational problem into 
the form of instances, each of which is an individual, independent example of the 
concept that is to be learned. Of course, the instances are not really independent—
there are plenty of relationships among different rows of the table!—but they are 
independent as far as the concept of sisterhood is concerned. Most machine learning 
schemes will still have trouble dealing with this kind of data, as we will see in 
Section 3.4, but at least the problem has been recast into the right form. A simple 
rule for the sister-of relation is

If second person’s gender = female
	 and first person’s parent 1 = second person’s parent 1
	 then sister-of = yes

This example shows how you can take a relationship between different nodes of a 
tree and recast it into a set of independent instances. In database terms, you take two 
relations and join them together to make one, a process of flattening that is techni-
cally called denormalization. It is always possible to do this with any (finite) set of 
(finite) relations.

The structure of Table 2.4 can be used to describe any relationship between two 
people—grandparenthood, second cousins twice removed, and so on. Relationships 
among more people would require a larger table. Relationships in which the 
maximum number of people is not specified in advance pose a more serious problem. 
If we want to learn the concept of nuclear family (parents and their children), the 
number of people involved depends on the size of the largest nuclear family, and 
although we could guess at a reasonable maximum (10?, 20?), the actual number 
can only be found by scanning the tree itself. Nevertheless, given a finite set of finite 
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relations we could, at least in principle, form a new “superrelation” that contains 
one row for every combination of people, and this would be enough to express any 
relationship between people no matter how many were involved. The computational 
and storage costs would, however, be prohibitive.

Another problem with denormalization is that it produces apparent regularities 
in the data that are completely spurious and are in fact merely reflections of the 
original database structure. For example, imagine a supermarket database with a 
relation for customers and the products they buy, one for products and their suppli-
ers, and one for suppliers and their addresses. Denormalizing this will produce a flat 
file that contains, for each instance, customer, product, supplier, and supplier address. 
A data mining tool that seeks structure in the database may come up with the fact 
that customers who buy beer also buy chips, a discovery that could be significant 
from the supermarket manager’s point of view. However, it may also come up with 
the fact that the supplier address can be predicted exactly from the supplier—a 
“discovery” that will not impress the supermarket manager at all. This fact masquer-
ades as a significant discovery from the flat file but is present explicitly in the original 
database structure.

Many abstract computational problems involve relations that are not finite, 
although clearly any actual set of input examples must be finite. Concepts such as 
ancestor-of involve arbitrarily long paths through a tree, and although the human 
race, and hence its family tree, may be finite (although prodigiously large), many 
artificial problems generate data that truly is infinite. Although it may sound abstruse, 
this situation is the norm in areas such as list processing and logic programming, 
and it is addressed in a subdiscipline of machine learning called inductive logic 
programming. Computer scientists usually use recursion to deal with situations in 
which the number of possible examples is infinite. For example,

If person 1 is a parent of person 2 
	 then person 1 is an ancestor of person 2
If person 1 is a parent of person 2 
	 and person 2 is an ancestor of person 3
	 then person 1 is an ancestor of person 3

This represents a simple recursive definition of ancestor that works no matter how 
distantly two people are related. Techniques of inductive logic programming can 
learn recursive rules such as these from a finite set of instances such as those in 
Table 2.5.

The real drawbacks of such techniques, however, are that they do not cope well 
with noisy data, and they tend to be so slow as to be unusable on anything but small 
artificial datasets. They are not covered in this book; see Bergadano and Gunetti 
(1996) for a comprehensive treatment.

Other Example Types
As we have seen, general relations present substantial challenges, and this book will 
deal with them no further. Structured examples such as graphs and trees can be 
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viewed as special cases of relations that are often mapped into independent instances 
by extracting local or global features based on their structure and representing them 
as attributes. Similarly, sequences of items may be treated by describing them, or 
their individual items, in terms of a fixed set of properties represented by attributes. 
Fortunately, most practical data mining problems can be expressed quite effectively 
as a set of instances, each one being an example of the concept to be learned.

In some situations, instead of the individual instances being examples of the 
concept, each individual example comprises a set of instances that are described by 
the same attributes. This multi-instance setting covers some important real-world 
applications. One concerns the inference of characteristics of active drug molecules, 
where activity corresponds to how well a drug molecule bonds to a “bonding site” 
on a target molecule. The problem is that the drug molecule can assume alternative 
shapes by rotating its bonds. It is classed as positive if just one of these shapes actu-
ally binds to the site and has the desired effect—but it is not known which shape it 
is. On the other hand, a drug molecule is negative if none of the shapes bind suc-
cessfully. In this case, a multiple instance is a set of shapes, and the entire set is 
classified as positive or negative.

Multi-instance problems often also arise naturally when relations from a database 
are joined—that is, when several rows from a secondary relation are associated with 
the same row in the target relation. For example, we may want to classify computer 
users as experts or novices based on descriptions of user sessions that are stored in 
a secondary table. The target relation just has the classification and the user ID. 
Joining the two tables creates a flat file. However, the rows pertaining to an indi-
vidual user are not independent. Classification is performed on a per-user basis, so 
the set of session instances associated with the same user should be viewed as a 
single example for learning.

The goal of multi-instance learning is still to produce a concept description, but 
now the task is more difficult because the learning algorithm has to contend with 
incomplete information about each training example. Rather than seeing each 
example in terms of a single definitive attribute vector, the learning algorithm sees 
each example as a set of attribute vectors. Things would be easy if only the algorithm 
knew which member of the set was responsible for the example’s classification—
but it does not.

Several special learning algorithms have been developed to tackle the multi-
instance problem; we describe some of them in Chapter 6. It is also possible 
to apply standard machine learning schemes by recasting the problem as a single 
table comprising independent instances. Chapter 4 gives some ways of achieving 
this.

In summary, the input to a data mining scheme is generally expressed as a table 
of independent instances of the concept to be learned. Because of this it has been 
suggested, disparagingly, that we should really talk of file mining rather than data-
base mining. Relational data is more complex than a flat file. A finite set of finite 
relations can always be recast into a single table, although often at enormous cost 
in space. Moreover, denormalization can generate spurious regularities in the data, 
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and it is essential to check the data for such artifacts before applying a learning 
scheme. Potentially infinite concepts can be dealt with by learning rules that are 
recursive, although that is beyond the scope of this book. Finally, some important 
real-world problems are most naturally expressed in a multi-instance format, where 
each example is actually a separate set of instances.

2.3  WHAT’S IN AN ATTRIBUTE?
Each instance that provides the input to machine learning is characterized by its 
values on a fixed, predefined set of features or attributes. The instances are the rows 
of the tables that we have shown for the weather, the contact lens, the iris, and the 
CPU performance problems, and the attributes are the columns. (The labor negotia-
tions data was an exception: We presented this with instances in columns and attri-
butes in rows for space reasons.)

The use of a fixed set of features imposes another restriction on the kinds of 
problems generally considered in practical data mining. What if different instances 
have different features? If the instances were transportation vehicles, then number 
of wheels is a feature that applies to many vehicles but not to ships, for example, 
whereas number of masts might be a feature that applies to ships but not to land 
vehicles. The standard workaround is to make each possible feature an attribute 
and to use a special “irrelevant value” flag to indicate that a particular attribute 
is not available for a particular case. A similar situation arises when the existence 
of one feature (say, spouse’s name) depends on the value of another (married or 
single).

The value of an attribute for a particular instance is a measurement of the quantity 
to which the attribute refers. There is a broad distinction between quantities that are 
numeric and ones that are nominal. Numeric attributes, sometimes called continuous 
attributes, measure numbers—either real or integer valued. Note that the term con-
tinuous is routinely abused in this context; integer-valued attributes are certainly not 
continuous in the mathematical sense. Nominal attributes take on values in a pre-
specified, finite set of possibilities and are sometimes called categorical. But there 
are other possibilities. Statistics texts often introduce “levels of measurement” such 
as nominal, ordinal, interval, and ratio.

Nominal quantities have values that are distinct symbols. The values themselves 
serve just as labels or names—hence the term nominal, which comes from the Latin 
word for name. For example, in the weather data the attribute outlook has the values 
sunny, overcast, and rainy. No relation is implied among these three—no ordering 
or distance measure. It certainly does not make sense to add the values together, 
multiply them, or even compare their size. A rule using such an attribute can only 
test for equality or inequality, as in

outlook: sunny    → no
	 overcast	 → yes
	 rainy    → yes
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Ordinal quantities are ones that make it possible to rank-order the categories. 
However, although there is a notion of ordering, there is no notion of distance. For 
example, in the weather data the attribute temperature has values hot, mild, and cool. 
These are ordered. Whether you say that

hot mild cool hot mild cool> > < <or

is a matter of convention—it does not matter which is used as long as consistency is 
maintained. What is important is that mild lies between the other two. Although it 
makes sense to compare two values, it does not make sense to add or subtract them—
the difference between hot and mild cannot be compared with the difference between 
mild and cool. A rule using such an attribute might involve a comparison, as in

temperature = hot → no
temperature < hot → yes

Notice that the distinction between nominal and ordinal quantities is not always 
straightforward and obvious. Indeed, the very example of a nominal quantity that 
we used before, outlook, is not completely clear: You might argue that the three 
values do have an ordering—overcast being somehow intermediate between sunny 
and rainy as weather turns from good to bad.

Interval quantities have values that are not only ordered but measured in fixed 
and equal units. A good example is temperature, expressed in degrees (say, degrees 
Fahrenheit) rather than on the nonnumeric scale implied by cool, mild, and hot. It 
makes perfect sense to talk about the difference between two temperatures, say 46 
and 48 degrees, and compare that with the difference between another two tempera-
tures, say 22 and 24 degrees. Another example is dates. You can talk about the 
difference between the years 1939 and 1945 (six years) or even the average of the 
years 1939 and 1945 (1942), but it doesn’t make much sense to consider the sum 
of the years 1939 and 1945 (3884) or three times the year 1939 (5817) because the 
starting point, year 0, is completely arbitrary—indeed, it has changed many times 
throughout the course of history. (Children sometimes wonder what the year 300 
BCE was called in 300 BCE.)

Ratio quantities are ones for which the measurement scheme inherently defines 
a zero point. For example, when measuring the distance from one object to another, 
the distance between the object and itself forms a natural zero. Ratio quantities are 
treated as real numbers: Any mathematical operations are allowed. It certainly does 
make sense to talk about three times the distance and even to multiply one distance 
by another to get an area.

However, the question of whether there is an “inherently” defined zero point 
depends on what our scientific knowledge is—it’s culture relative. For example, 
Daniel Fahrenheit knew no lower limit to temperature, and his scale is an interval 
one. Nowadays, however, we view temperature as a ratio scale based on absolute 
zero. Measurement of time in years since some culturally defined zero, such as 
AD 0, is not a ratio scale; years since the Big Bang are. Even the zero point of 
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money—where we are usually quite happy to say that something cost twice as 
much as something else—may not be quite clearly defined for those who constantly 
max out their credit cards.

Many practical data mining systems accommodate just two of these four levels 
of measurement: nominal and ordinal. Nominal attributes are sometimes called 
categorical, enumerated, or discrete. Enumerated is the standard term used in com-
puter science to denote a categorical data type; however, the strict definition of the 
term—namely, to put into one-to-one correspondence with the natural numbers—
implies an ordering, which is specifically not implied in the machine learning 
context. Discrete also has connotations of ordering because you often discretize a 
continuous numeric quantity. Ordinal attributes are often coded as numeric data, or 
perhaps continuous data, but without the implication of mathematical continuity. A 
special case of the nominal scale is the dichotomy, which has only two members—
often designated as true and false or yes and no in the weather data. Such attributes 
are sometimes called Boolean.

Machine learning systems can use a wide variety of other information about 
attributes. For instance, dimensional considerations could be used to restrict the 
search to expressions or comparisons that are dimensionally correct. Circular order-
ing could affect the kinds of tests that are considered. For example, in a temporal 
context, tests on a day attribute could involve next day, previous day, next weekday, 
or same day next week. Partial orderings—that is, generalization or specialization 
relations—frequently occur in practical situations. Information of this kind is often 
referred to as metadata, data about data. However, the kinds of practical schemes 
used for data mining are rarely capable of taking metadata into account, although it 
is likely that these capabilities will develop in the future.

2.4  PREPARING THE INPUT
Preparing input for a data mining investigation usually consumes the bulk of the 
effort invested in the entire data mining process. While this book is not really about 
the problems of data preparation, we want to give you a feeling for the issues 
involved so that you can appreciate the complexities. Following that, we look at a 
particular input file format, the attribute-relation file format (ARFF), that is used 
in the Weka system described in Part III. Then we consider issues that arise when 
converting datasets to such a format, because there are some simple practical points 
to be aware of. Bitter experience shows that real data is often disappointingly low 
in quality, and careful checking—a process that has become known as data 
cleaning—pays off many times over.

Gathering the Data Together
When beginning work on a data mining problem, it is first necessary to bring all the 
data together into a set of instances. We explained the need to denormalize relational 
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data when describing the family tree example. Although it illustrates the basic issue, 
this self-contained and rather artificial example does not really convey a feeling for 
what the process will be like in practice. In a real business application, it will be 
necessary to bring data together from different departments. For example, in a mar-
keting study data will be needed from the sales department, the customer billing 
department, and the customer service department.

Integrating data from different sources usually presents many challenges—not 
deep issues of principle but nasty realities of practice. Different departments will 
use different styles of recordkeeping, different conventions, different time periods, 
different degrees of data aggregation, and different primary keys, and will have dif-
ferent kinds of error. The data must be assembled, integrated, and cleaned up. The 
idea of companywide database integration is known as data warehousing. Data 
warehouses provide a single consistent point of access to corporate or organizational 
data, transcending departmental divisions. They are the place where old data is 
published in a way that can be used to inform business decisions. The movement 
toward data warehousing is a recognition of the fact that the fragmented information 
that an organization uses to support day-to-day operations at a departmental level 
can have immense strategic value when brought together. Clearly, the presence of a 
data warehouse is a very useful precursor to data mining, and if it is not available, 
many of the steps involved in data warehousing will have to be undertaken to prepare 
the data for mining.

Even a data warehouse may not contain all the necessary data, and you may have 
to reach outside the organization to bring in data relevant to the problem at hand. 
For example, weather data had to be obtained in the load forecasting example in 
Chapter 1, and demographic data is needed for marketing and sales applications. 
Sometimes called overlay data, this is not normally collected by an organization but 
is clearly relevant to the data mining problem. It, too, must be cleaned up and inte-
grated with the other data that has been collected.

Another practical question when assembling the data is the degree of aggregation 
that is appropriate. When a dairy farmer decides which cows to sell off, the milk 
production records, which an automatic milking machine records twice a day, must 
be aggregated. Similarly, raw telephone call data is not much use when telecom-
munications firms study their clients’ behavior—the data must be aggregated to the 
customer level. But do you want usage by month or by quarter, and for how many 
months or quarters back? Selecting the right type and level of aggregation is usually 
critical for success.

Because so many different issues are involved, you can’t expect to get it right 
the first time. This is why data assembly, integration, cleaning, aggregating, and 
general preparation take so long.

ARFF Format
We now look at a standard way of representing datasets, called an ARFF file. We 
describe the regular version, but there is also a version called XRFF, which, as the 



FIGURE 2.2 

ARFF file for the weather data. 

% ARFF file for the weather data with some numeric features 
% 
@relation weather 
 
@attribute outlook { sunny, overcast, rainy } 
@attribute temperature numeric 
@attribute humidity numeric 
@attribute windy { true, false } 
@attribute play? { yes, no } 
 
@data 
% 
% 14 instances 
% 
sunny, 85, 85, false, no 
sunny, 80, 90, true, no 
overcast, 83, 86, false, yes 
rainy, 70, 96, false, yes 
rainy, 68, 80, false, yes 
rainy, 65, 70, true, no 
overcast, 64, 65, true, yes 
sunny, 72, 95, false, no 
sunny, 69, 70, false, yes 
rainy, 75, 80, false, yes 
sunny, 75, 70, true, yes 
overcast, 72, 90, true, yes 
overcast, 81, 75, false, yes 
rainy, 71, 91, true, no 

name suggests, gives ARFF header and instance information in the eXstensible 
Markup Language (XML).

Figure 2.2 shows an ARFF file for the weather data in Table 1.3, the version with 
some numeric features. Lines beginning with a % sign are comments. Following the 
comments at the beginning of the file are the name of the relation (weather) and a 
block defining the attributes (outlook, temperature, humidity, windy, play?). Nominal 
attributes are followed by the set of values they can take on, enclosed in curly braces. 
Values can include spaces; if so, they must be placed within quotation marks. 
Numeric values are followed by the keyword numeric.

Although the weather problem is to predict the class value play? from the values 
of the other attributes, the class attribute is not distinguished in any way in the data 
file. The ARFF format merely gives a dataset; it does not specify which of the attri-
butes is the one that is supposed to be predicted. This means that the same file can 
be used for investigating how well each attribute can be predicted from the others, 
or it can be used to find association rules or for clustering.
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Following the attribute definitions is an @data line that signals the start of the 
instances in the dataset. Instances are written one per line, with values for each 
attribute in turn, separated by commas. If a value is missing, it is represented by a 
single question mark (there are no missing values in this dataset). The attribute 
specifications in ARFF files allow the dataset to be checked to ensure that it contains 
legal values for all attributes, and programs that read ARFF files do this checking 
automatically.

As well as nominal and numeric attributes, exemplified by the weather data, the 
ARFF format has three further attribute types: string attributes, date attributes, and 
relation-valued attributes. String attributes have values that are textual. Suppose you 
have a string attribute that you want to call description. In the block defining the 
attributes it is specified like this:

@attribute description string

Then, in the instance data, include any character string in quotation marks (to include 
quotation marks in your string, use the standard convention of preceding each one 
by a backslash, \). Strings are stored internally in a string table and represented by 
their address in that table. Thus, two strings that contain the same characters will 
have the same value.

String attributes can have values that are very long—even a whole document. 
To be able to use string attributes for text mining, it is necessary to be able to 
manipulate them. For example, a string attribute might be converted into many 
numeric attributes, one for each word in the string, whose value is the number of 
times that word appears. These transformations are described in Section 7.3.

Date attributes are strings with a special format and are introduced like this (for 
an attribute called today):

@attribute today date

Weka uses the ISO-8601 combined date and time format yyyy-MM-dd′ T′HH:mm:ss 
with four digits for the year, two each for the month and day, then the letter T fol-
lowed by the time with two digits for each of hours, minutes, and seconds.1 In the 
data section of the file, dates are specified as the corresponding string representation 
of the date and time—for example, 2004-04-03T12:00:00. Although they are speci-
fied as strings, dates are converted to numeric form when the input file is read. Dates 
can also be converted internally to different formats, so you can have absolute time-
stamps in the data file and use transformations to forms such as time of day or day 
of the week to detect periodic behavior.

Relation-valued attributes differ from the other types because they allow multi-
instance problems to be represented in ARFF format. The value of a relation attribute 
is a separate set of instances. The attribute is defined with a name and the type 

1Weka contains a mechanism for defining a date attribute to have a different format by including a 
special string in the attribute definition.



relational, followed by a nested attribute block that gives the structure of the refer-
enced instances. For example, a relation-valued attribute called bag, with a value 
that is a dataset that has the same structure as the weather data but without the play 
attribute, can be specified like this:

@attribute bag relational
    @attribute outlook { sunny, overcast, rainy }
    @attribute temperature numeric
    @attribute humidity numeric
    @attribute windy { true, false }
@end bag

The @end bag indicates the end of the nested attribute block. Figure 2.3 shows an 
ARFF file for a multi-instance problem based on the weather data. In this case, each 
example is made up of an identifier value, two consecutive instances from the origi-
nal weather data, and a class label.

Each value of the attribute is a string that encapsulates two weather instances 
separated by the \n character (which represents an embedded new line). This might 
be appropriate for a game that lasts two days. A similar dataset might be used for 
games that last for an indeterminate number of days (e.g., first-class cricket takes 
three to five days). Note, however, that in multi-instance learning the order in which 

FIGURE 2.3 

Multi-instance ARFF file for the weather data. 

% Multiple instance ARFF file for the weather data 
% 
@relation weather 
 
@attribute bag_ID { 1, 2, 3, 4, 5, 6, 7 } 
@attribute bag relational 
 @attribute outlook { sunny, overcast, rainy } 
 @attribute temperature numeric 
 @attribute humidity numeric 
 @attribute windy { true, false } 
@end bag 
@attribute play? { yes, no } 
 
@data 
% 
% seven “multiple instance” instances 
% 
1, “sunny, 85, 85, false\nsunny, 80, 90, true”, no 
2, “overcast, 83, 86, false\nrainy, 70, 96, false”, yes 
3, “rainy, 68, 80, false\nrainy, 65, 70, true”, yes 
4, “overcast, 64, 65, true\nsunny, 72, 95, false”, yes 
5, “sunny, 69, 70, false\nrainy, 75, 80, false”, yes 
6, “sunny, 75, 70, true\novercast, 72, 90, true”, yes 
7, “overcast, 81, 75, false\nrainy, 71, 91, true”, yes 
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the instances are given is generally considered unimportant. An algorithm might 
learn that cricket can be played if none of the days are rainy and at least one is sunny, 
but not that it can only be played in a certain sequence of weather events.

Sparse Data
Sometimes most attributes have a value of 0 for most of the instances. For example, 
market basket data records purchases made by supermarket customers. No matter 
how big the shopping expedition, customers never purchase more than a tiny portion 
of the items a store offers. The market basket data contains the quantity of each item 
that the customer purchases, and this is zero for almost all items in stock. The data 
file can be viewed as a matrix, whose rows and columns represent customers and 
stock items, and the matrix is “sparse”—nearly all its elements are zero. Another 
example occurs in text mining, where the instances are documents. Here, the columns 
and rows represent documents and words, and the numbers indicate how many times 
a particular word appears in a particular document. Most documents have a rather 
small vocabulary, so most entries are zero.

It can be impractical to represent each element of a sparse matrix explicitly. 
Instead of representing each value in order, like this:

0, X, 0, 0, 0, 0, Y, 0, 0, 0, “class A”
0, 0, 0, W, 0, 0, 0, 0, 0, 0, “class B”

the nonzero attributes can be explicitly identified by the attribute number and their 
value stated:

{1 X, 6 Y, 10 “class A”}
{3 W, 10 “class B”}

Each instance is enclosed in braces and contains the index number of each nonzero 
attribute (indexes start from 0) and its value. Sparse data files have the same  
@relation and @attribute tags, followed by an @data line, but the data section is 
different and contains specifications in braces such as those shown previously. Note 
that the omitted values have a value of 0—they are not “missing” values! If a value 
is unknown, it must be explicitly represented with a question mark.

Attribute Types
The ARFF format accommodates the two basic data types, nominal and numeric. 
String attributes and date attributes are effectively nominal and numeric, respec-
tively, although before they are used, strings are often converted into a numeric form 
such as a word vector. Relation-valued attributes contain separate sets of instances 
that have basic attributes, such as numeric and nominal ones. How the two basic 
types are interpreted depends on the learning scheme being used. For example, many 
schemes treat numeric attributes as ordinal scales and only use less-than and greater-
than comparisons between the values. However, some treat them as ratio scales and 



use distance calculations. You need to understand how machine learning schemes 
work before using them for data mining.

If a learning scheme treats numeric attributes as though they are measured 
on ratio scales, the question of normalization arises. Attributes are often normal-
ized to lie in a fixed range—usually from 0 to 1—by dividing all of the values 
by the maximum value encountered or by subtracting the minimum value and 
dividing by the range between the maximum and minimum values. Another 
normalization technique is to calculate the statistical mean and the standard 
deviation of the attribute values, then subtract the mean from each value and 
divide the result by the standard deviation. This process is called standardizing 
a statistical variable and results in a set of values whose mean is 0 and the 
standard deviation is 1.

Some learning schemes—for example, instance-based and regression methods—
deal only with ratio scales because they calculate the “distance” between two 
instances based on the values of their attributes. If the actual scale is ordinal, a 
numeric distance function must be defined. One way of doing this is to use a two-
level distance: 1 if the two values are different and 0 if they are the same. Any 
nominal quantity can be treated as numeric by using this distance function. However, 
it is a rather crude technique and conceals the true degree of variation between 
instances. Another possibility is to generate several synthetic binary attributes for 
each nominal attribute: We return to this in Section 6.6 when we look at the use of 
trees for numeric prediction.

Sometimes there is a genuine mapping between nominal quantities and numeric 
scales. For example, postal zip codes indicate areas that could be represented by 
geographical coordinates; the leading digits of telephone numbers may do so too, 
depending on where you live. The first two digits of a student’s identification number 
may be the year in which she first enrolled.

It is very common for practical datasets to contain nominal values that are coded 
as integers. For example, an integer identifier may be used as a code for an attribute 
such as part number, yet such integers are not intended for use in less-than or greater-
than comparisons. If this is the case, it is important to specify that the attribute is 
nominal rather than numeric.

It is quite possible to treat an ordinal quantity as though it were nominal. 
Indeed, some machine learning schemes only deal with nominal elements. For 
example, in the contact lens problem the age attribute is treated as nominal, and 
the rules generated included these:

If age = young and astigmatic = no 
	 and tear production rate = normal
	 then recommendation = soft
If age = pre-presbyopic and astigmatic = no 
	 and tear production rate = normal 
	 then recommendation = soft

But in fact age, specified in this way, is really an ordinal quantity for which the 
following is true:
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young < pre-presbyopic < presbyopic

If it were treated as ordinal, the two rules could be collapsed into one:

If age ≤ pre-presbyopic and astigmatic = no 
	 and tear production rate = normal
	 then recommendation = soft

which is a more compact, and hence more satisfactory, way of saying the same thing.

Missing Values
Most datasets encountered in practice, such as the labor negotiations data in Table 
1.6, contain missing values. Missing values are frequently indicated by out-of-range 
entries; perhaps a negative number (e.g., –1) in a numeric field that is normally only 
positive, or a 0 in a numeric field that can never normally be 0. For nominal attributes, 
missing values may be indicated by blanks or dashes. Sometimes different kinds of 
missing values are distinguished (e.g., unknown versus unrecorded versus irrelevant 
values) and perhaps represented by different negative integers (e.g., –1, –2, etc.).

You have to think carefully about the significance of missing values. They may 
occur for a number of reasons, such as malfunctioning measurement equipment, 
changes in experimental design during data collection, and collation of several 
similar but not identical datasets. Respondents in a survey may refuse to answer 
certain questions such as age or income. In an archaeological study, a specimen such 
as a skull may be damaged so that some variables cannot be measured. In a biologi-
cal study, plants or animals may die before all variables have been measured. What 
do these things mean about the example under consideration? Might the skull 
damage have some significance in itself, or is it just because of some random event? 
Does a plant’s early death have some bearing on the case or not?

Most machine learning schemes make the implicit assumption that there is no 
particular significance in the fact that a certain instance has an attribute value 
missing: The value is simply not known. However, there may be a good reason why 
the attribute’s value is unknown—perhaps a decision was taken, on the evidence 
available, not to perform some particular test—and that might convey some informa-
tion about the instance other than the fact that the value is simply missing. If this is 
the case, then it would be more appropriate to record not tested as another possible 
value for this attribute or perhaps as another attribute in the dataset. As the preceding 
examples illustrate, only someone familiar with the data can make an informed 
judgment about whether a particular value being missing has some extra significance 
or whether it should simply be coded as an ordinary missing value. Of course, if 
there seem to be several types of missing values, that is prima facie evidence that 
something is going on that needs to be investigated.

If missing values mean that an operator has decided not to make a particular 
measurement, that may convey a great deal more than the mere fact that the value 
is unknown. For example, people analyzing medical databases have noticed that 



cases may, in some circumstances, be diagnosable simply from the tests that a doctor 
decides to make regardless of the outcome of the tests. Then a record of which values 
are “missing” is all that is needed for a complete diagnosis—the actual values can 
be ignored completely!

Inaccurate Values
It is important to check data mining files carefully for rogue attributes and attribute 
values. The data used for mining has almost certainly not been gathered expressly 
for that purpose. When originally collected, many of the fields probably didn’t matter 
and were left blank or unchecked. Provided it does not affect the original purpose 
of the data, there is no incentive to correct this situation. However, when the same 
database is used for mining, the errors and omissions suddenly start to assume great 
significance. For example, banks do not really need to know the age of their custom-
ers, so their databases may contain many missing or incorrect values. But age may 
be a very significant feature in mined rules.

Typographic errors in a dataset will obviously lead to incorrect values. Often the 
value of a nominal attribute is misspelled, creating an extra possible value for that 
attribute. Or perhaps it is not a misspelling but different names for the same thing, 
such as Pepsi and Pepsi-Cola. Obviously, the point of a defined format such as ARFF 
is to allow data files to be checked for internal consistency. However, errors that 
occur in the original data file are often preserved through the conversion process 
into the file that is used for data mining; thus, the list of possible values that each 
attribute takes on should be examined carefully.

Typographical or measurement errors in numeric values generally cause outliers 
that can be detected by graphing one variable at a time. Erroneous values often 
deviate significantly from the pattern that is apparent in the remaining values. Some-
times, however, inaccurate values are hard to find, particularly without specialist 
domain knowledge.

Duplicate data presents another source of error. Most machine learning tools will 
produce different results if some of the instances in the data files are duplicated, 
because repetition gives them more influence on the result.

People often make deliberate errors when entering personal data into databases. 
They might make minor changes in the spelling of their street to try to identify 
whether the information they have provided ends up being sold to advertising agen-
cies that burden them with junk mail. They might adjust the spelling of their name 
when applying for insurance if they have had insurance refused in the past. Rigid 
computerized data entry systems often impose restrictions that require imaginative 
workarounds. One story tells of a foreigner renting a vehicle in the United States. 
Being from abroad, he had no zip code, yet the computer insisted on one; in despera-
tion the operator suggested that he use the zip code of the rental agency. If this is 
common practice, future data mining projects may notice a cluster of customers who 
apparently live in the same district as the agency!

Similarly, a supermarket checkout operator sometimes uses his own frequent 
buyer card when the customer does not supply one, either so that the customer can 
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get a discount that would otherwise be unavailable or simply to accumulate credit 
points in the cashier’s account. Only a deep semantic knowledge of what is going 
on will be able to explain systematic data errors like these.

Finally, data goes stale. Many items in a database change as circumstances 
change. For example, items in mailing lists (e.g., names, addresses, telephone 
numbers, etc.) change frequently. You need to consider whether the data you are 
mining is still current.

Getting to Know Your Data
There is no substitute for getting to know your data. Simple tools that show histo-
grams of the distribution of values of nominal attributes, and graphs of the values of 
numeric attributes (perhaps sorted or simply graphed against instance number), are 
very helpful. These graphical visualizations of the data make it easy to identify outli-
ers, which may well represent errors in the data file, or arcane conventions for coding 
unusual situations, such as a missing year as 9999 or a missing weight as –1 kg, that 
no one has thought to tell you about. Domain experts need to be consulted to explain 
anomalies, missing values, the significance of integers that represent categories rather 
than numeric quantities, and so on. Pairwise plots of one attribute against another, 
or each attribute against the class value, can be extremely revealing.

Data cleaning is a time-consuming and labor-intensive procedure, but one that 
is absolutely necessary for successful data mining. With a large dataset, people often 
give up—how can they possibly check it all? Instead, you should sample a few 
instances and examine them carefully. You’ll be surprised at what you find. Time 
looking at your data is always well spent.

2.5  FURTHER READING
Pyle (1999) provides an extensive guide to data preparation for data mining. There 
is also a great deal of current interest in data warehousing and the problems it 
entails. Kimball and Ross (2002) present the best introduction to these that we 
know of. Cabena et  al. (1998) estimate that data preparation accounts for 60% 
of the effort involved in a data mining application, and they write at some length 
about the problems involved.

The area of inductive logic programming, which deals with finite and infinite 
relations, is covered by Bergadano and Gunetti (1996). The different “levels of 
measurement” for attributes were introduced by Stevens (1946) and are described 
in detail in the manuals for statistical packages such as SPSS (Nie et al., 1970).

The multi-instance learning setting in its original, quite specific sense, and the 
drug activity prediction problem that motivated it, was introduced by Dietterich et al. 
(1997). The multilabeled instance problem, mentioned near the beginning of Section 
2.1, is quite a different setting; Read et al. (2009) discuss some approaches for 
tackling it using standard classification algorithms.
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CHAPTER 

3 

Output: Knowledge  
Representation

Most of the techniques in this book produce easily comprehensible descriptions of 
the structural patterns in the data. Before looking at how these techniques work, we 
have to see how structural patterns can be expressed. There are many different ways 
for representing the patterns that can be discovered by machine learning, and each 
one dictates the kind of technique that can be used to infer that output structure from 
data. Once you understand how the output is represented, you have come a long way 
toward understanding how it can be generated.

We saw many examples of data mining in Chapter 1. In these cases the output 
took the form of decision trees and classification rules, which are basic knowledge 
representation styles that many machine learning methods use. Knowledge is really 
too imposing a word for a decision tree or a collection of rules, and by using it we 
don’t mean to imply that these structures vie with the real kind of knowledge that 
we carry in our heads—it’s just that we need some word to refer to the structures 
that learning methods produce. There are more complex varieties of rules that allow 
exceptions to be specified, and ones that can express relations among the values of 
the attributes of different instances. Some problems have a numeric class, and—as 
mentioned in Chapter 1—the classic way of dealing with these is to use linear 
models. Linear models can also be adapted to deal with binary classification. More-
over, special forms of trees can be developed for numeric prediction. Instance-based 
representations focus on the instances themselves rather than rules that govern their 
attribute values. Finally, some learning schemes generate clusters of instances. These 
different knowledge representation methods parallel the different kinds of learning 
problems introduced in Chapter 2.

3.1  TABLES
The simplest, most rudimentary way of representing the output from machine learn-
ing is to make it just the same as the input—a table. For example, Table 1.2 is a 
decision table for the weather data: You just look up the appropriate conditions to 
decide whether or not to play. Exactly the same process can be used for numeric 
prediction too—in this case, the structure is sometimes referred to as a regression 
table. Less trivially, creating a decision or regression table might involve selecting 
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FIGURE 3.1 

A linear regression function for the CPU performance data. 
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some of the attributes. If temperature is irrelevant to the decision, for example, a 
smaller, condensed table with that attribute missing would be a better guide. The 
problem is, of course, to decide which attributes to leave out without affecting the 
final decision.

3.2  LINEAR MODELS
Another simple style of representation is a linear model, the output of which is just 
the sum of the attribute values, except that weights are applied to each attribute 
before adding them together. The trick is to come up with good values for the 
weights—ones that make the model’s output match the desired output. Here, the 
output and the inputs—attribute values—are all numeric. Statisticians use the word 
regression for the process of predicting a numeric quantity, and regression model is 
another term for this kind of linear model. Unfortunately, this does not really relate 
to the ordinary use of the word, which means to return to a previous state.

Linear models are easiest to visualize in two dimensions, where they are tanta-
mount to drawing a straight line through a set of data points. Figure 3.1 shows a 
line fitted to the CPU performance data described in Chapter 1 (Table 1.5), where 
only the cache attribute is used as input. The class attribute performance is shown 
on the vertical axis, with cache on the horizontal axis; both are numeric. The straight 
line represents the “best fit” prediction equation

PRP CACH + +37 06 2 47. .

Given a test instance, a prediction can be produced by plugging the observed 
value of cache into this expression to obtain a value for performance. Here, the 
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FIGURE 3.2 

A linear decision boundary separating Iris setosas from Iris versicolors. 
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expression comprises a constant “bias” term (37.06) and a weight for the cache 
attribute (2.47). Of course, linear models can be extended beyond a single attribute—
the trick is to come up with suitable values for each attribute’s weight, and a bias 
term, that together give a good fit to the training data.

Linear models can also be applied to binary classification problems. In this case, 
the line produced by the model separates the two classes: It defines where the deci-
sion changes from one class value to the other. Such a line is often referred to as 
the decision boundary. Figure 3.2 shows a decision boundary for the iris data that 
separates the Iris setosas from the Iris versicolors. In this case, the data is plotted 
using two of the input attributes—petal length and petal width—and the straight line 
defining the decision boundary is a function of these two attributes. Points lying on 
the line are given by the equation

2 0 0 5 0 8 0. . .− − =  PETAL-LENGTH PETAL-WIDTH

As before, given a test instance, a prediction is produced by plugging the observed 
values of the attributes in question into the expression. But here we check the result 
and predict one class if it is greater than or equal to 0 (in this case, Iris setosa) and 
the other if it is less than 0 (Iris versicolor). Again, the model can be extended to 
multiple attributes, in which case the boundary becomes a high-dimensional plane, 
or “hyperplane,” in the instance space. The task is to find values for the weights so 
that the training data is correctly classified by the hyperplane.

In Figures 3.1 and 3.2, a different fit to the data could be obtained by changing 
the position and orientation of the line—that is, by changing the weights. The 
weights for Figure 3.1 were found by a method called least squares linear regres-
sion; those for Figure 3.2 were found by the perceptron training rule. Both methods 
are described in Chapter 4.
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3.3  TREES
A “divide-and-conquer” approach to the problem of learning from a set of indepen-
dent instances leads naturally to a style of representation called a decision tree. We 
have seen some examples of decision trees, for the contact lens (Figure 1.2) and 
labor negotiations (Figure 1.3) datasets. Nodes in a decision tree involve testing a 
particular attribute. Usually, the test compares an attribute value with a constant. 
Leaf nodes give a classification that applies to all instances that reach the leaf, or a 
set of classifications, or a probability distribution over all possible classifications. 
To classify an unknown instance, it is routed down the tree according to the values 
of the attributes tested in successive nodes, and when a leaf is reached the instance 
is classified according to the class assigned to the leaf.

If the attribute that is tested at a node is a nominal one, the number of children 
is usually the number of possible values of the attribute. In this case, because there 
is one branch for each possible value, the same attribute will not be retested further 
down the tree. Sometimes the attribute values are divided into two subsets, and the 
tree branches just two ways depending on which subset the value lies in; in that 
case, the attribute might be tested more than once in a path.

If the attribute is numeric, the test at a node usually determines whether its value 
is greater or less than a predetermined constant, giving a two-way split. Alternatively, 
a three-way split may be used, in which case there are several different possibilities. 
If missing value is treated as an attribute value in its own right, that will create a 
third branch. An alternative for an integer-valued attribute would be a three-way 
split into less than, equal to, and greater than. An alternative for a real-valued attri-
bute, for which equal to is not such a meaningful option, would be to test against 
an interval rather than a single constant, again giving a three-way split: below, 
within, and above. A numeric attribute is often tested several times in any given path 
down the tree from root to leaf, each test involving a different constant. We return 
to this when describing the handling of numeric attributes in Section 6.1.

Missing values pose an obvious problem: It is not clear which branch should 
be taken when a node tests an attribute whose value is missing. Sometimes, as 
described in Section 2.4, missing value is treated as an attribute value in its own 
right. If this is not the case, missing values should be treated in a special way rather 
than being considered as just another possible value that the attribute might take. 
A simple solution is to record the number of elements in the training set that go 
down each branch and to use the most popular branch if the value for a test instance 
is missing.

A more sophisticated solution is to notionally split the instance into pieces and 
send part of it down each branch, and from there right down to the leaves of the 
subtrees involved. The split is accomplished using a numeric weight between 0 and 
1, and the weight for a branch is chosen to be proportional to the number of training 
instances going down that branch, all weights summing to 1. A weighted instance 
may be further split at a lower node. Eventually, the various parts of the instance 
will each reach a leaf node, and the decisions at these leaf nodes must be recombined 
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using the weights that have percolated down to the leaves. We return to this in 
Section 6.1.

So far we’ve described decision trees that divide the data at a node by comparing 
the value of some attribute with a constant. This is the most common approach. If 
you visualize this with two input attributes in two dimensions, comparing the value 
of one attribute with a constant splits the data parallel to that axis. However, there 
are other possibilities. Some trees compare two attributes with one another, while 
others compute some function of several attributes. For example, using a hyperplane 
as described in the previous section results in an oblique split that is not parallel to 
an axis. A functional tree can have oblique splits as well as linear models at the leaf 
nodes, which are used for prediction. It is also possible for some nodes in the tree 
to specify alternative splits on different attributes, as though the tree designer 
couldn’t make up his or her mind which one to choose. This might be useful if the 
attributes seem to be equally useful for classifying the data. Such nodes are called 
option nodes, and when classifying an unknown instance, all branches leading from 
an option node are followed. This means that the instance will end up in more than 
one leaf, giving various alternative predictions, which are then combined in some 
fashion—for example, using majority voting.

It is instructive and can even be entertaining to manually build a decision tree 
for a dataset. To do so effectively, you need a good way of visualizing the data so 
that you can decide which are likely to be the best attributes to test and what an 
appropriate test might be. The Weka Explorer, described in Part III, has a User Clas-
sifier facility that allows users to construct a decision tree interactively. It presents 
you with a scatter plot of the data against two selected attributes, which you choose. 
When you find a pair of attributes that discriminates the classes well, you can create 
a two-way split by drawing a polygon around the appropriate data points on the 
scatter plot.

For example, in Figure 3.3(a) the user is operating on a dataset with three 
classes, the iris dataset, and has found two attributes, petallength and petalwidth, 
that do a good job of splitting up the classes. A rectangle has been drawn manu-
ally to separate out one of the classes (Iris versicolor). Then the user switches to 
the decision tree view in Figure 3.3(b) to see the tree so far. The left leaf node 
contains predominantly irises of one type (Iris versicolor, contaminated by only 
two virginicas); the right one contains predominantly two types (Iris setosa and 
virginica, contaminated by only two versicolors). The user will probably select 
the right leaf and work on it next, splitting it further with another rectangle—
perhaps based on a different pair of attributes (although, from Figure 3.3(a), these 
two look pretty good).

Section 11.2 explains how to use Weka’s User Classifier facility. Most people 
enjoy making the first few decisions but rapidly lose interest thereafter, and one very 
useful option is to select a machine learning scheme and let it take over at any point 
in the decision tree. Manual construction of decision trees is a good way to get a 
feel for the tedious business of evaluating different combinations of attributes to 
split on.
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FIGURE 3.3 

Constructing a decision tree interactively: (a) creating a rectangular test involving 
petallength and petalwidth, and (b) the resulting (unfinished) decision tree. 

(a)

(b)



	 3.4  Rules� 67

The kind of decision trees we’ve been looking at are designed for predicting 
categories rather than numeric quantities. When it comes to predicting numeric 
quantities, as with the CPU performance data in Table 1.5, the same kind of tree can 
be used, but each leaf would contain a numeric value that is the average of all the 
training set values to which the leaf applies. Because a numeric quantity is what is 
predicted, decision trees with averaged numeric values at the leaves are called 
regression trees.

Figure 3.4(a) shows a regression equation for the CPU performance data, and 
Figure 3.4(b) shows a regression tree. The leaves of the tree are numbers that rep-
resent the average outcome for instances that reach the leaf. The tree is much larger 
and more complex than the regression equation, and if we calculate the average of 
the absolute values of the errors between the predicted and actual CPU performance 
measures, it turns out to be significantly less for the tree than for the regression 
equation. The regression tree is more accurate because a simple linear model poorly 
represents the data in this problem. However, the tree is cumbersome and difficult 
to interpret because of its large size.

It is possible to combine regression equations with regression trees. Figure 3.4(c) 
is a tree whose leaves contain linear expressions—that is, regression equations—
rather than single predicted values. This is called a model tree. Figure 3.4(c) contains 
the six linear models that belong at the six leaves, labeled LM1 through LM6. The 
model tree approximates continuous functions by linear “patches,” a more sophisti-
cated representation than either linear regression or regression trees. Although the 
model tree is smaller and more comprehensible than the regression tree, the average 
error values on the training data are lower. (However, we will see in Chapter 5 that 
calculating the average error on the training set is not in general a good way of 
assessing the performance of models.)

3.4  RULES
Rules are a popular alternative to decision trees, and we have already seen examples 
in Section 1.2 for the weather (page 9), the contact lens (page 12), the iris (page 
13), and the soybean (page 19) datasets. The antecedent, or precondition, of a 
rule is a series of tests just like the tests at nodes in decision trees, while the 
consequent, or conclusion, gives the class or classes that apply to instances covered 
by that rule, or perhaps gives a probability distribution over the classes. Gener-
ally, the preconditions are logically ANDed together, and all the tests must succeed 
if the rule is to fire. However, in some rule formulations the preconditions are 
general logical expressions rather than simple conjunctions. We often think of the 
individual rules as being effectively logically ORed together: If any one applies, 
the class (or probability distribution) given in its conclusion is applied to the 
instance. However, conflicts arise when several rules with different conclusions 
apply; we return to this shortly.
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FIGURE 3.4 

Models for the CPU performance data: (a) linear regression, (b) regression tree, and  
(c) model tree. 
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FIGURE 3.5 

Decision tree for a simple disjunction. 
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Classification Rules
It is easy to read a set of classification rules directly off a decision tree. One rule is 
generated for each leaf. The antecedent of the rule includes a condition for every 
node on the path from the root to that leaf, and the consequent of the rule is the class 
assigned by the leaf. This procedure produces rules that are unambiguous in that the 
order in which they are executed is irrelevant. However, in general, rules that are 
read directly off a decision tree are far more complex than necessary, and rules 
derived from trees are usually pruned to remove redundant tests.

Because decision trees cannot easily express the disjunction implied among the 
different rules in a set, transforming a general set of rules into a tree is not quite so 
straightforward. A good illustration of this occurs when the rules have the same 
structure but different attributes, like

If a and b then x
If c and d then x

Then it is necessary to break the symmetry and choose a single test for the root node. 
If, for example, a is chosen, the second rule must, in effect, be repeated twice in the 
tree, as shown in Figure 3.5. This is known as the replicated subtree problem.
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FIGURE 3.6 

The exclusive-or problem. 
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The replicated subtree problem is sufficiently important that it is worth looking 
at a couple more examples. The left diagram of Figure 3.6 shows an exclusive-or 
function for which the output is a if x = 1 or y = 1 but not both. To make this into 
a tree, you have to split on one attribute first, leading to a structure like the one 
shown in the center. In contrast, rules can faithfully reflect the true symmetry of the 
problem with respect to the attributes, as shown on the right.

In this example the rules are not notably more compact than the tree. In fact, 
they are just what you would get by reading rules off the tree in the obvious way. 
But in other situations, rules are much more compact than trees, particularly if it 
is possible to have a “default” rule that covers cases not specified by the other 
rules. For example, to capture the effect of the rules in Figure 3.7—in which there 
are four attributes, x, y, z, and w, which can each be 1, 2, or 3—requires the tree 
shown on the right. Each of the three small gray triangles to the upper right should 
actually contain the whole three-level subtree that is displayed in gray, a rather 
extreme example of the replicated subtree problem. This is a distressingly complex 
description of a rather simple concept.

One reason why rules are popular is that each rule seems to represent an inde-
pendent “nugget” of knowledge. New rules can be added to an existing rule set 
without disturbing ones already there, whereas to add to a tree structure may require 
reshaping the whole tree. However, this independence is something of an illusion 
because it ignores the question of how the rule set is executed. We explained previ-
ously the fact that if rules are meant to be interpreted in order as a “decision list,” 
some of them, taken individually and out of context, may be incorrect. On the other 
hand, if the order of interpretation is supposed to be immaterial, then it is not clear 
what to do when different rules lead to different conclusions for the same instance. 
This situation cannot arise for rules that are read directly off a decision tree because 
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FIGURE 3.7 

Decision tree with a replicated subtree. 
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the redundancy included in the structure of the rules prevents any ambiguity in 
interpretation. But it does arise when rules are generated in other ways.

If a rule set gives multiple classifications for a particular example, one solution 
is to give no conclusion at all. Another is to count how often each rule fires on the 
training data and go with the most popular one. These strategies can lead to radically 
different results. A different problem occurs when an instance is encountered that 
the rules fail to classify at all. Again, this cannot occur with decision trees, or with 
rules read directly off them, but it can easily happen with general rule sets. One way 
of dealing with this situation is to decide not to classify such an example; another 
is to choose the most frequently occurring class as a default. Again, radically differ-
ent results may be obtained for these strategies. Individual rules are simple, and sets 
of rules seem deceptively simple—but given just a set of rules with no additional 
information, it is not clear how it should be interpreted.

A particularly straightforward situation occurs when rules lead to a class that is 
Boolean (say, yes and no), and when only rules leading to one outcome (say, yes) 
are expressed. The assumption is that if a particular instance is not in class yes, then 
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it must be in class no—a form of closed-world assumption. If this is the case, rules 
cannot conflict and there is no ambiguity in rule interpretation: Any interpretation 
strategy will give the same result. Such a set of rules can be written as a logic 
expression in what is called disjunctive normal form: that is, as a disjunction (OR) 
of conjunctive (AND) conditions.

It is this simple special case that seduces people into assuming that rules are very 
easy to deal with, for here each rule really does operate as a new, independent piece 
of information that contributes in a straightforward way to the disjunction. Unfor-
tunately, it only applies to Boolean outcomes and requires the closed-world assump-
tion, and both these constraints are unrealistic in most practical situations. Machine 
learning algorithms that generate rules invariably produce ordered rule sets in multi
class situations, and this sacrifices any possibility of modularity because the order 
of execution is critical.

Association Rules
Association rules are no different from classification rules except that they can 
predict any attribute, not just the class, and this gives them the freedom to predict 
combinations of attributes too. Also, association rules are not intended to be used 
together as a set, as classification rules are. Different association rules express dif-
ferent regularities that underlie the dataset, and they generally predict different 
things.

Because so many different association rules can be derived from even a very 
small dataset, interest is restricted to those that apply to a reasonably large number 
of instances and have a reasonably high accuracy on the instances to which they 
apply. The coverage of an association rule is the number of instances for which it 
predicts correctly—this is often called its support. Its accuracy—often called 
confidence—is the number of instances that it predicts correctly, expressed as a 
proportion of all instances to which it applies. For example, with the rule

If temperature = cool then humidity = normal

the coverage is the number of days that are both cool and have normal humidity (4 
in the data of Table 1.2), and the accuracy is the proportion of cool days that have 
normal humidity (100% in this case).

It is usual to specify minimum coverage and accuracy values, and to seek only 
those rules for which coverage and accuracy are both at least these specified minima. 
In the weather data, for example, there are 58 rules with coverage and accuracy that 
are at least 2 and 95%, respectively. (It may also be convenient to specify coverage 
as a percentage of the total number of instances instead.)

Association rules that predict multiple consequences must be interpreted rather 
carefully. For example, with the weather data in Table 1.2 we saw this rule:

If windy = false and play = no then outlook = sunny
	 and humidity = high



	 3.4  Rules� 73

Table 3.1  New Iris Flower

Sepal Length Sepal Width Petal Length Petal Width Type

5.1 3.5 2.6 0.2 ?

This is not just a shorthand expression for the two separate rules

If windy = false and play = no then outlook = sunny
If windy = false and play = no then humidity = high

It does indeed imply that these two rules exceed the minimum coverage and accuracy 
figures—but it also implies more. The original rule means that the number of 
examples that are nonwindy, nonplaying, with sunny outlook and high humidity, is 
at least as great as the specified minimum coverage figure. It also means that the 
number of such days, expressed as a proportion of nonwindy, nonplaying days, is 
at least the specified minimum accuracy figure. This implies that the rule

If humidity = high and windy = false and play = no then outlook = sunny

also holds, because it has the same coverage as the original rule, and its accuracy 
must be at least as high as the original rule’s because the number of high-humidity, 
nonwindy, nonplaying days is necessarily less than that of nonwindy, nonplaying 
days—which makes the accuracy greater.

As we have seen, there are relationships between particular association rules: 
Some rules imply others. To reduce the number of rules that are produced, in cases 
where several rules are related it makes sense to present only the strongest one to 
the user. In the previous example, only the first rule should be printed.

Rules with Exceptions
Returning to classification rules, a natural extension is to allow them to have excep-
tions. Then incremental modifications can be made to a rule set by expressing 
exceptions to existing rules rather than reengineering the entire set. For example, 
consider the iris problem described earlier. Suppose a new flower was found with 
the dimensions given in Table 3.1, and an expert declared it to be an instance of Iris 
setosa. If this flower was classified by the rules given in Chapter 1 (see page 14) for 
this problem, it would be misclassified by two of them:

If petal-length ≥ 2.45 and petal-length < 4.45 then Iris-versicolor
If petal-length ≥ 2.45 and petal-length < 4.95 and 

petal-width < 1.55 then Iris-versicolor

These rules require modification so that the new instance can be treated correctly. 
However, simply changing the bounds for the attribute–value tests in these rules 
may not suffice because the instances used to create the rule set may then be mis-
classified. Fixing up a rule set is not as simple as it sounds.
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FIGURE 3.8 

Rules for the iris data. 

Default: Iris-setosa 1 
except if petal-length >= 2  553.5 < htgnel-latep dna 54.2

3 57.1 < htdiw-latep dna          
4 rolocisrev-sirI neht       

            except if petal-length >=  4.95 and petal-width < 1.55 5 
6 acinigriv-sirI neht                   

                   else if sepal-length < 4.95 and sepal-width >=  2.45 7 
8 acinigriv-sirI neht                        

       else if petal-length >= 9 53.3 
01 acinigriv-sirI neht            

                 except if petal-length < 4.85 and sepal-length < 5.95 11 
21 rolocisrev-sirI neht                        

Instead of changing the tests in the existing rules, an expert might be consulted 
to explain why the new flower violates them, giving explanations that could be used 
to extend the relevant rules only. For example, the first of these two rules misclas-
sifies the new Iris setosa as an instance of the genus Iris versicolor. Instead of 
altering the bounds on any of the inequalities in the rule, an exception can be made 
based on some other attribute:

If petal-length ≥ 2.45 and petal-length < 4.45 
then Iris-versicolor

  EXCEPT if petal-width < 1.0 then Iris-setosa

This rule says that a flower is Iris versicolor if its petal length is between 2.45 cm 
and 4.45 cm except when its petal width is less than 1.0 cm, in which case it is Iris 
setosa.

Of course, we might have exceptions to the exceptions, exceptions to these, and 
so on, giving the rule set something of the character of a tree. As well as being used 
to make incremental changes to existing rule sets, rules with exceptions can be used 
to represent the entire concept description in the first place.

Figure 3.8 shows a set of rules that correctly classify all examples in the iris 
dataset given in Chapter 1. These rules are quite difficult to comprehend at first. 
Let’s follow them through. A default outcome has been chosen, Iris setosa, and is 
shown in the first line. For this dataset, the choice of default is rather arbitrary 
because there are 50 examples of each type. Normally, the most frequent outcome 
is chosen as the default.

Subsequent rules give exceptions to this default. The first if … then, on lines 2 
through 4, gives a condition that leads to the classification Iris versicolor. However, 
there are two exceptions to this rule (lines 5–8), which we will deal with in a 
moment. If the conditions on lines 2 and 3 fail, the else clause on line 9 is reached, 
which essentially specifies a second exception to the original default. If the condition 
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on line 9 holds, the classification is Iris virginica (line 10). Again, there is an excep-
tion to this rule (on lines 11 and 12).

Now return to the exception on lines 5 through 8. This overrides the Iris versi-
color conclusion on line 4 if either of the tests on lines 5 and 7 holds. As it happens, 
these two exceptions both lead to the same conclusion, Iris virginica (lines 6 and 
8). The final exception is the one on lines 11 and 12, which overrides the Iris virgi-
nica conclusion on line 10 when the condition on line 11 is met, and leads to the 
classification Iris versicolor.

You will probably need to ponder these rules for some minutes before it becomes 
clear how they are intended to be read. Although it takes some time to get used to 
reading them, sorting out the excepts and if … then … elses becomes easier with 
familiarity. People often think of real problems in terms of rules, exceptions, and 
exceptions to the exceptions, so it is often a good way to express a complex rule set. 
But the main point in favor of this way of representing rules is that it scales up well. 
Although the whole rule set is a little hard to comprehend, each individual conclusion, 
each individual then statement, can be considered just in the context of the rules and 
exceptions that lead to it, whereas with decision lists, all prior rules need to be 
reviewed to determine the precise effect of an individual rule. This locality property 
is crucial when trying to understand large rule sets. Psychologically, people familiar 
with the data think of a particular set of cases, or kind of case, when looking at any 
one conclusion in the exception structure, and when one of these cases turns out to 
be an exception to the conclusion, it is easy to add an except clause to cater for it.

It is worth pointing out that the default … except if … then structure is logically 
equivalent to an if … then … else, where the else is unconditional and specifies exactly 
what the default did. An unconditional else is, of course, a default. (Note that there 
are no unconditional elses in the preceding rules.) Logically, the exception-based 
rules can be very simply rewritten in terms of regular if … then … else clauses. What 
is gained by the formulation in terms of exceptions is not logical but psychological. 
We assume that the defaults and the tests that occur early on apply more widely than 
the exceptions further down. If this is indeed true for the domain, and the user can 
see that it is plausible, the expression in terms of (common) rules and (rare) excep-
tions will be easier to grasp than a different, but logically equivalent, structure.

More Expressive Rules
We have assumed implicitly that the conditions in rules involve testing an attribute 
value against a constant. But this may not be ideal. Suppose, to take a concrete 
example, we have the set of eight building blocks of the various shapes and sizes 
illustrated in Figure 3.9, and we wish to learn the concept of standing up. This is a 
classic two-class problem with classes standing and lying. The four shaded blocks 
are positive (standing) examples of the concept, and the unshaded blocks are nega-
tive (lying) examples. The only information the learning algorithm will be given is 
the width, height, and number of sides of each block. The training data is shown in 
Table 3.2.
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FIGURE 3.9 

The shapes problem: shaded = standing; unshaded = lying. 

Table 3.2  Training Data for the Shapes Problem

Width Height Sides Class

2 4 4 standing
3 6 4 standing
4 3 4 lying
7 8 3 standing
7 6 3 lying
2 9 4 standing
9 1 4 lying
10 2 3 lying

A conventional rule set that might be produced for this data is

if width ≥ 3.5 and height < 7.0 then lying
if height ≥ 3.5 then standing

In case you’re wondering, 3.5 is chosen as the breakpoint for width because it is 
halfway between the width of the thinnest lying block, namely 4, and the width of 
the fattest standing block whose height is less than 7, namely 3. Also, 7.0 is chosen 
as the breakpoint for height because it is halfway between the height of the tallest 
lying block, namely 6, and the shortest standing block whose width is greater than 
3.5, namely 8. It is common to place numeric thresholds halfway between the values 
that delimit the boundaries of a concept.
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Although these two rules work well on the examples given, they are not very 
good. Many new blocks would not be classified by either rule (e.g., one with width 
1 and height 2), and it is easy to devise many legitimate blocks that the rules would 
not fit.

A person classifying the eight blocks would probably notice that “standing blocks 
are those that are taller than they are wide.” This rule does not compare attribute 
values with constants; it compares attributes with one another:

if width > height then lying
if height > width then standing

The actual values of the height and width attributes are not important, just the result 
of comparing the two.

Many machine learning schemes do not consider relations between attributes 
because there is a considerable cost in doing so. One way of rectifying this is to add 
extra, secondary attributes that say whether two primary attributes are equal or not, 
or give the difference between them if they are numeric. For example, we might add 
a binary attribute is width < height? to Table 3.2. Such attributes are often added as 
part of the data engineering process.

With a seemingly rather small further enhancement, the expressive power of the 
knowledge representation can be extended greatly. The trick is to express rules in a 
way that makes the role of the instance explicit:

if width(block) > height(block) then lying(block)
if height(block) > width(block) then standing(block)

Although this may not seem like much of an extension, it is if instances can be 
decomposed into parts. For example, if a tower is a pile of blocks, one on top of the 
other, the fact that the topmost block of the tower is standing can be expressed by

if height(tower.top) > width(tower.top) then standing(tower.top)

Here, tower.top is used to refer to the topmost block. So far, nothing has been 
gained. But if tower.rest refers to the rest of the tower, then the fact that the tower 
is composed entirely of standing blocks can be expressed by the rules

if height(tower.top) > width(tower.top) and standing(tower.rest)
  then standing(tower)

The apparently minor addition of the condition standing(tower.rest) is a recursive 
expression that will turn out to be true only if the rest of the tower is composed of 
standing blocks. That will be tested by a recursive application of the same rule. Of 
course, it is necessary to ensure that the recursion “bottoms out” properly by adding 
a further rule, such as

if tower=empty then standing(tower.top)

Sets of rules like this are called logic programs, and this area of machine learning 
is called inductive logic programming. We will not be treating it further in this book.
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3.5  INSTANCE-BASED REPRESENTATION
The simplest form of learning is plain memorization, or rote learning. Once a set of 
training instances has been memorized, on encountering a new instance the memory 
is searched for the training instance that most strongly resembles the new one. The 
only problem is how to interpret “resembles”—we will explain that shortly. First, 
however, note that this is a completely different way of representing the “knowl-
edge” extracted from a set of instances: Just store the instances themselves and 
operate by relating new instances whose class is unknown to existing ones whose 
class is known. Instead of trying to create rules, work directly from the examples 
themselves. This is known as instance-based learning. In a sense, all the other learn-
ing methods are instance-based too, because we always start with a set of instances 
as the initial training information. But the instance-based knowledge representation 
uses the instances themselves to represent what is learned, rather than inferring a 
rule set or decision tree and storing it instead.

In instance-based learning, all the real work is done when the time comes to 
classify a new instance rather than when the training set is processed. In a sense, 
then, the difference between this method and the others that we have seen is the 
time at which the “learning” takes place. Instance-based learning is lazy, deferring 
the real work as long as possible, whereas other methods are eager, producing a 
generalization as soon as the data has been seen. In instance-based classification, 
each new instance is compared with existing ones using a distance metric, and the 
closest existing instance is used to assign the class to the new one. This is called 
the nearest-neighbor classification method. Sometimes more than one nearest neigh-
bor is used, and the majority class of the closest k neighbors (or the distance-
weighted average if the class is numeric) is assigned to the new instance. This is 
termed the k-nearest-neighbor method.

Computing the distance between two examples is trivial when examples have 
just one numeric attribute: It is just the difference between the two attribute values. 
It is almost as straightforward when there are several numeric attributes: Generally, 
the standard Euclidean distance is used. However, this assumes that the attributes 
are normalized and are of equal importance, and one of the main problems in learn-
ing is to determine which are the important features.

When nominal attributes are present, it is necessary to come up with a “distance” 
between different values of that attribute. What are the distances between, say, the 
values red, green, and blue? Usually, a distance of zero is assigned if the values are 
identical; otherwise, the distance is one. Thus, the distance between red and red is 
zero but the distance between red and green is one. However, it may be desirable 
to use a more sophisticated representation of the attributes. For example, with more 
colors one could use a numeric measure of hue in color space, making yellow closer 
to orange than it is to green and ocher closer still.

Some attributes will be more important than others, and this is usually reflected 
in the distance metric by some kind of attribute weighting. Deriving suitable attri-
bute weights from the training set is a key problem in instance-based learning.



	 3.5  Instance-Based Representation� 79

It may not be necessary, or desirable, to store all the training instances. For one 
thing, this may make the nearest-neighbor calculation unbearably slow. For another, 
it may consume unrealistic amounts of storage. Generally, some regions of attribute 
space are more stable than others with regard to class, and just a few exemplars are 
needed inside stable regions. For example, you might expect the required density of 
exemplars that lie well inside class boundaries to be much less than the density that 
is needed near class boundaries. Deciding which instances to save and which to 
discard is another key problem in instance-based learning.

An apparent drawback to instance-based representations is that they do not make 
explicit the structures that are learned. In a sense, this violates the notion of learning 
that we presented at the beginning of this book; instances do not really “describe” 
the patterns in data. However, the instances combine with the distance metric to 
carve out boundaries in instance space that distinguish one class from another, and 
this is a kind of explicit representation of knowledge. For example, given a single 
instance of each of two classes, the nearest-neighbor rule effectively splits the 
instance space along the perpendicular bisector of the line joining the instances. 
Given several instances of each class, the space is divided by a set of lines that 
represent the perpendicular bisectors of selected lines joining an instance of one 
class to one of another class. Figure 3.10(a) illustrates a nine-sided polygon that 
separates the filled-circle class from the open-circle class. This polygon is implicit 
in the operation of the nearest-neighbor rule.

When training instances are discarded, the result is to save just a few critical 
examples of each class. Figure 3.10(b) shows only the examples that actually get 
used in nearest-neighbor decisions: The others (the light-gray ones) can be discarded 
without affecting the result. These examples serve as a kind of explicit knowledge 
representation.

Some instance-based representations go further and explicitly generalize the 
instances. Typically, this is accomplished by creating rectangular regions that enclose 
examples of the same class. Figure 3.10(c) shows the rectangular regions that might 
be produced. Unknown examples that fall within one of the rectangles will be 
assigned the corresponding class; ones that fall outside all rectangles will be subject 
to the usual nearest-neighbor rule. Of course, this produces different decision bound-
aries from the straightforward nearest-neighbor rule, as can be seen by superimposing 
the polygon in Figure 3.10(a) onto the rectangles. Any part of the polygon that lies 
within a rectangle will be chopped off and replaced by the rectangle’s boundary.

Rectangular generalizations in instance space are just like rules with a special 
form of condition, one that tests a numeric variable against an upper and lower bound 
and selects the region in between. Different dimensions of the rectangle correspond 
to tests on different attributes being ANDed together. Choosing snug-fitting rectan-
gular regions as tests leads to more conservative rules than those generally produced 
by rule-based machine learning schemes, because for each boundary of the region, 
there is an actual instance that lies on (or just inside) that boundary. Tests such as  
x < a (where x is an attribute value and a is a constant) encompass an entire 
half-space—they apply no matter how small x is as long as it is less than a.
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FIGURE 3.10 

Different ways of partitioning the instance space. 

(a) (b)

(c) (d)

When doing rectangular generalization in instance space you can afford to be 
conservative, because if a new example is encountered that lies outside all regions, 
you can fall back on the nearest-neighbor metric. With rule-based methods the 
example cannot be classified, or receives just a default classification, if no rules 
apply to it. The advantage of more conservative rules is that, although incomplete, 
they may be more perspicuous than a complete set of rules that covers all cases. 
Finally, ensuring that the regions do not overlap is tantamount to ensuring that at 
most one rule can apply to an example, eliminating another of the difficulties of 
rule-based systems—what to do when several rules apply.

A more complex kind of generalization is to permit rectangular regions to nest 
one within another. Then a region that is basically all one class can contain an 
inner region with a different class, as illustrated in Figure 3.10(d). It is possible 
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to allow nesting within nesting so that the inner region can itself contain its own 
inner region of a different class—perhaps the original class of the outer region. 
This is analogous to allowing rules to have exceptions and exceptions to the 
exceptions, as in Section 3.4.

It is worth pointing out a slight danger to the technique of visualizing instance-
based learning in terms of boundaries in example space: It makes the implicit 
assumption that attributes are numeric rather than nominal. If the various values 
that a nominal attribute can take on were laid out along a line, generalizations 
involving a segment of that line would make no sense: Each test involves either 
one value for the attribute or all values for it (or perhaps an arbitrary subset of 
values). Although you can more or less easily imagine extending the examples in 
Figure 3.10 to several dimensions, it is much harder to imagine how rules involving 
nominal attributes will look in multidimensional instance space. Many machine 
learning situations involve numerous attributes, and our intuitions tend to lead us 
astray when extended to high-dimensional spaces.

3.6  CLUSTERS
When a cluster rather than a classifier is learned, the output takes the form of a 
diagram that shows how the instances fall into clusters. In the simplest case this 
involves associating a cluster number with each instance, which might be depicted 
by laying the instances out in two dimensions and partitioning the space to show 
each cluster, as illustrated in Figure 3.11(a).

Some clustering algorithms allow one instance to belong to more than one 
cluster, so the diagram might lay the instances out in two dimensions and draw 
overlapping subsets representing each cluster—a Venn diagram, as in Figure 3.11(b). 
Some algorithms associate instances with clusters probabilistically rather than cat-
egorically. In this case, for every instance there is a probability or degree of mem-
bership with which it belongs to each of the clusters. This is shown in Figure 3.11(c). 
This particular association is meant to be a probabilistic one, so the numbers for 
each example sum to 1—although that is not always the case.

Other algorithms produce a hierarchical structure of clusters so that at the top 
level the instance space divides into just a few clusters, each of which divides into 
its own subcluster at the next level down, and so on. In this case a diagram such as 
the one in Figure 3.11(d) is used, in which elements joined together at lower levels 
are more tightly clustered than ones joined together at higher levels. Such diagrams 
are called dendrograms. This term means just the same thing as tree diagrams (the 
Greek word dendron means “tree”), but in clustering the more exotic version seems 
to be preferred—perhaps because biological species are a prime application area for 
clustering techniques, and ancient languages are often used for naming in biology.

Clustering is often followed by a stage in which a decision tree or rule set is 
inferred that allocates each instance to the cluster in which it belongs. Then, the 
clustering operation is just one step on the way to a structural description.
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FIGURE 3.11 

Different ways of representing clusters. 
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3.7  FURTHER READING
Knowledge representation is a key topic in classical artificial intelligence and 
early work on it is well represented by a comprehensive series of papers edited 
by Brachman and Levesque (1985). The area of inductive logic programming and 
associated topics are covered in detail by de Raedt’s book, Logical and relational 
learning (2008).

We mentioned the problem of dealing with conflict among different rules. Various 
ways of doing this, called conflict resolution strategies, have been developed for use 
with rule-based programming systems. These are described in books on rule-based 
programming such as Brownstown et al. (1985). Again, however, they are designed 
for use with handcrafted rule sets rather than ones that have been learned. The use 
of handcrafted rules with exceptions for a large dataset has been studied by Gaines 
and Compton (1995), and Richards and Compton (1998) describe their role as an 
alternative to classic knowledge engineering.

Further information on the various styles of concept representation can be 
found in the papers that describe machine learning methods for inferring concepts 
from examples, and these are covered in Section 4.10, Further Reading, and the 
Discussion sections of Chapter 6.
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Algorithms: The Basic  
Methods

CHAPTER 

4 

Now that we’ve seen how the inputs and outputs can be represented, it’s time to 
look at the learning algorithms themselves. This chapter explains the basic ideas 
behind the techniques that are used in practical data mining. We will not delve too 
deeply into the trickier issues—advanced versions of the algorithms, optimizations 
that are possible, complications that arise in practice. These topics are deferred to 
Chapter 6, where we come to grips with real implementations of machine learning 
schemes such as the ones included in data mining toolkits and used for real-world 
applications. It is important to understand these more advanced issues so that you 
know what is really going on when you analyze a particular dataset.

In this chapter we look at the basic ideas. One of the most instructive lessons is 
that simple ideas often work very well, and we strongly recommend the adoption of 
a “simplicity-first” methodology when analyzing practical datasets. There are many 
different kinds of simple structure that datasets can exhibit. In one dataset, there 
might be a single attribute that does all the work and the others are irrelevant or 
redundant. In another dataset, the attributes might contribute independently and 
equally to the final outcome. A third might have a simple logical structure, involving 
just a few attributes, which can be captured by a decision tree. In a fourth, there may 
be a few independent rules that govern the assignment of instances to different 
classes. A fifth might exhibit dependencies among different subsets of attributes. A 
sixth might involve linear dependence among numeric attributes, where what matters 
is a weighted sum of attribute values with appropriately chosen weights. In a seventh, 
classifications appropriate to particular regions of instance space might be governed 
by the distances between the instances themselves. And in an eighth, it might be that 
no class values are provided: The learning is unsupervised.

In the infinite variety of possible datasets there are many different kinds of 
structures that can occur, and a data mining tool—no matter how capable—that is 
looking for one class of structure may completely miss regularities of a different 
kind, regardless of how rudimentary those may be. The result is a baroque and 
opaque classification structure of one kind instead of a simple, elegant, immediately 
comprehensible structure of another.

Each of the eight examples of different kinds of datasets just sketched leads to 
a different machine learning scheme that is well suited to discovering the underlying 
concept. The sections of this chapter look at each of these structures in turn. A final 
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section introduces simple ways of dealing with multi-instance problems, where each 
example comprises several different instances.

4.1  INFERRING RUDIMENTARY RULES
Here’s an easy way to find very simple classification rules from a set of instances. 
Called 1R for 1-rule, it generates a one-level decision tree expressed in the form 
of a set of rules that all test one particular attribute. 1R is a simple, cheap 
method that often comes up with quite good rules for characterizing the structure 
in data. It turns out that simple rules frequently achieve surprisingly high accu-
racy. Perhaps this is because the structure underlying many real-world datasets 
is quite rudimentary, and just one attribute is sufficient to determine the class 
of an instance quite accurately. In any event, it is always a good plan to try the 
simplest things first.

The idea is this: We make rules that test a single attribute and branch accord-
ingly. Each branch corresponds to a different value of the attribute. It is obvious 
what is the best classification to give each branch: Use the class that occurs most 
often in the training data. Then the error rate of the rules can easily be determined. 
Just count the errors that occur on the training data—that is, the number of instances 
that do not have the majority class.

Each attribute generates a different set of rules, one rule for every value of the 
attribute. Evaluate the error rate for each attribute’s rule set and choose the best. It’s 
that simple! Figure 4.1 shows the algorithm in the form of pseudocode.

To see the 1R method at work, consider the weather data of Table 1.2 on page 10 
(we will encounter it many times again when looking at how learning algorithms 
work). To classify on the final column, play, 1R considers four sets of rules, one for 
each attribute. These rules are shown in Table 4.1. An asterisk indicates that a 
random choice has been made between two equally likely outcomes. The number of 
errors is given for each rule, along with the total number of errors for the rule set as 
a whole. 1R chooses the attribute that produces rules with the smallest number of 

FIGURE 4.1 

Pseudocode for 1R. 

For each attribute, 
  For each value of that attribute, make a rule as follows: 
    count how often each class appears 
    find the most frequent class 
    make the rule assign that class to this attribute value. 
  Calculate the error rate of the rules. 
Choose the rules with the smallest error rate. 
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64 65 68 69 70 71 72 72 75 75 80 81 83 85
yes no yes yes yes no no yes yes yes no yes yes no

Table 4.1  Evaluating Attributes in the Weather Data

Attribute Rules Errors Total Errors

1 outlook sunny → no 2/5 4/14
overcast → yes 0/4
rainy → yes 2/5

2 temperature hot → no* 2/4 5/14
mild → yes 2/6
cool → yes 1/4

3 humidity high → no 3/7 4/14
normal → yes 1/7

4 windy false → yes 2/8 5/14
true → no* 3/6

*A random choice has been made between two equally likely outcomes. 

errors—that is, the first and third rule sets. Arbitrarily breaking the tie between these 
two rule sets gives

outlook: sunny → no
	 overcast → yes
	 rainy → yes

We noted at the outset that the game for the weather data is unspecified. Oddly 
enough, it is apparently played when it is overcast or rainy but not when it is sunny. 
Perhaps it’s an indoor pursuit.

Missing Values and Numeric Attributes
Although a very rudimentary learning scheme, 1R does accommodate both missing 
values and numeric attributes. It deals with these in simple but effective ways. 
Missing is treated as just another attribute value so that, for example, if the weather 
data had contained missing values for the outlook attribute, a rule set formed on 
outlook would specify four possible class values, one for each of sunny, overcast, 
and rainy, and a fourth for missing.

We can convert numeric attributes into nominal ones using a simple discreti-
zation method. First, sort the training examples according to the values of the 
numeric attribute. This produces a sequence of class values. For example, sorting 
the numeric version of the weather data (Table 1.3, page 11) according to the 
values of temperature produces the sequence

Discretization involves partitioning this sequence by placing breakpoints in it.  
One possibility is to place breakpoints wherever the class changes, producing the 
following eight categories:
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yes | no | yes yes yes | no no | yes yes yes | no | yes yes | no

Choosing breakpoints halfway between the examples on either side places them 
at 64.5, 66.5, 70.5, 72, 77.5, 80.5, and 84. However, the two instances with 
value 72 cause a problem because they have the same value of temperature but 
fall into different classes. The simplest fix is to move the breakpoint at 72 up 
one example, to 73.5, producing a mixed partition in which no is the majority 
class.

A more serious problem is that this procedure tends to form an excessively 
large number of categories. The 1R method will naturally gravitate toward choos-
ing an attribute that splits into many categories, because this will partition the 
dataset into many pieces, making it more likely that instances will have the same 
class as the majority in their partition. In fact, the limiting case is an attribute that 
has a different value for each instance—that is, an identification code attribute that 
pinpoints instances uniquely—and this will yield a zero error rate on the training 
set because each partition contains just one instance. Of course, highly branching 
attributes do not usually perform well on test examples; indeed, the identification 
code attribute will never get any examples outside the training set correct. This 
phenomenon is known as overfitting; we have already described overfitting-
avoidance bias in Chapter 1, and we will encounter this problem repeatedly in 
subsequent chapters.

For 1R, overfitting is likely to occur whenever an attribute has a large number 
of possible values. Consequently, when discretizing a numeric attribute, a minimum 
limit is imposed on the number of examples of the majority class in each partition. 
Suppose that minimum is set at 3. This eliminates all but two of the preceding 
partitions. Instead, the partitioning process begins

yes  no  yes  yes |  yes   …

ensuring that there are three occurrences of yes, the majority class, in the first parti-
tion. However, because the next example is also yes, we lose nothing by including 
that in the first partition, too. This leads to a new division of

yes  no  yes  yes  yes  |  no  no  yes  yes  yes  |  no  yes  yes  no

where each partition contains at least three instances of the majority class, except 
the last one, which will usually have less. Partition boundaries always fall between 
examples of different classes.

Whenever adjacent partitions have the same majority class, as do the first two 
partitions above, they can be merged together without affecting the meaning of the 
rule sets. Thus, the final discretization is

yes  no  yes  yes  yes  no  no  yes  yes  yes  |  no  yes  yes  no

which leads to the rule set

temperature: ≤ 77.5 → yes
	 > 77.5 → no
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The second rule involved an arbitrary choice; as it happens, no was chosen. If 
yes had been chosen instead, there would be no need for any breakpoint at all—and 
as this example illustrates, it might be better to use the adjacent categories to help 
break ties. In fact, this rule generates five errors on the training set and so is less 
effective than the preceding rule for outlook. However, the same procedure leads to 
this rule for humidity:

humidity: ≤ 82.5 → yes
	 > 82.5 and ≤ 95.5 → no
	 > 95.5 → yes

This generates only three errors on the training set and is the best 1-rule for the data 
in Table 1.3.

Finally, if a numeric attribute has missing values, an additional category is 
created for them, and the discretization procedure is applied just to the instances for 
which the attribute’s value is defined.

Discussion
In a seminal paper entitled “Very simple classification rules perform well on most 
commonly used datasets” (Holte, 1993), a comprehensive study of the performance 
of the 1R procedure was reported on 16 datasets frequently used by machine learning 
researchers to evaluate their algorithms. Cross-validation, an evaluation technique 
that we will explain in Chapter 5, was used to ensure that the results were the same 
as would be obtained on independent test sets. After some experimentation, the 
minimum number of examples in each partition of a numeric attribute was set at six, 
not three as used in our illustration.

Surprisingly, despite its simplicity 1R did well in comparison with the state-
of-the-art learning schemes, and the rules it produced turned out to be just a few 
percentage points less accurate, on almost all of the datasets, than the decision 
trees produced by a state-of-the-art decision tree induction scheme. These trees 
were, in general, considerably larger than 1R’s rules. Rules that test a single 
attribute are often a viable alternative to more complex structures, and this strongly 
encourages a simplicity-first methodology in which the baseline performance is 
established using simple, rudimentary techniques before progressing to more sophis-
ticated learning schemes, which inevitably generate output that is harder for people 
to interpret.

The 1R procedure learns a one-level decision tree whose leaves represent the 
various different classes. A slightly more expressive technique is to use a different 
rule for each class. Each rule is a conjunction of tests, one for each attribute. For 
numeric attributes the test checks whether the value lies within a given interval; 
for nominal ones it checks whether it is in a certain subset of that attribute’s values. 
These two types of tests—that is, intervals and subsets—are learned from the 
training data pertaining to each of the classes. For a numeric attribute, the end 
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points of the interval are the minimum and the maximum values that occur in the 
training data for that class. For a nominal one, the subset contains just those values 
that occur for that attribute in the training data for the individual class. Rules 
representing different classes usually overlap, and at prediction time the one with 
the most matching tests is predicted. This simple technique often gives a useful 
first impression of a dataset. It is extremely fast and can be applied to very large 
quantities of data.

4.2  STATISTICAL MODELING
The 1R method uses a single attribute as the basis for its decisions and chooses the 
one that works best. Another simple technique is to use all attributes and allow them 
to make contributions to the decision that are equally important and independent of 
one another, given the class. This is unrealistic, of course: What makes real-life 
datasets interesting is that the attributes are certainly not equally important or inde-
pendent. But it leads to a simple scheme that, again, works surprisingly well in 
practice.

Table 4.2 shows a summary of the weather data obtained by counting how many 
times each attribute–value pair occurs with each value (yes and no) for play. For 
example, you can see from Table 1.2 (page 10) that outlook is sunny for five 
examples, two of which have play = yes and three of which have play = no. The 
cells in the first row of the new table simply count these occurrences for all pos-
sible values of each attribute, and the play figure in the final column counts the 
total number of occurrences of yes and no. The lower part of the table contains the 
same information expressed as fractions, or observed probabilities. For example, 
of the nine days that play is yes, outlook is sunny for two, yielding a fraction of 
2/9. For play the fractions are different: They are the proportion of days that play 
is yes and no, respectively.

Now suppose we encounter a new example with the values that are shown in 
Table 4.3. We treat the five features in Table 4.2—outlook, temperature, humidity, 
windy, and the overall likelihood that play is yes or no—as equally important, inde-
pendent pieces of evidence and multiply the corresponding fractions. Looking at the 
outcome yes gives

Likelihood of yes = × × × × =2 9 3 9 3 9 3 9 9 14 0 0053.

The fractions are taken from the yes entries in the table according to the values 
of the attributes for the new day, and the final 9/14 is the overall fraction rep-
resenting the proportion of days on which play is yes. A similar calculation for 
the outcome no leads to

Likelihood of no = × × × × =3 5 1 5 4 5 3 5 5 14 0 0206.
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Table 4.3  A New Day

Outlook Temperature Humidity Windy Play

Sunny cool high true ?

This indicates that for the new day, no is more likely than yes—four times more 
likely. The numbers can be turned into probabilities by normalizing them so that 
they sum to 1:

Probability of yes =
+

=0 0053

0 0053 0 0206
20 5

.

. .
. %

Probability of no =
+

=0 0206

0 0053 0 0206
79 5

.

. .
. %

This simple and intuitive method is based on Bayes’ rule of conditional probability. 
Bayes’ rule says that if you have a hypothesis H and evidence E that bears on that 
hypothesis, then

Pr[ | ]
Pr[ | ]Pr[ ]

Pr[ ]
H E

E H H

E
=

We use the notation that Pr[A] denotes the probability of an event A and Pr[A | 
B] denotes the probability of A conditional on another event B. The hypothesis H is 
that play will be, say, yes, and Pr[H | E] is going to turn out to be 20.5%, just as 
determined previously. The evidence E is the particular combination of attribute 
values for the new day—outlook = sunny, temperature = cool, humidity = high, and 
windy = true. Let’s call these four pieces of evidence E1, E2, E3, and E4, respectively. 
Assuming that these pieces of evidence are independent (given the class), their 
combined probability is obtained by multiplying the probabilities:

Pr[ | ]
Pr[ | ] Pr[ | ] Pr[ | ] Pr[ | ] Pr[

yes E
E yes E yes E yes E yes y= × × × ×1 2 3 4 ees

E

]

Pr[ ]

Don’t worry about the denominator: We will ignore it and eliminate it in the 
final normalizing step when we make the probabilities for yes and no sum to 1, 
just as we did previously. The Pr[yes] at the end is the probability of a yes outcome 
without knowing any of the evidence E—that is, without knowing anything about 
the particular day in question—and it’s called the prior probability of the hypothesis 
H. In this case, it’s just 9/14, because 9 of the 14 training examples had a yes 
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value for play. Substituting the fractions in Table 4.2 for the appropriate evidence 
probabilities leads to

Pr[ | ]
Pr[ ]

yes E
E

= × × × ×2 9 3 9 3 9 3 9 9 14

just as we calculated previously. Again, the Pr[E] in the denominator will disappear 
when we normalize.

This method goes by the name of Naïve Bayes because it’s based on Bayes’ rule 
and “naïvely” assumes independence—it is only valid to multiply probabilities when 
the events are independent. The assumption that attributes are independent (given 
the class) in real life certainly is a simplistic one. But despite the disparaging name, 
Naïve Bayes works very effectively when tested on actual datasets, particularly when 
combined with some of the attribute selection procedures, which are introduced in 
Chapter 7, that eliminate redundant, and hence nonindependent, attributes.

Things go badly awry in Naïve Bayes if a particular attribute value does not 
occur in the training set in conjunction with every class value. Suppose that in the 
training data the attribute value outlook = sunny was always associated with the 
outcome no. Then the probability of outlook = sunny being given a yes—that is, 
Pr[outlook = sunny | yes]—would be zero, and because the other probabilities are 
multiplied by this, the final probability of yes in the previous example would be zero 
no matter how large they were. Probabilities that are zero hold a veto over the other 
ones. This is not a good idea. But the bug is easily fixed by minor adjustments to 
the method of calculating probabilities from frequencies.

For example, the upper part of Table 4.2 shows that for play = yes, outlook is 
sunny for two examples, overcast for four, and rainy for three, and the lower part 
gives these events probabilities of 2/9, 4/9, and 3/9, respectively. Instead, we could 
add 1 to each numerator, and compensate by adding 3 to the denominator, giving 
probabilities of 3/12, 5/12, and 4/12, respectively. This will ensure that an attribute 
value that occurs zero times receives a probability which is nonzero, albeit small. 
The strategy of adding 1 to each count is a standard technique called the Laplace 
estimator after the great eighteenth-century French mathematician Pierre Laplace. 
Although it works well in practice, there is no particular reason for adding 1 to the 
counts: We could instead choose a small constant µ and use

2 3

9

4 3

9

3 3

9

+
+

+
+

+
+

µ
µ

µ
µ

µ
µ

, , and

The value of µ, which was set to 3 before, effectively provides a weight that 
determines how influential the a priori values of 1/3, 1/3, and 1/3 are for each of the 
three possible attribute values. A large µ says that these priors are very important 
compared with the new evidence coming in from the training set, whereas a small 
one gives them less influence. Finally, there is no particular reason for dividing µ 
into three equal parts in the numerators: We could use
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2

9

4

9

3

9
1 2 3+

+
+
+

+
+

µ
µ

µ
µ

µ
µ

p p p
, , and

instead, where p1, p2, and p3 sum to 1. Effectively, these three numbers are a priori 
probabilities of the values of the outlook attribute being sunny, overcast, and rainy, 
respectively.

This is now a fully Bayesian formulation where prior probabilities have been 
assigned to everything in sight. It has the advantage of being completely rigorous, but 
the disadvantage that it is not usually clear just how these prior probabilities should 
be assigned. In practice, the prior probabilities make little difference provided that 
there are a reasonable number of training instances, and people generally just estimate 
frequencies using the Laplace estimator by initializing all counts to 1 instead of 0.

Missing Values and Numeric Attributes 
One of the really nice things about Naïve Bayes is that missing values are no problem 
at all. For example, if the value of outlook were missing in the example of Table 
4.3, the calculation would simply omit this attribute, yielding

Likelihood of yes = × × × =3 9 3 9 3 9 9 14 0 0238.

Likelihood of no = × × × =1 5 4 5 3 5 5 14 0 0343.

These two numbers are individually a lot higher than they were before because one 
of the fractions is missing. But that’s not a problem because a fraction is missing in 
both cases, and these likelihoods are subject to a further normalization process. This 
yields probabilities for yes and no of 41% and 59%, respectively.

If a value is missing in a training instance, it is simply not included in the fre-
quency counts, and the probability ratios are based on the number of values that 
actually occur rather than on the total number of instances.

Numeric values are usually handled by assuming that they have a “normal” or 
“Gaussian” probability distribution. Table 4.4 gives a summary of the weather data 
with numeric features from Table 1.3. For nominal attributes, we calculate counts as 
before, while for numeric ones we simply list the values that occur. Then, instead of 
normalizing counts into probabilities as we do for nominal attributes, we calculate 
the mean and the standard deviation for each class and each numeric attribute. The 
mean value of temperature over the yes instances is 73, and its standard deviation is 
6.2. The mean is simply the average of the values—that is, the sum divided by the 
number of values. The standard deviation is the square root of the sample variance, 
which we calculate as follows: Subtract the mean from each value, square the result, 
sum them together, and then divide by one less than the number of values. After we 
have found this “sample variance,” take its square root to yield the standard deviation. 
This is the standard way of calculating the mean and the standard deviation of a set 
of numbers. (The “one less than” has to do with the number of degrees of freedom 
in the sample, a statistical notion that we don’t want to get into here.)
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Table 4.5  Another New Day

Outlook Temperature Humidity Windy Play

Sunny 66 90 true ?

The probability density function for a normal distribution with mean µ and 
standard deviation σ is given by the rather formidable expression

f x e
x

( )
( )

=
− −1

2

2

22

πσ

µ
σ

But fear not! All this means is that if we are considering a yes outcome when 
temperature has a value of, say, 66, we just need to plug x = 66, µ = 73, and σ = 
6.2 into the formula. So the value of the probability density function is

f temperature yes e( | )
.

.
( )

.= =
×

=
− −

×66
1

2 6 2
0 0340

66 73

2 6 2

2

2

π
 

And by the same token, the probability density of a yes outcome when humidity has 
a value of, say, 90, is calculated in the same way:

f humidity yes( | ) .= =90 0 0221

The probability density function for an event is very closely related to its prob-
ability. However, it is not quite the same thing. If temperature is a continuous scale, 
the probability of the temperature being exactly 66—or exactly any other value, such 
as 63.14159262—is zero. The real meaning of the density function f(x) is that the 
probability that the quantity lies within a small region around x, say between x − ε/2 
and x + ε/2, is ε × f(x). You might think we ought to factor in the accuracy figure ε 
when using these density values, but that’s not necessary. The same ε would appear 
in both the yes and no likelihoods that follow and cancel out when the probabilities 
were calculated.

Using these probabilities for the new day in Table 4.5 yields

Likelihood of yes = × × × × =2 9 0 0340 0 0221 3 9 9 14 0 000036. . .

Likelihood of no = × × × × =3 5 0 0279 0 0381 3 5 5 14 0 000137. . .

which leads to probabilities

Probability of yes =
+

=0 000036

0 000036 0 000137
20 8

.

. .
. %
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Probability of no =
+

=0 000137

0 000036 0 000137
79 2

.

. .
. %

These figures are very close to the probabilities calculated earlier for the new day 
in Table 4.3 because the temperature and humidity values of 66 and 90 yield similar 
probabilities to the cool and high values used before.

The normal-distribution assumption makes it easy to extend the Naïve Bayes 
classifier to deal with numeric attributes. If the values of any numeric attributes are 
missing, the mean and standard deviation calculations are based only on the ones 
that are present.

Naïve Bayes for Document Classification
An important domain for machine learning is document classification, in which each 
instance represents a document and the instance’s class is the document’s topic. 
Documents might be news items and the classes might be domestic news, overseas 
news, financial news, and sports. Documents are characterized by the words that 
appear in them, and one way to apply machine learning to document classification is 
to treat the presence or absence of each word as a Boolean attribute. Naïve Bayes is 
a popular technique for this application because it is very fast and quite accurate.

However, this does not take into account the number of occurrences of each 
word, which is potentially useful information when determining the category of a 
document. Instead, a document can be viewed as a bag of words—a set that contains 
all the words in the document, with multiple occurrences of a word appearing mul-
tiple times (technically, a set includes each of its members just once, whereas a bag 
can have repeated elements). Word frequencies can be accommodated by applying 
a modified form of Naïve Bayes called multinominal Naïve Bayes.

Suppose n1, n2, …, nk is the number of times word i occurs in the document, and P1, P2, 
…, Pk is the probability of obtaining word i when sampling from all the documents in 
category H. Assume that the probability is independent of the word’s context and position 
in the document. These assumptions lead to a multinomial distribution for document 
probabilities. For this distribution, the probability of a document E given its class H—in 
other words, the formula for computing the probability Pr[E | H] in Bayes’ rule—is

Pr[ ]E H N
P
n

i
n

ii

k i

| !
!

= ×
=

∏
1

where N = n1 + n2 + … + nk is the number of words in the document. The reason for the 
factorials is to account for the fact that the ordering of the occurrences of each word is 
immaterial according to the bag-of-words model. Pi is estimated by computing the relative 
frequency of word i in the text of all training documents pertaining to category H. In 
reality, there could be a further term that gives the probability that the model for category 
H generates a document whose length is the same as the length of E, but it is common to 
assume that this is the same for all classes and hence can be dropped.
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For example, suppose there are only two words, yellow and blue, in the vocabu-
lary, and a particular document class H has Pr[yellow | H] = 75% and Pr[blue | H] 
= 25% (you might call H the class of yellowish green documents). Suppose E is the 
document blue yellow blue with a length of N = 3 words. There are four possible 
bags of three words. One is {yellow yellow yellow}, and its probability according to 
the preceding formula is

Pr   [{ } | ] !
.

!

.

!
yellow yellow yellow H = × × =3

0 75

3

0 25

0

27

64

3 0

The other three, with their probabilities, are

Pr[{   blue blue blue H} | ] = 1

64

Pr[{   yellow yellow blue H} | ] = 27

64

Pr[{   yellow blue blue H} | ] = 9

64

E corresponds to the last case (recall that in a bag of words the order is immaterial); 
thus, its probability of being generated by the yellowish green document model is 
9/64, or 14%. Suppose another class, very bluish green documents (call it H′), has 
Pr[yellow | H′] = 10% and Pr[blue | H′] = 90%. The probability that E is generated 
by this model is 24%.

If these are the only two classes, does that mean that E is in the very bluish green 
document class? Not necessarily. Bayes’ rule, given earlier, says that you have to 
take into account the prior probability of each hypothesis. If you know that in fact 
very bluish green documents are twice as rare as yellowish green ones, this would 
be just sufficient to outweigh the 14 to 24% disparity and tip the balance in favor 
of the yellowish green class.

The factorials in the probability formula don’t actually need to be computed 
because, being the same for every class, they drop out in the normalization process 
anyway. However, the formula still involves multiplying together many small prob-
abilities, which soon yields extremely small numbers that cause underflow on large 
documents. The problem can be avoided by using logarithms of the probabilities 
instead of the probabilities themselves.

In the multinomial Naïve Bayes formulation a document’s class is determined 
not just by the words that occur in it but also by the number of times they occur. In 
general, it performs better than the ordinary Naïve Bayes model for document clas-
sification, particularly for large dictionary sizes.
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Discussion
Naïve Bayes gives a simple approach, with clear semantics, to representing, using, 
and learning probabilistic knowledge. It can achieve impressive results. People often 
find that Naïve Bayes rivals, and indeed outperforms, more sophisticated classifiers 
on many datasets. The moral is, always try the simple things first. Over and over 
again people have eventually, after an extended struggle, managed to obtain good 
results using sophisticated learning schemes, only to discover later that simple 
methods such as 1R and Naïve Bayes do just as well—or even better.

There are many datasets for which Naïve Bayes does not do well, however, and 
it is easy to see why. Because attributes are treated as though they were independent 
given the class, the addition of redundant ones skews the learning process. As an 
extreme example, if you were to include a new attribute with the same values as 
temperature to the weather data, the effect of the temperature attribute would be 
multiplied: All of its probabilities would be squared, giving it a great deal more 
influence in the decision. If you were to add 10 such attributes, the decisions would 
effectively be made on temperature alone. Dependencies between attributes inevi-
tably reduce the power of Naïve Bayes to discern what is going on. They can, 
however, be ameliorated by using a subset of the attributes in the decision procedure, 
making a careful selection of which ones to use. Chapter 7 shows how.

The normal-distribution assumption for numeric attributes is another restriction 
on Naïve Bayes as we have formulated it here. Many features simply aren’t nor-
mally distributed. However, there is nothing to prevent us from using other 
distributions—there is nothing magic about the normal distribution. If you know 
that a particular attribute is likely to follow some other distribution, standard esti-
mation procedures for that distribution can be used instead. If you suspect it isn’t 
normal but don’t know the actual distribution, there are procedures for “kernel 
density estimation” that do not assume any particular distribution for the attribute 
values. Another possibility is simply to discretize the data first.

4.3  DIVIDE-AND-CONQUER: CONSTRUCTING 
DECISION TREES
The problem of constructing a decision tree can be expressed recursively. First, 
select an attribute to place at the root node, and make one branch for each possible 
value. This splits up the example set into subsets, one for every value of the attribute. 
Now the process can be repeated recursively for each branch, using only those 
instances that actually reach the branch. If at any time all instances at a node have 
the same classification, stop developing that part of the tree.

The only thing left is how to determine which attribute to split on, given a set of 
examples with different classes. Consider (again!) the weather data. There are four 
possibilities for each split, and at the top level they produce the trees in Figure 4.2. 
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FIGURE 4.2 

Tree stumps for the weather data: (a) outlook, (b) temperature, (c) humidity, and (d) windy.  
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Which is the best choice? The number of yes and no classes is shown at the leaves. 
Any leaf with only one class—yes or no—will not have to be split further, and the 
recursive process down that branch will terminate. Because we seek small trees, we 
would like this to happen as soon as possible. If we had a measure of the purity of each 
node, we could choose the attribute that produces the purest daughter nodes. Take a 
moment to look at Figure 4.2 and ponder which attribute you think is the best choice.

The measure of purity that we will use is called the information and is measured 
in units called bits. Associated with each node of the tree, it represents the expected 
amount of information that would be needed to specify whether a new instance 
should be classified yes or no, given that the example reached that node. Unlike the 
bits in computer memory, the expected amount of information usually involves frac-
tions of a bit—and is often less than 1! It is calculated based on the number of yes 
and no classes at the node. We will look at the details of the calculation shortly, but 
first let’s see how it’s used. When evaluating the first tree in Figure 4.2, the number 
of yes and no classes at the leaf nodes are [2, 3], [4, 0], and [3, 2], respectively, and 
the information values of these nodes are



info  bits([ , ]) .2 3 0 971=

info  bits([ , ]) .4 0 0 0=

info  bits([ , ]) .3 2 0 971=

We calculate the average information value of these, taking into account the 
number of instances that go down each branch—five down the first and third and 
four down the second:

info([ , ], [ , ], [ , ]) ( ) . ( ) ( ) .

.

2 3 4 0 3 2 5 14 0 971 4 14 0 5 14 0 971

0

= × + × + ×
= 6693 bits

This average represents the amount of information that we expect would be nec
essary to specify the class of a new instance, given the tree structure in Figure 4.2(a).

Before any of the nascent tree structures in Figure 4.2 were created, the training 
examples at the root comprised nine yes and five no nodes, corresponding to an 
information value of

info  bits([ , ]) .9 5 0 940=

Thus, the tree in Figure 4.2(a) is responsible for an information gain of

gain( ) info infooutlook = − = −([ , ]) ([ , ], [ , ], [ , ]) . .9 5 2 3 4 0 3 2 0 940 0 6693

0 247= .  bits

which can be interpreted as the informational value of creating a branch on the 
outlook attribute.

The way forward is clear. We calculate the information gain for each attribute 
and split on the one that gains the most information. In the situation that is shown 
in Figure 4.2:

•	 gain(outlook)	 = 0.247 bits 
•	 gain(temperature) = 0.029 bits
•	 gain(humidity) = 0.152 bits
•	 gain(windy) = 0.048 bits

Therefore, we select outlook as the splitting attribute at the root of the tree. Hope-
fully this accords with your intuition as the best one to select. It is the only choice 
for which one daughter node is completely pure, and this gives it a considerable 
advantage over the other attributes. Humidity is the next best choice because it 
produces a larger daughter node that is almost completely pure.

Then we continue, recursively. Figure 4.3 shows the possibilities for a further 
branch at the node reached when outlook is sunny. Clearly, a further split on 
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FIGURE 4.3 

Expanded tree stumps for the weather data: (a) temperature, (b) humidity, and (c) windy.  

outlook

windy

sunny

... ...

yes
no
no

false

yes
no

true

(c)

outlook

temperature

sunny

... ...

no
no

hot

yes
no

mild

yes

cool

outlook

humidity

sunny

... ...

no
no
no

high

yes
yes

normal

(a)
(b)

outlook will produce nothing new, so we only consider the other three attributes. 
The information gain for each turns out to be

•	 gain(temperature) = 0.571 bits
•	 gain(humidity) = 0.971 bits
•	 gain(windy) = 0.020 bits

Therefore, we select humidity as the splitting attribute at this point. There is no need 
to split these nodes any further, so this branch is finished.

Continued application of the same idea leads to the decision tree of Figure 4.4 for 
the weather data. Ideally, the process terminates when all leaf nodes are pure—that 
is, when they contain instances that all have the same classification. However, it might 
not be possible to reach this happy situation because there is nothing to stop the train-
ing set containing two examples with identical sets of attributes but different classes. 
Consequently, we stop when the data cannot be split any further. Alternatively, one 
could stop if the information gain is zero. This is slightly more conservative because 



FIGURE 4.4 

Decision tree for the weather data. 
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it is possible to encounter cases where the data can be split into subsets exhibiting 
identical class distributions, which would make the information gain zero.

Calculating Information

Now it is time to explain how to calculate the information measure that is used as 
the basis for evaluating different splits. We describe the basic idea in this section, 
then in the next we examine a correction that is usually made to counter a bias toward 
selecting splits on attributes with large numbers of possible values.

Before examining the detailed formula for calculating the amount of information 
required to specify the class of an example given that it reaches a tree node with a 
certain number of yes’s and no’s, consider first the kind of properties we would 
expect this quantity to have

1.	 When the number of either yes’s or no’s is zero, the information is zero.
2.	 When the number of yes’s and no’s is equal, the information reaches a 

maximum.

Moreover, the measure should be applicable to multiclass situations, not just to two-
class ones.

The information measure relates to the amount of information obtained by 
making a decision, and a more subtle property of information can be derived by 
considering the nature of decisions. Decisions can be made in a single stage, or they 
can be made in several stages, and the amount of information involved is the same 
in both cases. For example, the decision involved in

info([ , , ])2 3 4

can be made in two stages. First decide whether it’s the first case or one of the other 
two cases:

info([ , ])2 7
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and then decide which of the other two cases it is:

info([ , ])3 4

In some cases the second decision will not need to be made, namely, when the deci-
sion turns out to be the first one. Taking this into account leads to the equation

info info info([ , , ]) ([ , ]) ( ) ([ , ])2 3 4 2 7 7 9 3 4= + ×

Of course, there is nothing special about these particular numbers, and a similar 
relationship should hold regardless of the actual values. Thus, we could add a further 
criterion to the list above:

3.	 The information should obey the multistage property that we have illustrated.

Remarkably, it turns out that there is only one function that satisfies all these 
properties, and it is known as the information value or entropy:

entropy( , , , ) log log logp p p p p p p p pn n n1 2 1 1 2 2… …= − − −

The reason for the minus signs is that logarithms of the fractions p1, p2, … , pn are 
negative, so the entropy is actually positive. Usually the logarithms are expressed 
in base 2, and then the entropy is in units called bits—just the usual kind of bits 
used with computers.

The arguments p1, p2, … of the entropy formula are expressed as fractions that 
add up to 1, so that, for example,

info entropy([ , , ]) ( , , )2 3 4 2 9 3 9 4 9=

Thus, the multistage decision property can be written in general as

entropy( , , ) entropy( , ) ( ) entropy ,p q r p q r q r
q

q r

r

q r
= + + + ×

+ +






 

where p + q + r = 1.
Because of the way the log function works, you can calculate the information 

measure without having to work out the individual fractions:

info([ , , ]) log log log

[ log log l

2 3 4 2 9 2 9 3 9 3 9 4 9 4 9

2 2 3 3 4

= − × − × − ×
= − − − oog log ]4 9 9 9+

This is the way that the information measure is usually calculated in practice. So 
the information value for the first node of Figure 4.2(a) is

info  bits([ , ]) log log .2 3 2 5 2 5 3 5 3 5 0 971= − × − × =



Highly Branching Attributes
When some attributes have a large number of possible values, giving rise to a mul-
tiway branch with many child nodes, a problem arises with the information gain 
calculation. The problem can best be appreciated in the extreme case when an attri-
bute has a different value for each instance in the dataset—as, for example, an 
identification code attribute might.

Table 4.6 gives the weather data with this extra attribute. Branching on ID code 
produces the tree stump in Figure 4.5. The information required to specify the class 
given the value of this attribute is

info info info info info([ , ]) ([ , ]) ([ , ]) ([ , ]) ([ ,0 1 0 1 1 0 1 0 0+ + + + +… 11])

which is 0 because each of the 14 terms is 0. This is not surprising: The ID code 
attribute identifies the instance, which determines the class without any ambiguity—
just as Table 4.6 shows. Consequently, the information gain of this attribute is just 
the information at the root, info([9,5]) = 0.940 bits. This is greater than the informa-
tion gain of any other attribute, and so ID code will inevitably be chosen as the 
splitting attribute. But branching on the identification code is no good for predicting 
the class of unknown instances and tells nothing about the structure of the decision, 
which after all are the twin goals of machine learning.

The overall effect is that the information gain measure tends to prefer attributes 
with large numbers of possible values. To compensate for this, a modification of the 
measure called the gain ratio is widely used. The gain ratio is derived by taking into 
account the number and size of daughter nodes into which an attribute splits the 
dataset, disregarding any information about the class. In the situation shown in 
Figure 4.5, all counts have a value of 1, so the information value of the split is

info([ , , , ]) log1 1 1 1 14 1 14 14… = − × ×

because the same fraction, 1/14, appears 14 times. This amounts to log 14, or 3.807 
bits, which is a very high value. This is because the information value of a split is 

FIGURE 4.5 

Tree stump for the ID code attribute. 
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Table 4.7  Gain Ratio Calculations for Figure 4.2 Tree Stumps

Outlook Temperature Humidity Windy

info:	 0.693 info:	 0.911 info:	 0.788 info:	 0.892

gain: 0.940–0.693	 0.247 gain: 0.940–0.911	 0.029 gain: 0.940–0.788	 0.152 gain: 0.940–0.892	 0.048

split info: info([5,4,5])	 1.577 split info: info([4,6,4])	 1.362 split info: info([7,7])	 1.000 split info: info([8,6])	 0.985

gain ratio: 0.247/1.577	 0.156 gain ratio: 0.029/1.557	 0.019 gain ratio: 0.152/1	 0.152 gain ratio: 0.048/0.985	 0.049

the number of bits needed to determine to which branch each instance is assigned, 
and the more branches there are, the greater this value. The gain ratio is calculated 
by dividing the original information gain, 0.940 in this case, by the information value 
of the attribute, 3.807—yielding a gain ratio value of 0.247 for the ID code 
attribute.

Returning to the tree stumps for the weather data in Figure 4.2, outlook splits 
the dataset into three subsets of size 5, 4, and 5, and thus has an intrinsic information 
value of

info([ , , ]) .5 4 5 1 577=

without paying any attention to the classes involved in the subsets. As we have seen, 
this intrinsic information value is greater for a more highly branching attribute such 
as the hypothesized ID code. Again, we can correct the information gain by dividing 
by the intrinsic information value to get the gain ratio.

The results of these calculations for the tree stumps of Figure 4.2 are summarized 
in Table 4.7. Outlook still comes out on top, but humidity is now a much closer 
contender because it splits the data into two subsets instead of three. In this particular 
example, the hypothetical ID code attribute, with a gain ratio of 0.247, would still 
be preferred to any of these four. However, its advantage is greatly reduced. In 
practical implementations, we can use an ad hoc test to guard against splitting on 
such a useless attribute.

Unfortunately, in some situations the gain ratio modification overcompensates 
and can lead to preferring an attribute just because its intrinsic information is 
much lower than for the other attributes. A standard fix is to choose the attri-
bute that maximizes the gain ratio, provided that the information gain for that 
attribute is at least as great as the average information gain for all the attributes 
examined.

Discussion
The divide-and-conquer approach to decision tree induction, sometimes called top-
down induction of decision trees, was developed and refined over many years by 
J. Ross Quinlan at the University of Sydney in Australia. Although others have 
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worked on similar methods, Quinlan’s research has always been at the very forefront 
of decision tree induction. The scheme that has been described using the information 
gain criterion is essentially the same as one known as ID3. The use of the gain ratio 
was one of many improvements that were made to ID3 over several years; Quinlan 
described it as robust under a wide variety of circumstances. Although a practical 
solution, it sacrifices some of the elegance and clean theoretical motivation of the 
information gain criterion.

A series of improvements to ID3 culminated in a practical and influential system 
for decision tree induction called C4.5. These improvements include methods for 
dealing with numeric attributes, missing values, noisy data, and generating rules 
from trees, and they are described in Section 6.1.

4.4  COVERING ALGORITHMS: CONSTRUCTING RULES
As we have seen, decision tree algorithms are based on a divide-and-conquer 
approach to the classification problem. They work top-down, seeking at each stage 
an attribute to split on that best separates the classes, and then recursively processing 
the subproblems that result from the split. This strategy generates a decision tree, 
which can if necessary be converted into a set of classification rules—although if it 
is to produce effective rules, the conversion is not trivial.

An alternative approach is to take each class in turn and seek a way of covering 
all instances in it, at the same time excluding instances not in the class. This is called 
a covering approach because at each stage you identify a rule that “covers” some of 
the instances. By its very nature, this covering approach leads to a set of rules rather 
than to a decision tree.

The covering method can readily be visualized in a two-dimensional space of 
instances as shown in Figure 4.6(a). We first make a rule covering the a’s. For the 
first test in the rule, split the space vertically as shown in the center picture. This 
gives the beginnings of a rule:

If x > 1.2 then class = a

However, the rule covers many b’s as well as a’s, so a new test is added to it by 
further splitting the space horizontally as shown in the third diagram:

If x > 1.2 and y > 2.6 then class = a

This gives a rule covering all but one of the a’s. It’s probably appropriate to leave 
it at that, but if it were felt necessary to cover the final a, another rule would be 
needed, perhaps

If x > 1.4 and y < 2.4 then class = a

The same procedure leads to two rules covering the b’s:

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b
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FIGURE 4.6 

Covering algorithm: (a) covering the instances, and (b) decision tree for the same problem. 
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Again, one a is erroneously covered by these rules. If it were necessary to exclude 
it, more tests would have to be added to the second rule, and additional rules would 
be needed to cover the b’s that these new tests exclude.

Rules versus Trees
A top-down divide-and-conquer algorithm operates on the same data in a manner 
that is, at least superficially, quite similar to a covering algorithm. It might first 
split the dataset using the x attribute, and would probably end up splitting it at the 
same place, x = 1.2. However, whereas the covering algorithm is concerned only 
with covering a single class, the division would take both classes into account 
because divide-and-conquer algorithms create a single concept description that 
applies to all classes. The second split might also be at the same place, y = 2.6, 
leading to the decision tree in Figure 4.6(b). This tree corresponds exactly to the 
set of rules, and in this case there is no difference in effect between the covering 
and the divide-and-conquer algorithms.

But in many situations there is a difference between rules and trees in terms of 
the perspicuity of the representation. For example, when we described the replicated 
subtree problem in Section 3.4, we noted that rules can be symmetric whereas trees 
must select one attribute to split on first, and this can lead to trees that are much 
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FIGURE 4.7 

The instance space during operation of a covering algorithm. 

Space of
examples

Rule so far

Rule after
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term

larger than an equivalent set of rules. Another difference is that, in the multiclass 
case, a decision tree split takes all classes into account in trying to maximize the 
purity of the split, whereas the rule-generating method concentrates on one class at 
a time, disregarding what happens to the other classes.

A Simple Covering Algorithm
Covering algorithms operate by adding tests to the rule that is under construction, 
always striving to create a rule with maximum accuracy. In contrast, divide-and-con-
quer algorithms operate by adding tests to the tree that is under construction, always 
striving to maximize the separation between the classes. Each of these involves 
finding an attribute to split on. But the criterion for the best attribute is different in 
each case. Whereas divide-and-conquer algorithms such as ID3 choose an attribute to 
maximize the information gain, the covering algorithm we will describe chooses an 
attribute–value pair to maximize the probability of the desired classification.

Figure 4.7 gives a picture of the situation, showing the space containing all the 
instances, a partially constructed rule, and the same rule after a new term has been 
added. The new term restricts the coverage of the rule: The idea is to include as many 
instances of the desired class as possible and exclude as many instances of other 
classes as possible. Suppose the new rule will cover a total of t instances, of which p 
are positive examples of the class and t – p are in other classes—that is, they are 
errors made by the rule. Then choose the new term to maximize the ratio p/t.

An example will help. For a change, we use the contact lens problem of Table 
1.1 (page 6). We will form rules that cover each of the three classes—hard, soft, and 
none—in turn. To begin, we seek a rule:

If ? then recommendation = hard 

For the unknown term ?, we have nine choices:

age = young  	   2/8
age = pre-presbyopic  	   1/8
age = presbyopic  	   1/8
spectacle prescription = myope  	   3/12
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spectacle prescription = hypermetrope    1/12
astigmatism = no  	   0/12
astigmatism = yes  	   4/12
tear production rate = reduced  	   0/12
tear production rate = normal  	   4/12

The  numbers on the right show the fraction of “correct” instances in the set 
singled out by that choice. In this case, “correct” means that the recommendation 
is hard. For instance, age = young selects 8 instances, 2 of which recommend 
hard contact lenses, so the first fraction is 2/8. (To follow this, you will need to 
look back at the contact lens data in Table 1.1 (page 6) and count up the entries 
in the table.)

We select the largest fraction, 4/12, arbitrarily choosing between the seventh and 
the last choice in the list, and create the rule:

If astigmatism = yes then recommendation = hard

This rule is quite inaccurate, getting only 4 instances correct out of the 12 that it 
covers, shown in Table 4.8. So we refine it further:

If astigmatism = yes and ? then recommendation = hard

Considering the possibilities for the unknown term, ? yields the following seven 
choices:

age = young  	   2/4
age = pre-presbyopic  	   1/4
age = presbyopic  	   1/4
spectacle prescription = myope  	   3/6
spectacle prescription = hypermetrope    1/6
tear production rate = reduced  	   0/6
tear production rate = normal  	   4/6

(Again, count the entries in Table 4.8.) The last is a clear winner, getting 4 instances 
correct out of the 6 that it covers, and it corresponds to the rule

If astigmatism = yes and tear production rate = normal
	 then recommendation = hard

Should we stop here? Perhaps. But let’s say we are going for exact rules, no 
matter how complex they become. Table 4.9 shows the cases that are covered by 
the rule so far. The possibilities for the next term are now

age = young  	   2/2
age = pre-presbyopic  	   1/2
age = presbyopic  	   1/2
spectacle prescription = myope  	   3/3
spectacle prescription = hypermetrope    1/3

It is necessary for us to choose between the first and fourth. So far we have treated 
the fractions numerically, but although these two are equal (both evaluate to 1), they 
have different coverage: One selects just two correct instances and the other selects 
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FIGURE 4.8 

Pseudocode for a basic rule learner. 

For each class C 
  Initialize E to the instance set 
  While E contains instances in class C 
    Create a rule R with an empty left-hand side that predicts class C 
    Until R is perfect (or there are no more attributes to use) do 
      For each attribute A not mentioned in R, and each value v, 
        Consider adding the condition A = v to the LHS of R 
        Select A and v to maximize the accuracy p/t 
          (break ties by choosing the condition with the largest p) 
      Add A = v to R 
    Remove the instances covered by R from E 

three. In the event of a tie, we choose the rule with the greater coverage, giving the 
final rule:

If astigmatism = yes and tear production rate = normal
	 and spectacle prescription = myope then recommendation = hard

This is indeed one of the rules given for the contact lens problem. But it only 
covers three out of the four hard recommendations. So we delete these three from 
the set of instances and start again, looking for another rule of the form:

If ? then recommendation = hard

Following the same process, we will eventually find that age = young is the best 
choice for the first term. Its coverage is one out of 7 the reason for the 7 is that 3 
instances have been removed from the original set, leaving 21 instances altogether. 
The best choice for the second term is astigmatism = yes, selecting 1/3 (actually, this 
is a tie); tear production rate = normal is the best for the third, selecting 1/1.

If age = young and astigmatism = yes
	 and tear production rate = normal
	 then recommendation = hard

This rule actually covers two of the original set of instances, one of which is covered 
by the previous rule—but that’s all right because the recommendation is the same 
for each rule.

Now that all the hard-lens cases are covered, the next step is to proceed with the 
soft-lens ones in just the same way. Finally, rules are generated for the none case—
unless we are seeking a rule set with a default rule, in which case explicit rules for 
the final outcome are unnecessary.

What we have just described is the PRISM method for constructing rules. It 
generates only correct or “perfect” rules. It measures the success of a rule by the 
accuracy formula p/t. Any rule with accuracy less than 100% is “incorrect” in that 
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it assigns cases to the class in question that actually do not have that class. PRISM 
continues adding clauses to each rule until it is perfect—its accuracy is 100%. Figure 
4.8 gives a summary of the algorithm. The outer loop iterates over the classes, gen-
erating rules for each class in turn. Note that we reinitialize to the full set of examples 
each time around. Then we create rules for that class and remove the examples from 
the set until there are none of that class left. Whenever we create a rule, we start 
with an empty rule (which covers all the examples), and then restrict it by adding 
tests until it covers only examples of the desired class. At each stage we choose the 
most promising test—that is, the one that maximizes the accuracy of the rule. Finally, 
we break ties by selecting the test with greatest coverage.

Rules versus Decision Lists
Consider the rules produced for a particular class—that is, the algorithm in Figure 4.8 
with the outer loop removed. It seems clear from the way that these rules are produced 
that they are intended to be interpreted in order—that is, as a decision list—testing 
the rules in turn until one applies and then using that. This is because the instances 
covered by a new rule are removed from the instance set as soon as the rule is com-
pleted (in the last line of the code in Figure 4.8): Thus, subsequent rules are designed 
for instances that are not covered by the rule. However, although it appears that we 
are supposed to check the rules in turn, we do not have to do so. Consider that any 
subsequent rules generated for this class will have the same effect—they all predict 
the same class. This means that it does not matter what order they are executed in: 
Either a rule will be found that covers this instance, in which case the class in question 
is predicted, or no such rule is found, in which case the class is not predicted.

Now return to the overall algorithm. Each class is considered in turn, and rules 
are generated that distinguish instances in that class from the others. No ordering is 
implied between the rules for one class and those for another. Consequently, the 
rules that are produced can be executed in any order.

As described in Section 3.4, order-independent rules seem to provide more 
modularity by acting as independent nuggets of “knowledge,” but they suffer from 
the disadvantage that it is not clear what to do when conflicting rules apply. With 
rules generated in this way, a test example may receive multiple classifications—that 
is, it may satisfy rules that apply to different classes. Other test examples may receive 
no classification at all. A simple strategy to force a decision in ambiguous cases is 
to choose, from the classifications that are predicted, the one with the most training 
examples or, if no classification is predicted, to choose the category with the most 
training examples overall. These difficulties do not occur with decision lists because 
they are meant to be interpreted in order and execution stops as soon as one rule 
applies: The addition of a default rule at the end ensures that any test instance 
receives a classification. It is possible to generate good decision lists for the multi-
class case using a slightly different method, as we will see in Section 6.2.

Methods, such as PRISM, can be described as separate-and-conquer algorithms: 
You identify a rule that covers many instances in the class (and excludes ones not in 
the class), separate out the covered instances because they are already taken care of 
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by the rule, and continue with the process on those that remain. This contrasts with 
the divide-and-conquer approach of decision trees. The “separate” step results in an 
efficient method because the instance set continually shrinks as the operation 
proceeds.

4.5  MINING ASSOCIATION RULES
Association rules are like classification rules. You could find them in the same way, 
by executing a divide-and-conquer rule-induction procedure for each possible 
expression that could occur on the right side of the rule. However, not only might 
any attribute occur on the right side with any possible value, but a single association 
rule often predicts the value of more than one attribute. To find such rules, you would 
have to execute the rule-induction procedure once for every possible combination 
of attributes, with every possible combination of values, on the right side. That 
would result in an enormous number of association rules, which would then have 
to be pruned down on the basis of their coverage (the number of instances that they 
predict correctly) and their accuracy (the same number expressed as a proportion of 
the number of instances to which the rule applies). This approach is quite infeasible. 
(Note that, as we mentioned in Section 3.4, what we are calling coverage is often 
called support and what we are calling accuracy is often called confidence.)

Instead, we capitalize on the fact that we are only interested in association rules 
with high coverage. We ignore, for the moment, the distinction between the left 
and right sides of a rule and seek combinations of attribute–value pairs that have 
a prespecified minimum coverage. These are called item sets: An attribute–value 
pair is an item. The terminology derives from market basket analysis, in which the 
items are articles in your shopping cart and the supermarket manager is looking 
for associations among these purchases.

Item Sets
The first column of Table 4.10 shows the individual items for the weather data in 
Table 1.2 (page 10), with the number of times each item appears in the dataset given 
at the right. These are the one-item sets. The next step is to generate the two-item 
sets by making pairs of the one-item sets. Of course, there is no point in generating 
a set containing two different values of the same attribute (such as outlook = sunny 
and outlook = overcast) because that cannot occur in any actual instance.

Assume that we seek association rules with minimum coverage 2; thus, we 
discard any item sets that cover fewer than two instances. This leaves 47 two-item 
sets, some of which are shown in the second column along with the number of times 
they appear. The next step is to generate the three-item sets, of which 39 have a 
coverage of 2 or greater. There are six four-item sets, and no five-item sets—for this 
data, a five-item set with coverage 2 or greater could only correspond to a repeated 
instance. The first rows of the table, for example, show that there are five days when 
outlook = sunny, two of which have temperature = hot, and, in fact, on both of those 
days humidity = high and play = no as well.
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Association Rules
Shortly we will explain how to generate these item sets efficiently. But first let us 
finish the story. Once all item sets with the required coverage have been generated, 
the next step is to turn each into a rule, or a set of rules, with at least the specified 
minimum accuracy. Some item sets will produce more than one rule; others will 
produce none. For example, there is one three-item set with a coverage of 4 (row 
38 of Table 4.10):

humidity = normal, windy = false, play = yes

This set leads to seven potential rules:

If humidity = normal and windy = false then play = yes  	  4/4
If humidity = normal and play = yes then windy = false     4/6
If windy = false and play = yes then humidity = normal  	  4/6
If humidity = normal then windy = false and play = yes  	  4/7
If windy = false then humidity = normal and play = yes  	  4/8
If play = yes then humidity = normal and windy = false  	  4/9
If – then humidity = normal and windy = false and play = yes    4/14

The figures at the right in this list show the number of instances for which all 
three conditions are true—that is, the coverage—divided by the number of instances 
for which the conditions in the antecedent are true. Interpreted as a fraction, 
they represent the proportion of instances on which the rule is correct—that is, 
its accuracy. Assuming that the minimum specified accuracy is 100%, only the 
first of these rules will make it into the final rule set. The denominators of the 
fractions are readily obtained by looking up the antecedent expression in Table 
4.10 (although some are not shown in the table). The final rule above has no 
conditions in the antecedent, and its denominator is the total number of instances 
in the dataset.

Table 4.11 shows the final rule set for the weather data, with minimum cover-
age 2 and minimum accuracy 100%, sorted by coverage. There are 58 rules, 3 
with coverage 4, 5 with coverage 3, and 50 with coverage 2. Only 7 have two 
conditions in the consequent, and none has more than two. The first rule comes 
from the item set described previously. Sometimes several rules arise from the 
same item set. For example, rules 9, 10, and 11 all arise from the four-item set in 
row 6 of Table 4.10:

temperature = cool, humidity = normal, windy = false, play = yes

which has coverage 2. Three subsets of this item set also have coverage 2:

temperature = cool, windy = false
temperature = cool, humidity = normal, windy = false
temperature = cool, windy = false, play = yes

and these lead to rules 9, 10, and 11, all of which are 100% accurate (on the training 
data).
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Table 4.11  Association Rules for Weather Data

Association Rule Coverage Accuracy

1 humidity = normal 
windy = false ⇒ play = yes

4 100%

2 temperature = cool ⇒ 
humidity = normal

4 100%

3 outlook = overcast ⇒ play = yes 4 100%
4 temperature = cool 

play = yes ⇒ humidity = normal
3 100%

5 outlook = rainy 
windy = false ⇒ play = yes

3 100%

6 outlook = rainy 
play = yes ⇒ windy = false

3 100%

7 outlook = sunny 
humidity = high ⇒ play = no

3 100%

8 outlook = sunny 
play = no ⇒ humidity = high

3 100%

9 temperature = cool 
windy = false ⇒ humidity = normal 
play = yes

2 100%

10 temperature = cool 
humidity = normal 
windy = false ⇒ play = yes

2 100%

11 temperature = cool 
windy = false 
play = yes ⇒ humidity = normal

2 100%

12 outlook = rainy 
humidity = normal 
windy = false ⇒ play = yes

2 100%

13 outlook = rainy 
humidity = normal 
play = yes ⇒ windy = false

2 100%

14 outlook = rainy 
temperature = mild 
windy = false ⇒ play = yes

2 100%

15 outlook = rainy 
temperature = mild 
play = yes ⇒ windy = false

2 100%

16 temperature = mild 
windy = false 
play = yes ⇒ outlook = rainy

2 100%

17 outlook = overcast 
temperature = hot ⇒ windy = false 
play = yes

2 100%

18 outlook = overcast 
windy = false ⇒ temperature = hot 
play = yes

2 100%
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Association Rule Coverage Accuracy

19 temperature = hot 
play = yes ⇒ outlook = overcast 
windy = false

2 100%

20 outlook = overcast 
temperature = hot 
windy = false ⇒ play = yes

2 100%

21 outlook = overcast 
temperature = hot 
play = yes ⇒ windy = false

2 100%

22 outlook = overcast 
windy = false 
play = yes ⇒ temperature = hot

2 100%

23 temperature = hot 
windy = false 
play = yes ⇒ outlook = overcast

2 100%

24 windy = false 
play = no ⇒ outlook = sunny 
humidity = high

2 100%

25 outlook = sunny 
humidity = high 
windy = false ⇒ play = no

2 100%

26 outlook = sunny 
windy = false 
play = no ⇒ humidity = high

2 100%

27 humidity = high 
windy = false 
play = no ⇒ outlook = sunny

2 100%

28 outlook = sunny 
temperature = hot ⇒ 
humidity = high 
play = no

2 100%

29 temperature = hot 
play = no ⇒ outlook = sunny 
humidity = high

2 100%

30 outlook = sunny 
temperature = hot 
humidity = high ⇒ play = no

2 100%

31 outlook = sunny 
temperature = hot 
play = no ⇒ humidity = high

2 100%

… … … …
58 outlook = sunny 

temperature = hot ⇒ 
humidity = high

2 100%

Table 4.11  Continued
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Generating Rules Efficiently
We now consider in more detail an algorithm for producing association rules with 
specified minimum coverage and accuracy. There are two stages: generating item 
sets with the specified minimum coverage, and from each item set determining the 
rules that have the specified minimum accuracy.

The first stage proceeds by generating all one-item sets with the given minimum 
coverage (the first column of Table 4.10) and then using this to generate the two-item 
sets (second column), three-item sets (third column), and so on. Each operation 
involves a pass through the dataset to count the items in each set, and after the pass 
the surviving item sets are stored in a hash table—a standard data structure that 
allows elements stored in it to be found very quickly. From the one-item sets, can-
didate two-item sets are generated, and then a pass is made through the dataset, 
counting the coverage of each two-item set; at the end the candidate sets with less 
than minimum coverage are removed from the table. The candidate two-item sets 
are simply all of the one-item sets taken in pairs, because a two-item set cannot have 
the minimum coverage unless both its constituent one-item sets have the minimum 
coverage, too. This applies in general: A three-item set can only have the minimum 
coverage if all three of its two-item subsets have minimum coverage as well, and 
similarly for four-item sets.

An example will help to explain how candidate item sets are generated. Suppose 
there are five three-item sets—(A B C), (A B D), (A C D), (A C E), and (B C D)—
where, for example, A is a feature such as outlook = sunny. The union of the first 
two, (A B C D), is a candidate four-item set because its other three-item subsets (A 
C D) and (B C D) have greater than minimum coverage. If the three-item sets are 
sorted into lexical order, as they are in this list, then we need only consider pairs 
with the same first two members. For example, we do not consider (A C D) and (B 
C D) because (A B C D) can also be generated from (A B C) and (A B D), and if 
these two are not candidate three-item sets, then (A B C D) cannot be a candidate 
four-item set. This leaves the pairs (A B C) and (A B D), which we have already 
explained, and (A C D) and (A C E). This second pair leads to the set (A C D E) 
whose three-item subsets do not all have the minimum coverage, so it is discarded. 
The hash table assists with this check: We simply remove each item from the set in 
turn and check that the remaining three-item set is indeed present in the hash table. 
Thus, in this example there is only one candidate four-item set, (A B C D). Whether 
or not it actually has minimum coverage can only be determined by checking the 
instances in the dataset.

The second stage of the procedure takes each item set and generates rules from 
it, checking that they have the specified minimum accuracy. If only rules with a 
single test on the right side were sought, it would be simply a matter of considering 
each condition in turn as the consequent of the rule, deleting it from the item set, 
and dividing the coverage of the entire item set by the coverage of the resulting 
subset—obtained from the hash table—to yield the accuracy of the corresponding 
rule. Given that we are also interested in association rules with multiple tests in the 
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consequent, it looks like we have to evaluate the effect of placing each subset of the 
item set on the right side, leaving the remainder of the set as the antecedent.

This brute-force method will be excessively computation intensive unless item 
sets are small, because the number of possible subsets grows exponentially with the 
size of the item set. However, there is a better way. We observed when describing 
association rules in Section 3.4 that if the double-consequent rule

If windy = false and play = no
	 then outlook = sunny and humidity = high

holds with a given minimum coverage and accuracy, then both single-consequent 
rules formed from the same item set must also hold:

If humidity = high and windy = false and play = no 
	 then outlook = sunny
If outlook = sunny and windy = false and play = no 
	 then humidity = high

Conversely, if one or other of the single-consequent rules does not hold, there is 
no point in considering the double-consequent one. This gives a way of building up 
from single-consequent rules to candidate double-consequent ones, from double-
consequent rules to candidate triple-consequent ones, and so on. Of course, each 
candidate rule must be checked against the hash table to see if it really does have 
more than the specified minimum accuracy. But this generally involves checking far 
fewer rules than the brute-force method. It is interesting that this way of building 
up candidate (n + 1)-consequent rules from actual n-consequent ones is really just 
the same as building up candidate (n + 1)-item sets from actual n-item sets, described 
earlier.

Discussion
Association rules are often sought for very large datasets, and efficient algorithms 
are highly valued. The method we have described makes one pass through the 
dataset for each different size of item set. Sometimes the dataset is too large to 
read in to main memory and must be kept on disk; then it may be worth reducing 
the number of passes by checking item sets of two consecutive sizes at the same 
time. For example, once sets with two items have been generated, all sets of three 
items could be generated from them before going through the instance set to count 
the actual number of items in the sets. More three-item sets than necessary would 
be considered, but the number of passes through the entire dataset would be reduced.

In practice, the amount of computation needed to generate association rules 
depends critically on the minimum coverage specified. The accuracy has less influ-
ence because it does not affect the number of passes that must be made through the 
dataset. In many situations we would like to obtain a certain number of rules—say 
50—with the greatest possible coverage at a prespecified minimum accuracy level. 
One way to do this is to begin by specifying the coverage to be rather high and to 
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then successively reduce it, reexecuting the entire rule-finding algorithm for each  
of the coverage values and repeating until the desired number of rules has been 
generated.

The tabular input format that we use throughout this book, and in particular the 
standard ARFF format based on it, is very inefficient for many association-rule 
problems. Association rules are often used in situations where attributes are binary—
either present or absent—and most of the attribute values associated with a given 
instance are absent. This is a case for the sparse data representation described in 
Section 2.4; the same algorithm for finding association rules applies.

4.6  LINEAR MODELS
The methods we have been looking at for decision trees and rules work most natu-
rally with nominal attributes. They can be extended to numeric attributes either by 
incorporating numeric-value tests directly into the decision tree or rule-induction 
scheme, or by prediscretizing numeric attributes into nominal ones. We will see how 
in Chapters 6 and 7, respectively. However, there are methods that work most natu-
rally with numeric attributes, namely the linear models introduced in Section 3.2; 
we examine them in more detail here. They can form components of more complex 
learning methods, which we will investigate later.

Numeric Prediction: Linear Regression
When the outcome, or class, is numeric, and all the attributes are numeric, linear 
regression is a natural technique to consider. This is a staple method in statistics. 
The idea is to express the class as a linear combination of the attributes, with pre-
determined weights:

x w w a w a w ak k= + + + +0 1 1 2 2 …

where x is the class; a1, a2, …, ak are the attribute values; and w0, w1, …, wk are 
weights.

The weights are calculated from the training data. Here the notation gets a little heavy, 
because we need a way of expressing the attribute values for each training instance. The 
first instance will have a class, say x(1), and attribute values a1

(1), a2
(1), … , ak

(1), where the 
superscript denotes that it is the first example. Moreover, it is notationally convenient to 
assume an extra attribute a0, with a value that is always 1.

The predicted value for the first instance’s class can be written as

w a w a w a w a w ak k j j
j

k

0 0
1

1 1
1

2 2
1 1 1

0

( ) ( ) ( ) ( ) ( )+ + + + =
=
∑…

This is the predicted, not the actual, value for the class. Of interest is the difference 
between the predicted and actual values. The method of linear regression is to choose the 
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coefficients wj —there are k + 1 of them—to minimize the sum of the squares of these 
differences over all the training instances. Suppose there are n training instances; denote 
the ith one with a superscript (i). Then the sum of the squares of the differences is

x w ai
j j

i

j

k

i

n
( ) ( )−





==

∑∑
01

2

where the expression inside the parentheses is the difference between the ith instance’s 
actual class and its predicted class. This sum of squares is what we have to minimize by 
choosing the coefficients appropriately.

This is all starting to look rather formidable. However, the minimization technique is 
straightforward if you have the appropriate math background. Suffice it to say that given 
enough examples—roughly speaking, more examples than attributes—choosing weights to 
minimize the sum of the squared differences is really not difficult. It does involve a matrix 
inversion operation, but this is readily available as prepackaged software.

Once the math has been accomplished, the result is a set of numeric weights, 
based on the training data, which can be used to predict the class of new instances. 
We saw an example of this when looking at the CPU performance data, and the 
actual numeric weights are given in Figure 3.4(a) (page 68). This formula can be 
used to predict the CPU performance of new test instances.

Linear regression is an excellent, simple method for numeric prediction, and it 
has been widely used in statistical applications for decades. Of course, linear models 
suffer from the disadvantage of, well, linearity. If the data exhibits a nonlinear 
dependency, the best-fitting straight line will be found, where “best” is interpreted 
as the least mean-squared difference. This line may not fit very well. However, linear 
models serve well as building blocks for more complex learning methods.

Linear Classification: Logistic Regression
Linear regression can easily be used for classification in domains with numeric 
attributes. Indeed, we can use any regression technique, whether linear or nonlinear, 
for classification. The trick is to perform a regression for each class, setting the 
output equal to 1 for training instances that belong to the class and 0 for those that 
do not. The result is a linear expression for the class. Then, given a test example of 
unknown class, calculate the value of each linear expression and choose the one that 
is largest. This scheme is sometimes called multiresponse linear regression.

One way of looking at multiresponse linear regression is to imagine that it 
approximates a numeric membership function for each class. The membership func-
tion is 1 for instances that belong to that class and 0 for other instances. Given a 
new instance, we calculate its membership for each class and select the biggest.

Multiresponse linear regression often yields good results in practice. However, 
it has two drawbacks. First, the membership values it produces are not proper prob-
abilities because they can fall outside the range 0 to 1. Second, least-squares regres-
sion assumes that the errors are not only statistically independent but are also 
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Suppose first that there are only two classes. Logistic regression replaces the original 
target variable

Pr[ | , , , ]1 1 2a a ak…

which cannot be approximated accurately using a linear function, by

log[Pr[ | , , , ] ( Pr[ | , , , ])]1 1 11 2 1 2a a a a a ak k… …−

The resulting values are no longer constrained to the interval from 0 to 1 but can lie 
anywhere between negative infinity and positive infinity. Figure 4.9(a) plots the 
transformation function, which is often called the logit transformation.

The transformed variable is approximated using a linear function just like the ones 
generated by linear regression. The resulting model is

Pr[ | , , , ] ( exp( ))1 1 11 2 0 1 1a a a w w a w ak… …= + − − − − k k

with weights w. Figure 4.9(b) shows an example of this function in one dimension, with 
two weights w0 = –1.25 and w1 = 0.5.

Just as in linear regression, weights must be found that fit the training data well. 
Linear regression measures goodness of fit using the squared error. In logistic regression 
the log-likelihood of the model is used instead. This is given by

( )log( Pr[ | , , , ]) log(Pr[ |( ) ( ) ( ) ( ) ( ) (1 1 1 11
1

2
2

1
1− − +x a a a x ai

k
k i… )) ( ) ( ), , , ])a ak

k

i

n

2
2

1

…
=
∑  

where the x(i) are either 0 or 1.
The weights wi need to be chosen to maximize the log-likelihood. There are several 

methods for solving this maximization problem. A simple one is to iteratively solve a 
sequence of weighted least-squares regression problems until the log-likelihood converges 
to a maximum, which usually happens in a few iterations.

To generalize logistic regression to several classes, one possibility is to proceed in the 
way described above for multiresponse linear regression by performing logistic regression 
independently for each class. Unfortunately, the resulting probability estimates will not 
sum to 1. To obtain proper probabilities it is necessary to couple the individual models for 
each class. This yields a joint optimization problem, and there are efficient solution 
methods for this.

normally distributed with the same standard deviation, an assumption that is bla-
tently violated when the method is applied to classification problems because the 
observations only ever take on the values 0 and 1.

A related statistical technique called logistic regression does not suffer from these 
problems. Instead of approximating the 0 and 1 values directly, thereby risking 
illegitimate probability values when the target is overshot, logistic regression builds 
a linear model based on a transformed target variable.

The use of linear functions for classification can easily be visualized in instance 
space. The decision boundary for two-class logistic regression lies where the predic-
tion probability is 0.5—that is:

Pr[ | , , , ] ( exp( )) .1 1 1 0 51 2 0 1 1a a a w w a w ak… …= + − − − − =k k
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FIGURE 4.9 

Logistic regression: (a) the logit transformation and (b) example logistic regression function. 
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Because this is a linear equality in the attribute values, the boundary is a plane, or 
hyperplane, in instance space. It is easy to visualize sets of points that cannot be 
separated by a single hyperplane, and these cannot be discriminated correctly by 
logistic regression.

Multiresponse linear regression suffers from the same problem. Each class 
receives a weight vector calculated from the training data. Focus for the moment on 
a particular pair of classes. Suppose the weight vector for class 1 is

w w a w a w ak k0
1

1
1

1 2
1

2
1( ) ( ) ( ) ( )+ + +…+

and the same for class 2 with appropriate superscripts. Then an instance will be 
assigned to class 1 rather than class 2 if

w w a w a w w a w ak k k k0
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In other words, it will be assigned to class 1 if

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )w w w w a w w ak k k0
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This is a linear inequality in the attribute values, so the boundary between each pair 
of classes is a hyperplane.

Linear Classification Using the Perceptron
Logistic regression attempts to produce accurate probability estimates by maximiz-
ing the probability of the training data. Of course, accurate probability estimates 
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lead to accurate classifications. However, it is not necessary to perform probability 
estimation if the sole purpose of the model is to predict class labels. A different 
approach is to learn a hyperplane that separates the instances pertaining to the dif-
ferent classes—let’s assume that there are only two of them. If the data can be sepa-
rated perfectly into two groups using a hyperplane, it is said to be linearly separable. 
It turns out that if the data is linearly separable, there is a very simple algorithm for 
finding a separating hyperplane.

The algorithm is called the perceptron learning rule. Before looking at it in detail, 
let’s examine the equation for a hyperplane again:

w a w a w a w ak k0 0 1 1 2 2 0+ + +…+ =

Here, a1, a2, … , ak are the attribute values, and w0, w1, … , wk are the weights that 
define the hyperplane. We will assume that each training instance a1, a2, … is 
extended by an additional attribute a0 that always has the value 1 (as we did in the 
case of linear regression). This extension, which is called the bias, just means that 
we don’t have to include an additional constant element in the sum. If the sum is 
greater than 0, we will predict the first class; otherwise, we will predict the second 
class. We want to find values for the weights so that the training data is correctly 
classified by the hyperplane.

Figure 4.10(a) gives the perceptron learning rule for finding a separating hyper-
plane. The algorithm iterates until a perfect solution has been found, but it will 
only work properly if a separating hyperplane exists—that is, if the data is linearly 
separable. Each iteration goes through all the training instances. If a misclassified 
instance is encountered, the parameters of the hyperplane are changed so that the 
misclassified instance moves closer to the hyperplane or maybe even across the 
hyperplane onto the correct side. If the instance belongs to the first class, this is 
done by adding its attribute values to the weight vector; otherwise, they are 
subtracted from it.

To see why this works, consider the situation after an instance a pertaining to 
the first class has been added:

( ) ( ) ( ) ( )w a a w a a w a a w a ak k k0 0 0 1 1 1 2 2 2+ + + + + + + +…

This means that the output for a has increased by

a a a a a a a ak k0 0 1 1 2 2× + × + × +…+ ×

This number is always positive. Thus, the hyperplane has moved in the correct 
direction for classifying instance a as positive. Conversely, if an instance belonging 
to the second class is misclassified, the output for that instance decreases after the 
modification, again moving the hyperplane in the correct direction.

These corrections are incremental, and can interfere with earlier updates. 
However, it can be shown that the algorithm converges in a finite number of itera-
tions if the data is linearly separable. Of course, if the data is not linearly separable, 
the algorithm will not terminate, so an upper bound needs to be imposed on the 
number of iterations when this method is applied in practice.
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FIGURE 4.10 

The perceptron: (a) learning rule, and (b) representation as a neural network. 
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The resulting hyperplane is called a perceptron, and it’s the grandfather of neural 
networks (we return to neural networks in Section 6.4). Figure 4.10(b) represents 
the perceptron as a graph with nodes and weighted edges, imaginatively termed a 
“network” of “neurons.” There are two layers of nodes: input and output. The input 
layer has one node for every attribute, plus an extra node that is always set to 1.  
The output layer consists of just one node. Every node in the input layer is connected 
to the output layer. The connections are weighted, and the weights are those numbers 
found by the perceptron learning rule.

When an instance is presented to the perceptron, its attribute values serve to 
“activate” the input layer. They are multiplied by the weights and summed up at the 
output node. If the weighted sum is greater than 0 the output signal is 1, representing 
the first class; otherwise, it is –1, representing the second.

Linear Classification Using Winnow
The perceptron algorithm is not the only method that is guaranteed to find a sepa-
rating hyperplane for a linearly separable problem. For datasets with binary attri-
butes there is an alternative known as Winnow, which is illustrated in Figure 4.11(a). 
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FIGURE 4.11 

The Winnow algorithm: (a) unbalanced version and (b) balanced version.  

The structure of the two algorithms is very similar. Like the perceptron, Winnow 
only updates the weight vector when a misclassified instance is encountered—it is 
mistake driven.

The two methods differ in how the weights are updated. The perceptron rule 
employs an additive mechanism that alters the weight vector by adding (or subtract-
ing) the instance’s attribute vector. Winnow employs multiplicative updates and 
alters weights individually by multiplying them by a user-specified parameter α (or 
its inverse). The attribute values ai are either 0 or 1 because we are working with 
binary data. Weights are unchanged if the attribute value is 0, because then they do 
not participate in the decision. Otherwise, the multiplier is α if that attribute helps 
to make a correct decision and 1/α if it does not.

Another difference is that the threshold in the linear function is also a user-
specified parameter. We call this threshold θ and classify an instance as belonging 
to class 1 if and only if

w a w a w a w ak k0 0 1 1 2 2+ + + + >… θ
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The multiplier α needs to be greater than 1, and the wi are set to a constant at 
the start.

The algorithm we have described doesn’t allow for negative weights, which—
depending on the domain—can be a drawback. However, there is a version, called 
Balanced Winnow, which does allow them. This version maintains two weight 
vectors, one for each class. An instance is classified as belonging to class 1 if

( ) ( ) ( )w w a w w a w w ak k k0 0 0 1 1 1
+ − + − + −− + − +…+ − > θ

Figure 4.11(b) shows the balanced algorithm.
Winnow is very effective in homing in on the relevant features in a dataset; 

therefore, it is called an attribute-efficient learner. That means that it may be a good 
candidate algorithm if a dataset has many (binary) features and most of them are 
irrelevant. Both Winnow and the perceptron algorithm can be used in an online 
setting in which new instances arrive continuously, because they can incrementally 
update their hypotheses as new instances arrive.

4.7  INSTANCE-BASED LEARNING
In instance-based learning the training examples are stored verbatim, and a distance 
function is used to determine which member of the training set is closest to an 
unknown test instance. Once the nearest training instance has been located, its class 
is predicted for the test instance. The only remaining problem is defining the distance 
function, and that is not very difficult to do, particularly if the attributes are numeric.

Distance Function
Although there are other possible choices, most instance-based learners use Euclid-
ean distance. The distance between an instance with attribute values a1

(1), a2
(1), … , 

ak
(1) (where k is the number of attributes) and one with values a1

(2), a2
(2), … , ak

(2) is 
defined as
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When comparing distances it is not necessary to perform the square root 
operation—the sums of squares can be compared directly. One alternative to the 
Euclidean distance is the Manhattan, or city-block, metric, where the difference 
between attribute values is not squared but just added up (after taking the absolute 
value). Others are obtained by taking powers higher than the square. Higher powers 
increase the influence of large differences at the expense of small differences. Gener-
ally, the Euclidean distance represents a good compromise. Other distance metrics 
may be more appropriate in special circumstances. The key is to think of actual 
instances and what it means for them to be separated by a certain distance—what 
would twice that distance mean, for example?
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Different attributes are often measured on different scales, so if the Euclidean 
distance formula were used directly, the effect of some attributes might be com-
pletely dwarfed by others that had larger scales of measurement. Consequently, it is 
usual to normalize all attribute values to lie between 0 and 1 by calculating

a
v v

v v
i

i i

i i

= −
−
min

max min

where vi is the actual value of attribute i, and the maximum and minimum are taken 
over all instances in the training set.

These formulae implicitly assume numeric attributes. Here the difference between 
two values is just the numerical difference between them, and it is this difference 
that is squared and added to yield the distance function. For nominal attributes that 
take on values that are symbolic rather than numeric, the difference between two 
values that are not the same is often taken to be 1, whereas if the values are the same 
the difference is 0. No scaling is required in this case because only the values 0 and 
1 are used.

A common policy for handling missing values is as follows. For nominal attri-
butes, assume that a missing feature is maximally different from any other feature 
value. Thus, if either or both values are missing, or if the values are different, the 
difference between them is taken as 1; the difference is 0 only if they are not missing 
and both are the same. For numeric attributes, the difference between two missing 
values is also taken as 1. However, if just one value is missing, the difference is 
often taken as either the (normalized) size of the other value or 1 minus that size, 
whichever is larger. This means that if values are missing, the difference is as large 
as it can possibly be.

Finding Nearest Neighbors Efficiently
Although instance-based learning is simple and effective, it is often slow. The 
obvious way to find which member of the training set is closest to an unknown 
test instance is to calculate the distance from every member of the training set 
and select the smallest. This procedure is linear in the number of training 
instances. In other words, the time it takes to make a single prediction is pro-
portional to the number of training instances. Processing an entire test set takes 
time proportional to the product of the number of instances in the training and 
test sets.

Nearest neighbors can be found more efficiently by representing the training set 
as a tree, although it is not quite obvious how. One suitable structure is a kD-tree. 
This is a binary tree that divides the input space with a hyperplane and then splits 
each partition again, recursively. All splits are made parallel to one of the axes, either 
vertically or horizontally, in the two-dimensional case. The data structure is called 
a kD-tree because it stores a set of points in k-dimensional space, with k being the 
number of attributes.



FIGURE 4.12 

A kD-tree for four training instances: (a) the tree and (b) instances and splits. 
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Figure 4.12(a) gives a small example with k = 2, and Figure 4.12(b) shows the 
four training instances it represents, along with the hyperplanes that constitute the 
tree. Note that these hyperplanes are not decision boundaries: Decisions are made 
on a nearest-neighbor basis as explained later. The first split is horizontal (h), through 
the point (7,4)—this is the tree’s root. The left branch is not split further: It contains 
the single point (2,2), which is a leaf of the tree. The right branch is split vertically 
(v) at the point (6,7). Its right child is empty, and its left child contains the point 
(3,8). As this example illustrates, each region contains just one point—or, perhaps, 
no points. Sibling branches of the tree—for example, the two daughters of the root 
in Figure 4.12(a)—are not necessarily developed to the same depth. Every point in 
the training set corresponds to a single node, and up to half are leaf nodes.

How do you build a kD-tree from a dataset? Can it be updated efficiently as new 
training examples are added? And how does it speed up nearest-neighbor calcula-
tions? We tackle the last question first.

To locate the nearest neighbor of a given target point, follow the tree down from 
its root to locate the region containing the target. Figure 4.13 shows a space like that 
of Figure 4.12(b) but with a few more instances and an extra boundary. The target, 
which is not one of the instances in the tree, is marked by a star. The leaf node of 
the region containing the target is colored black. This is not necessarily the target’s 
closest neighbor, as this example illustrates, but it is a good first approximation. In 
particular, any nearer neighbor must lie closer—within the dashed circle in Figure 
4.13. To determine whether one exists, first check whether it is possible for a closer 
neighbor to lie within the node’s sibling. The black node’s sibling is shaded in Figure 
4.13, and the circle does not intersect it, so the sibling cannot contain a closer 
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FIGURE 4.13 

Using a kD-tree to find the nearest neighbor of the star. 

neighbor. Then back up to the parent node and check its sibling, which here covers 
everything above the horizontal line. In this case it must be explored because the 
area it covers intersects with the best circle so far. To explore it, find its daughters 
(the original point’s two aunts); check whether they intersect the circle (the left one 
does not, but the right one does); and descend to see if it contains a closer point  
(it does).

In a typical case, this algorithm is far faster than examining all points to find the 
nearest neighbor. The work involved in finding the initial approximate nearest 
neighbor—the black point in Figure 4.13—depends on the depth of the tree, given 
by the logarithm of the number of nodes, log2n if the tree is well balanced. The 
amount of work involved in backtracking to check whether this really is the nearest 
neighbor depends a bit on the tree, and on how good the initial approximation is. 
But for a well-constructed tree with nodes that are approximately square rather than 
long skinny rectangles, it can also be shown to be logarithmic in the number of nodes 
(if the number of attributes in the dataset is not too large).

How do you build a good tree for a set of training examples? The problem boils 
down to selecting the first training instance to split at and the direction of the split. 
Once you can do that, apply the same method recursively to each child of the initial 
split to construct the entire tree.



To find a good direction for the split, calculate the variance of the data points 
along each axis individually, select the axis with the greatest variance, and create a 
splitting hyperplane perpendicular to it. To find a good place for the hyperplane, 
locate the median value along that axis and select the corresponding point. This 
makes the split perpendicular to the direction of greatest spread, with half the points 
lying on either side. This produces a well-balanced tree. To avoid long skinny 
regions it is best for successive splits to be along different axes, which is likely 
because the dimension of greatest variance is chosen at each stage. However, if the 
distribution of points is badly skewed, choosing the median value may generate 
several successive splits in the same direction, yielding long, skinny hyperrectangles. 
A better strategy is to calculate the mean rather than the median and use the point 
closest to that. The tree will not be perfectly balanced, but its regions will tend to 
be squarish because there is a greater chance that different directions will be chosen 
for successive splits.

An advantage of instance-based learning over most other machine learning 
methods is that new examples can be added to the training set at any time. To retain 
this advantage when using a kD-tree, we need to be able to update it incrementally 
with new data points. To do this, determine which leaf node contains the new point 
and find its hyperrectangle. If it is empty, simply place the new point there. Other-
wise, split the hyperrectangle along its longest dimension to preserve squareness. 
This simple heuristic does not guarantee that adding a series of points will preserve 
the tree’s balance, nor that the hyperrectangles will be well shaped for a nearest-
neighbor search. It is a good idea to rebuild the tree from scratch occasionally—for 
example, when its depth grows to twice the best possible depth.

As we have seen, kD-trees are good data structures for finding nearest neighbors 
efficiently. However, they are not perfect. Skewed datasets present a basic conflict 
between the desire for the tree to be perfectly balanced and the desire for regions to 
be squarish. More important, rectangles—even squares—are not the best shape to 
use anyway, because of their corners. If the dashed circle in Figure 4.13 were any 
bigger, which it would be if the black instance were a little further from the target, 
it would intersect the lower right corner of the rectangle at the top left and then that 
rectangle would have to be investigated, too—despite the fact that the training 
instances that define it are a long way from the corner in question. The corners of 
rectangular regions are awkward.

The solution? Use hyperspheres, not hyperrectangles. Neighboring spheres may 
overlap, whereas rectangles can abut, but this is not a problem because the nearest-
neighbor algorithm for kD-trees does not depend on the regions being disjoint. A 
data structure called a ball tree defines k-dimensional hyperspheres (“balls”) that 
cover the data points, and arranges them into a tree.

Figure 4.14(a) shows 16 training instances in two-dimensional space, overlaid 
by a pattern of overlapping circles, and Figure 4.14(b) shows a tree formed from 
these circles. Circles at different levels of the tree are indicated by different styles 
of dash, and the smaller circles are drawn in shades of gray. Each node of the tree 
represents a ball, and the node is dashed or shaded according to the same convention 

	 4.7  Instance-Based Learning� 135



136	 CHAPTER 4  Algorithms: The Basic Methods 

FIGURE 4.14 

Ball tree for 16 training instances: (a) instances and balls and (b) the tree. 
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so that you can identify which level the balls are at. To help you understand the tree, 
numbers are placed on the nodes to show how many data points are deemed to be 
inside that ball. But be careful: This is not necessarily the same as the number of 
points falling within the spatial region that the ball represents. The regions at each 
level sometimes overlap, but points that fall into the overlap area are assigned to 
only one of the overlapping balls (the diagram does not show which one). Instead 
of the occupancy counts in Figure 4.14(b), the nodes of actual ball trees store the 
center and radius of their ball; leaf nodes record the points they contain as well.

To use a ball tree to find the nearest neighbor to a given target, start by traversing 
the tree from the top down to locate the leaf that contains the target and find the 
closest point to the target in that ball. This gives an upper bound for the target’s 
distance from its nearest neighbor. Then, just as for the kD-tree, examine the sibling 
node. If the distance from the target to the sibling’s center exceeds its radius plus 
the current upper bound, it cannot possibly contain a closer point; otherwise, the 
sibling must be examined by descending the tree further.

In Figure 4.15 the target is marked with a star and the black dot is its closest cur-
rently known neighbor. The entire contents of the gray ball can be ruled out: It cannot 
contain a closer point because its center is too far away. Proceed recursively back up 
the tree to its root, examining any ball that may possibly contain a point nearer than 
the current upper bound.

Ball trees are built from the top down, and as with kD-trees the basic problem is 
to find a good way of splitting a ball containing a set of data points into two. In prac-
tice, you do not have to continue until the leaf balls contain just two points: You can 
stop earlier, once a predetermined minimum number is reached—and the same goes 
for kD-trees. Here is one possible splitting method. Choose the point in the ball that 



FIGURE 4.15 

Ruling out an entire ball (the gray one) based 
on a target point (star) and its current nearest 
neighbor. 

is farthest from its center, and then 
a second point that is farthest from 
the first one. Assign all data points 
in the ball to the closest one of these 
two cluster centers; then compute 
the centroid of each cluster and the 
minimum radius required for it to 
enclose all the data points it repre-
sents. This method has the merit 
that the cost of splitting a ball con-
taining n points is only linear in 
n. There are more elaborate algo-
rithms that produce tighter balls, 
but they require more computation. 
We will not describe sophisticated 
algorithms for constructing ball 
trees or updating them incremen-
tally as new training instances are 
encountered.

Discussion
Nearest-neighbor instance-based learning is simple and often works very well. In 
the scheme we have described, each attribute has exactly the same influence on the 
decision, just as it does in the Naïve Bayes method. Another problem is that the 
database can easily become corrupted by noisy exemplars. One solution is to adopt 
the k-nearest-neighbor strategy, where some fixed, small number k of nearest 
neighbors—say five—are located and used together to determine the class of the test 
instance through a simple majority vote. (Note that earlier we used k to denote the 
number of attributes; this is a different, independent usage.) Another way of proofing 
the database against noise is to choose the exemplars that are added to it selectively 
and judiciously. Improved procedures, which are described in Chapter 6, address 
these shortcomings.

The nearest-neighbor method originated many decades ago, and statisticians 
analyzed k-nearest-neighbor schemes in the early 1950s. If the number of training 
instances is large, it makes intuitive sense to use more than one nearest neighbor, 
but clearly this is dangerous if there are few instances. It can be shown that when k 
and the number n of instances both become infinite in such a way that k/n → 0, the 
probability of error approaches the theoretical minimum for the dataset. The nearest-
neighbor method was adopted as a classification scheme in the early 1960s and has 
been widely used in the field of pattern recognition for almost half a century.

Nearest-neighbor classification was notoriously slow until kD-trees began to be 
applied in the early 1990s, although the data structure itself was developed much 
earlier. In practice, these trees become inefficient when the dimension of the space 
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increases and they are only worthwhile when the number of attributes is small—up 
to 10. Ball trees were developed much more recently and are an instance of a more 
general structure called a metric tree. Sophisticated algorithms can create metric 
trees that deal successfully with thousands of dimensions.

Instead of storing all training instances, you can compress them into regions. A 
very simple technique, mentioned at the end of Section 4.1, is to just record the 
range of values observed in the training data for each attribute and category. Given 
a test instance, you work out which ranges the attribute values fall into and choose 
the category with the greatest number of correct ranges for that instance. A slightly 
more elaborate technique is to construct intervals for each attribute and use the 
training set to count the number of times each class occurs for each interval on each 
attribute. Numeric attributes can be discretized into intervals, and “intervals” con-
sisting of a single point can be used for nominal ones. Then, given a test instance, 
you can determine which intervals the instance resides in and classify it by voting, 
a method called voting feature intervals. These methods are very approximate, but 
very fast, and can be useful for initial analysis of large datasets.

4.8  CLUSTERING
Clustering techniques apply when there is no class to be predicted but the 
instances are to be divided into natural groups. These clusters presumably reflect 
some mechanism that is at work in the domain from which instances are drawn, 
a mechanism that causes some instances to bear a stronger resemblance to each 
other than they do to the remaining instances. Clustering naturally requires dif-
ferent techniques to the classification and association learning methods that we 
have considered so far.

As we saw in Section 3.6, there are different ways in which the result of cluster-
ing can be expressed. The groups that are identified may be exclusive: Any instance 
belongs in only one group. Or they may be overlapping: An instance may fall into 
several groups. Or they may be probabilistic: An instance belongs to each group 
with a certain probability. Or they may be hierarchical: A rough division of instances 
into groups at the top level and each group refined further—perhaps all the way 
down to individual instances. Really, the choice among these possibilities should be 
dictated by the nature of the mechanisms that are thought to underlie the particular 
clustering phenomenon. However, because these mechanisms are rarely known—the 
very existence of clusters is, after all, something that we’re trying to discover—and 
for pragmatic reasons too, the choice is usually dictated by the clustering tools that 
are available.

We will examine an algorithm that works in numeric domains, partitioning 
instances into disjoint clusters. Like the basic nearest-neighbor method of instance-
based learning, it is a simple and straightforward technique that has been used for 
several decades. In Chapter 6 we examine newer clustering methods that perform 
incremental and probabilistic clustering.
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Iterative Distance-Based Clustering
The classic clustering technique is called k-means. First, you specify in advance how 
many clusters are being sought: This is the parameter k. Then k points are chosen 
at random as cluster centers. All instances are assigned to their closest cluster center 
according to the ordinary Euclidean distance metric. Next the centroid, or mean, of 
the instances in each cluster is calculated—this is the “means” part. These centroids 
are taken to be new center values for their respective clusters. Finally, the whole 
process is repeated with the new cluster centers. Iteration continues until the same 
points are assigned to each cluster in consecutive rounds, at which stage the cluster 
centers have stabilized and will remain the same forever.

This clustering method is simple and effective. It is easy to prove that choosing 
the cluster center to be the centroid minimizes the total squared distance from each 
of the cluster’s points to its center. Once the iteration has stabilized, each point is 
assigned to its nearest cluster center, so the overall effect is to minimize the total 
squared distance from all points to their cluster centers. But the minimum is a local 
one; there is no guarantee that it is the global minimum. The final clusters are quite 
sensitive to the initial cluster centers. Completely different arrangements can arise 
from small changes in the initial random choice. In fact, this is true of all practical 
clustering techniques: It is almost always infeasible to find globally optimal clusters. 
To increase the chance of finding a global minimum people often run the algorithm 
several times with different initial choices and choose the best final result—the one 
with the smallest total squared distance.

It is easy to imagine situations in which k-means fails to find a good clustering. 
Consider four instances arranged at the vertices of a rectangle in two-dimensional 
space. There are two natural clusters, formed by grouping together the two vertices 
at either end of a short side. But suppose the two initial cluster centers happen to 
fall at the midpoints of the long sides. This forms a stable configuration. The two 
clusters each contain the two instances at either end of a long side—no matter how 
great the difference between the long and the short sides.

k-means clustering can be dramatically improved by careful choice of the 
initial cluster centers, often called seeds. Instead of beginning with an arbitrary 
set of seeds, here is a better procedure. Choose the initial seed at random from 
the entire space, with a uniform probability distribution. Then choose the second 
seed with a probability that is proportional to the square of the distance from the 
first. Proceed, at each stage choosing the next seed with a probability proportional 
to the square of the distance from the closest seed that has already been chosen. 
This procedure, called k-means++, improves both speed and accuracy over the 
original algorithm with random seeds.

Faster Distance Calculations
The k-means clustering algorithm usually requires several iterations, each involv-
ing finding the distance of the k cluster centers from every instance to determine 
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its cluster. There are simple approximations that speed this up considerably. For 
example, you can project the dataset and make cuts along selected axes, instead 
of using the arbitrary hyperplane divisions that are implied by choosing the nearest 
cluster center. But this inevitably compromises the quality of the resulting 
clusters.

Here’s a better way of speeding things up. Finding the closest cluster center is 
not so different from finding nearest neighbors in instance-based learning. Can the 
same efficient solutions—kD-trees and ball trees—be used? Yes! Indeed, they can 
be applied in an even more efficient way, because in each iteration of k-means all 
the data points are processed together whereas, in instance-based learning, test 
instances are processed individually.

First, construct a kD-tree or ball tree for all the data points, which will remain 
static throughout the clustering procedure. Each iteration of k-means produces a set 
of cluster centers, and all data points must be examined and assigned to the nearest 
center. One way of processing the points is to descend the tree from the root until 
reaching a leaf and check each individual point in the leaf to find its closest cluster 
center. But it may be that the region represented by a higher interior node falls 
entirely within the domain of a single cluster center. In that case, all the data points 
under that node can be processed in one blow!

The aim of the exercise, after all, is to find new positions for the cluster 
centers by calculating the centroid of the points they contain. The centroid can 
be calculated by keeping a running vector sum of the points in the cluster, and 
a count of how many there are so far. At the end, just divide one by the other 
to find the centroid. Suppose that with each node of the tree we store the vector 
sum of the points within that node and a count of the number of points. If the 
whole node falls within the ambit of a single cluster, the running totals for that 
cluster can be updated immediately. If not, look inside the node by proceeding 
recursively down the tree.

Figure 4.16 shows the same instances and ball tree as in Figure 4.14, but 
with two cluster centers marked as black stars. Because all instances are assigned 
to the closest center, the space is divided in two by the thick line shown in Figure 
4.16(a). Begin at the root of the tree in Figure 4.16(b), with initial values for the 
vector sum and counts for each cluster; all initial values are 0. Proceed recursively 
down the tree. When node A is reached, all points within it lie in cluster 1, so 
cluster 1’s sum and count can be updated with the sum and count for node A, 
and we need not descend any further. Recursing back to node B, its ball straddles 
the boundary between the clusters, so its points must be examined individually. 
When node C is reached, it falls entirely within cluster 2; again, we can update 
cluster 2 immediately and we need not descend any further. The tree is only 
examined down to the frontier marked by the dashed line in Figure 4.16(b), and 
the advantage is that the nodes below need not be opened—at least not on this 
particular iteration of k-means. Next time, the cluster centers will have changed 
and things may be different.
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FIGURE 4.16 

A ball tree: (a) two cluster centers and their dividing line and (b) the corresponding tree. 
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Discussion
Many variants of the basic k-means procedure have been developed. Some produce 
a hierarchical clustering by applying the algorithm with k = 2 to the overall dataset 
and then repeating, recursively, within each cluster.

How do you choose k? Often nothing is known about the likely number of clus-
ters, and the whole point of clustering is to find out. One way is to try different 
values and choose the best. To do this you need to learn how to evaluate the success 
of machine learning, which is what Chapter 5 is about. We return to clustering in 
Section 6.8.

4.9  MULTI-INSTANCE LEARNING
In Chapter 2 we introduced multi-instance learning, where each example in the 
data comprises several different instances. We call these examples bags (we noted 
the difference between bags and sets in Section 4.2). In supervised multi-instance 
learning, a class label is associated with each bag, and the goal of learning is to 
determine how the class can be inferred from the instances that make up the bag. 
While advanced algorithms have been devised to tackle such problems, it turns out 
that the simplicity-first methodology can be applied here with surprisingly good 
results. A simple but effective approach is to manipulate the input data to transform 
it into a single-instance learning problem and then apply standard learning methods, 
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such as the ones described in this chapter. Two such approaches are described in 
the following sections.

Aggregating the Input
You can convert a multiple-instance problem to a single-instance one by calculating 
values such as mean, mode, minimum, and maximum that summarize the instances 
in the bag and adding these as new attributes. Each “summary” instance retains the 
class label of the bag it was derived from. To classify a new bag the same process 
is used: A single aggregated instance is created with attributes that summarize the 
instances in the bag. Surprisingly, for the original drug activity dataset that spurred 
the development of multi-instance learning, results comparable with special-purpose 
multi-instance learners can be obtained using just the minimum and maximum 
values of each attribute for each bag, combined with a support vector machine clas-
sifier (see Chapter 6). One potential drawback of this approach is that the best 
summary statistics to compute depend on the problem at hand. However, the addi-
tional computational cost associated with exploring combinations of different 
summary statistics is offset by the fact that the summarizing process means that 
fewer instances are processed by the learning algorithm.

Aggregating the Output
Instead of aggregating the instances in each bag, another approach is to learn a clas-
sifier directly from the original instances that comprise the bag. To achieve this, the 
instances in a given bag are all assigned the bag’s class label. At classification time, 
a prediction is produced for each instance in the bag to be predicted, and the predic-
tions are aggregated in some fashion to form a prediction for the bag as a whole. 
One approach is to treat the predictions as votes for the various class labels. If the 
classifier is capable of assigning probabilities to the class labels, these could be 
averaged to yield an overall probability distribution for the bag’s class label. This 
method treats the instances independently and gives them equal influence on the 
predicted class label.

One problem is that the bags in the training data can contain different numbers 
of instances. Ideally, each bag should have the same influence on the final model 
that is learned. If the learning algorithm can accept instance-level weights, this can 
be achieved by assigning each instance in a given bag a weight inversely propor-
tional to the bag’s size. If a bag contains n instances, giving each one a weight of 
1/n ensures that the instances contribute equally to the bag’s class label and each 
bag receives a total weight of 1.

Discussion
Both methods described previously for tackling multi-instance problems disregard 
the original multi-instance assumption that a bag is positive if and only if at least one 



	 4.10  Further Reading� 143

of its instances is positive. Instead, making each instance in a bag contribute equally 
to its label is the key element that allows standard learning algorithms to be applied. 
Otherwise, it is necessary to try to identify the “special” instances that are the key to 
determining the bag’s label.

4.10  FURTHER READING
The 1R scheme was proposed and thoroughly investigated by Holte (1993). It 
was never really intended as a machine learning “method.” The point was more 
to demonstrate that very simple structures underlie most of the practical datasets 
being used to evaluate machine learning schemes at the time and that putting 
high-powered inductive inference schemes to work on simple datasets was like 
using a sledgehammer to crack a nut. Why grapple with a complex decision tree 
when a simple rule will do? The scheme that generates one simple rule per class 
is due to Lucio de Souza Coelho of Brazil and Len Trigg of New Zealand, and 
it has been dubbed hyperpipes. A very simple algorithm, it has the advantage of 
being extremely fast and is quite feasible even with an enormous number of 
attributes.

Bayes was an eighteenth-century English philosopher who set out his theory 
of probability in an “Essay towards solving a problem in the doctrine of chances,” 
published in the Philosophical Transactions of the Royal Society of London (Bayes, 
1763). The rule that bears his name has been a cornerstone of probability theory 
ever since. The difficulty with the application of Bayes’ rule in practice is the 
assignment of prior probabilities.

Some statisticians, dubbed Bayesians, take the rule as gospel and insist that 
people make serious attempts to estimate prior probabilities accurately—although 
such estimates are often subjective. Others, non-Bayesians, prefer the kind of prior-
free analysis that typically generates statistical confidence intervals, which we will 
see in Chapter 5. With a particular dataset, prior probabilities for Naïve Bayes are 
usually reasonably easy to estimate, which encourages a Bayesian approach to learn-
ing. The independence assumption made by the Naïve Bayes method is a great 
stumbling block, however, and efforts are being made to apply Bayesian analysis 
without assuming independence. The resulting models are called Bayesian networks 
(Heckerman et al., 1995), and we describe them in Section 6.7.

Bayesian techniques had been used in the field of pattern recognition (Duda 
and Hart, 1973) for 20 years before they were adopted by machine learning 
researchers (e.g., Langley et al., 1992) and made to work on datasets with redun-
dant attributes (Langley and Sage 1994) and numeric attributes (John and Langley, 
1995). The label Naïve Bayes is unfortunate because it is hard to use this method 
without feeling simpleminded. However, there is nothing naïve about its use in 
appropriate circumstances. The multinomial Naïve Bayes model, which is particu-
larly useful for text classification, was investigated by McCallum and Nigam 
(1998).
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The classic paper on decision tree induction is Quinlan (1986), who describes 
the basic ID3 procedure developed in this chapter. A comprehensive description of 
the method, including the improvements that are embodied in C4.5, appears in a 
classic book by Quinlan (1993), which gives a listing of the complete C4.5 system, 
written in the C programming language. PRISM was developed by Cendrowska 
(1987), who also introduced the contact lens dataset.

Association rules are introduced and described in the database literature rather 
than in the machine learning literature. Here the emphasis is very much on dealing 
with huge amounts of data rather than on sensitive ways of testing and evaluating 
algorithms on limited datasets. The algorithm introduced in this chapter is the  
Apriori method developed by Agrawal and his associates (Agrawal et al., 1993a, 
1993b; Agrawal and Srikant, 1994). A survey of association-rule mining appears in 
an article by Chen et al. (1996).

Linear regression is described in most standard statistical texts, and a particularly 
comprehensive treatment can be found in Lawson and Hanson (1995). The use of 
linear models for classification enjoyed a great deal of popularity in the 1960s; 
Nilsson (1965) is an excellent reference. He defines a linear threshold unit as a 
binary test of whether a linear function is greater or less than zero and a linear 
machine as a set of linear functions, one for each class, whose value for an unknown 
example is compared and the largest chosen as its predicted class. In the distant 
past, perceptrons fell out of favor on publication of an influential book that showed 
that they had fundamental limitations (Minsky and Papert, 1969); however, more 
complex systems of linear functions have enjoyed a resurgence in recent years in 
the form of neural networks, described in Section 6.4. The Winnow algorithms were 
introduced by Nick Littlestone in his Ph.D. thesis (Littlestone, 1988, 1989). Mul-
tiresponse linear classifiers have found application in an operation called stacking 
that combines the output of other learning algorithms, described in Chapter 8 (see 
Wolpert, 1992).

Fix and Hodges (1951) performed the first analysis of the nearest-neighbor 
method, and Johns (1961) pioneered its use in classification problems. Cover and 
Hart (1967) obtained the classic theoretical result that, for large enough datasets, its 
probability of error never exceeds twice the theoretical minimum. Devroye et al. 
(1996) showed that k-nearest neighbor is asymptotically optimal for large k and n 
with k/n → 0. Nearest-neighbor methods gained popularity in machine learning 
through the work of Aha (1992), who showed that instance-based learning can be 
combined with noisy exemplar pruning and attribute weighting and that the resulting 
methods perform well in comparison with other learning methods. We take this up 
again in Chapter 6.

The kD-tree data structure was developed by Friedman et al. (1977). Our descrip-
tion closely follows an explanation given by Andrew Moore in his Ph.D. thesis 
(Moore, 1991). Moore, who, along with Omohundro (1987), pioneered its use in 
machine learning. Moore (2000) describes sophisticated ways of constructing ball 
trees that perform well even with thousands of attributes. We took our ball tree 
example from lecture notes by Alexander Gray of Carnegie-Mellon University. The 
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voting feature interval method mentioned in the Discussion section at the end of 
Section 4.7 is described by Demiroz and Guvenir (1997).

The k-means algorithm is a classic technique, and many descriptions and varia-
tions are available (e.g., Hartigan, 1975). The k-means++ variant, which yields a 
significant improvement by choosing the initial seeds more carefully, was introduced 
as recently as 2007 by Arthur and Vassilvitskii (2007). The clever use of kD-trees 
to speed up k-means clustering, which we have chosen to illustrate using ball trees 
instead, was pioneered by Moore and Pelleg (2000) in their X-means clustering 
algorithm. That algorithm contains some other innovations, described in Section 6.8.

The method of dealing with multi-instance learning problems by applying stan-
dard single-instance learners to summarized bag-level data was applied in conjunc-
tion with support vector machines by Gärtner et al. (2002). The alternative approach 
of aggregating the output is explained by  Frank and Xu (2003).

4.11  WEKA IMPLEMENTATIONS
For classifiers, see Section 11.4 and Table 11.5.

•	 Inferring rudimentary rules: OneR, HyperPipes (learns one rule per class)
•	 Statistical modeling:

•	 NaïveBayes and many variants, including NaiveBayesMultinomial
•	 Decision trees: Id3
•	 Decision rules: Prism
•	 Association rules (see Section 11.7 and Table 11.8): a priori
•	 Linear models:

•	 SimpleLinearRegression, LinearRegression, Logistic (regression)
•	 VotedPerceptron, Winnow

•	 Instance-based learning: IB1, VFI (voting feature intervals)
•	 Clustering (see Section 11.6 and Table 11.7): SimpleKMeans
•	 Multi-instance learning: SimpleMI, MIWrapper
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CHAPTER 

5 

Credibility: Evaluating  
What’s Been Learned

Evaluation is the key to making real progress in data mining. There are lots of ways 
of inferring structure from data: We have encountered many already and will see 
further refinements, and new methods, in Chapter 6. However, in order to determine 
which ones to use on a particular problem we need systematic ways to evaluate how 
different methods work and to compare one with another. But evaluation is not as 
simple as it might appear at first sight.

What’s the problem? We have the training set; surely we can just look at how 
well different methods do on that. Well, no: As we will see very shortly, performance 
on the training set is definitely not a good indicator of performance on an indepen-
dent test set. We need ways of predicting performance bounds in practice, based on 
experiments with whatever data can be obtained.

When a vast supply of data is available, this is no problem: Just make a model 
based on a large training set, and try it out on another large test set. But although 
data mining sometimes involves “big data”—particularly in marketing, sales, and 
customer support applications—it is often the case that data, quality data, is scarce. 
The oil slicks mentioned in Chapter 1 (page 23) had to be detected and marked 
manually—a skilled and labor-intensive process—before being used as training 
data. Even in the personal loan application data (page 22), there turned out to be 
only 1000 training examples of the appropriate type. The electricity supply data 
(page 24) went back 15 years, 5000 days—but only 15 Christmas days and Thanks-
givings, and just four February 29s and presidential elections. The electromechanical 
diagnosis application (page 25) was able to capitalize on 20 years of recorded 
experience, but this yielded only 300 usable examples of faults. The marketing 
and sales applications (page 26) certainly involve big data, but many others do 
not: Training data frequently relies on specialist human expertise—and that is 
always in short supply.

The question of predicting performance based on limited data is an interesting, 
and still controversial, one. We will encounter many different techniques, of which 
one—repeated cross-validation—is probably the method of choice in most practical 
limited-data situations. Comparing the performance of different machine learning 
schemes on a given problem is another matter that is not as easy as it sounds: To be 
sure that apparent differences are not caused by chance effects, statistical tests are 
needed.
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So far we have tacitly assumed that what is being predicted is the ability to clas-
sify test instances accurately; however, some situations involve predicting class 
probabilities rather than the classes themselves, and others involve predicting 
numeric rather than nominal values. Different methods are needed in each case. Then 
we look at the question of cost. In most practical data mining situations, the cost of 
a misclassification error depends on the type of error it is—whether, for example, a 
positive example was erroneously classified as negative or vice versa. When doing 
data mining, and evaluating its performance, it is often essential to take these costs 
into account. Fortunately, there are simple techniques to make most learning schemes 
cost sensitive without grappling with the algorithm’s internals. Finally, the whole 
notion of evaluation has fascinating philosophical connections. For 2000 years, 
philosophers have debated the question of how to evaluate scientific theories, and 
the issues are brought into sharp focus by data mining because what is extracted is 
essentially a “theory” of the data.

5.1  TRAINING AND TESTING
For classification problems, it is natural to measure a classifier’s performance in 
terms of the error rate. The classifier predicts the class of each instance: If it is 
correct, that is counted as a success; if not, it is an error. The error rate is just the 
proportion of errors made over a whole set of instances, and it measures the overall 
performance of the classifier.

Of course, what we are interested in is the likely future performance on new data, 
not the past performance on old data. We already know the classifications of each 
instance in the training set, which after all is why we can use it for training. We are 
not generally interested in learning about those classifications—although we might 
be if our purpose is data cleansing rather than prediction. So the question is, is the 
error rate on old data likely to be a good indicator of the error rate on new data? 
The answer is a resounding no—not if the old data was used during the learning 
process to train the classifier.

This is a surprising fact, and a very important one. The error rate on the training 
set is not likely to be a good indicator of future performance. Why? Because the 
classifier has been learned from the very same training data, any estimate of perfor-
mance based on that data will be optimistic, even hopelessly optimistic.

We have already seen an example of this in the labor relations dataset. Figure 
1.3(b) (page 18) was generated directly from the training data, and Figure 1.3(a) 
was obtained from it by a process of pruning. The former is potentially more accurate 
on the data that was used to train the classifier, but may perform less well on inde-
pendent test data because it is overfitted to the training data. The first tree will look 
good according to the error rate on the training data, better than the second tree. But 
this does not necessarily reflect how they will perform on independent test data.

The error rate on the training data is called the resubstitution error because it is 
calculated by resubstituting the training instances into a classifier that was 
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constructed from them. Although it is not a reliable predictor of the true error rate 
on new data, it is nevertheless often useful to know.

To predict the performance of a classifier on new data, we need to assess its error 
rate on a dataset that played no part in the formation of the classifier. This indepen-
dent dataset is called the test set. We assume that both the training data and the test 
data are representative samples of the underlying problem.

In some cases the test data might be distinct in nature from the training data. 
Consider, for example, the credit risk problem from Section 1.3 (page 22). Suppose 
the bank had training data from branches in New York and Florida and wanted to 
know how well a classifier trained on one of these datasets would perform in a 
new branch in Nebraska. It should probably use the Florida data as test data for 
evaluating the New York–trained classifier and the New York data to evaluate the 
Florida-trained classifier. If the datasets were amalgamated before training, perfor-
mance on the test data would probably not be a good indicator of performance on 
future data in a completely different state.

It is important that the test data is not used in any way to create the classifier. 
For example, some learning schemes involve two stages, one to come up with a 
basic structure and the second to optimize parameters involved in that structure, and 
separate sets of data may be needed in the two stages. Or you might try out several 
learning schemes on the training data and then evaluate them—on a fresh dataset, 
of course—to see which one works best. But none of this data may be used to 
determine an estimate of the future error rate.

In such situations people often talk about three datasets: the training data, the 
validation data, and the test data. The training data is used by one or more learning 
schemes to come up with classifiers. The validation data is used to optimize param-
eters of those classifier, or to select a particular one. Then the test data is used to 
calculate the error rate of the final, optimized, method. Each of the three sets must 
be chosen independently: The validation set must be different from the training set 
to obtain good performance in the optimization or selection stage, and the test set 
must be different from both to obtain a reliable estimate of the true error rate.

It may be that once the error rate has been determined, the test data is bundled 
back into the training data to produce a new classifier for actual use. There is nothing 
wrong with this: It is just a way of maximizing the amount of data used to generate 
the classifier that will actually be employed in practice. With well-behaved learning 
schemes, this should not decrease predictive performance. Also, once the validation 
data has been used—maybe to determine the best type of learning scheme to use—
then it can be bundled back into the training data to retrain that learning scheme, 
maximizing the use of data.

If lots of data is available, there is no problem: We take a large sample and use 
it for training; then another, independent large sample of different data and use it 
for testing. Provided both samples are representative, the error rate on the test set 
will give a good indication of future performance. Generally, the larger the training 
sample, the better the classifier, although the returns begin to diminish once a certain 
volume of training data is exceeded. And the larger the test sample, the more accurate 
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the error estimate. The accuracy of the error estimate can be quantified statistically, 
as we will see in Section 5.2.

The real problem occurs when there is not a vast supply of data available. In 
many situations the training data must be classified manually—and so must the test 
data, of course, to obtain error estimates. This limits the amount of data that can be 
used for training, validation, and testing, and the problem becomes how to make the 
most of a limited dataset. From this dataset, a certain amount is held over for 
testing—this is called the holdout procedure—and the remainder used for training 
(and, if necessary, part of that is set aside for validation). There’s a dilemma here: 
To find a good classifier, we want to use as much of the data as possible for training; 
to obtain a good error estimate, we want to use as much of it as possible for testing. 
Sections 5.3 and 5.4 review widely used methods for dealing with this dilemma.

5.2  PREDICTING PERFORMANCE
Suppose we measure the error of a classifier on a test set and obtain a certain numeri-
cal error rate—say 25%. Actually, in this section we talk about success rate rather 
than error rate, so this corresponds to a success rate of 75%. Now, this is only an 
estimate. What can you say about the true success rate on the target population? 
Sure, it’s expected to be close to 75%. But how close—within 5 or 10%? It must 
depend on the size of the test set. Naturally, we would be more confident of the 75% 
figure if it were based on a test set of 10,000 instances rather than a test set of 100 
instances. But how much more confident would we be?

To answer these questions, we need some statistical reasoning. In statistics, a 
succession of independent events that either succeed or fail is called a Bernoulli 
process. The classic example is coin tossing. Each toss is an independent event. Let’s 
say we always predict heads; but rather than “heads” or “tails,” each toss is consid-
ered a “success” or a “failure.” Let’s say the coin is biased, but we don’t know what 
the probability of heads is. Then, if we actually toss the coin 100 times and 75 of 
the tosses are heads, we have a situation very like the one just described for a clas-
sifier with an observed 75% success rate on a test set. What can we say about the 
true success probability? In other words, imagine that there is a Bernoulli process—a 
biased coin—with a true (but unknown) success rate of p. Suppose that out of N 
trials, S are successes; thus, the observed success rate is f = S/N. The question is, 
what does this tell you about the true success rate p?

The answer to this question is usually expressed as a confidence interval—that 
is, p lies within a certain specified interval with a certain specified confidence. For 
example, if S = 750 successes are observed out of N = 1000 trials, this indicates that 
the true success rate must be around 75%. But how close to 75%? It turns out that 
with 80% confidence, the true success rate p lies between 73.2% and 76.7%. If 
S = 75 successes are observed out of N = 100 trials, this also indicates that the true 
success rate must be around 75%. But the experiment is smaller, and so the 80% 
confidence interval for p is wider, stretching from 69.1 to 80.1%.
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These figures are easy to relate to qualitatively, but how are they derived quantitatively? 
We reason as follows: The mean and variance of a single Bernoulli trial with success rate 
p are p and p(1 − p), respectively. If N trials are taken from a Bernoulli process, the 
expected success rate f = S/N is a random variable with the same mean p; the variance is 
reduced by a factor of N to p(1 − p)/N. For large N, the distribution of this random 
variable approaches the normal distribution. These are all facts of statistics—we will not 
go into how they are derived.

The probability that a random variable X, with zero mean, lies within a certain 
confidence range of width 2z is

Pr − ≤ ≤[ ] =z X z c

For a normal distribution, values of c and corresponding values of z are given in tables 
printed at the back of most statistical texts. However, the tabulations conventionally take 
a slightly different form: They give the confidence that X will lie outside the range, and 
they give it for the upper part of the range only:

Pr X z≥[ ]
This is called a one-tailed probability because it refers only to the upper “tail” of the 
distribution. Normal distributions are symmetric, so the probabilities for the lower tail

Pr X z≤ −[ ]
are just the same.

Table 5.1 gives an example. Like other tables for the normal distribution, this 
assumes that the random variable X has a mean of 0 and a variance of  1. Alternatively, 
you might say that the z figures are measured in standard deviations from the mean. 
Thus, the figure for Pr[X ≥ z] = 5% implies that there is a 5% chance that X lies more 
than 1.65 standard deviations above the mean. Because the distribution is symmetric, 
the chance that X lies more than 1.65 standard deviations from the mean (above or 
below) is 10%, or

Pr . . %− ≤ ≤[ ] =1 65 1 65 90X

Now all we need to do is reduce the random variable f to have zero mean and unit 
variance. We do this by subtracting the mean p and dividing by the standard 
deviation p p N( )1 − . This leads to
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Here is the procedure for finding confidence limits. Given a particular confidence figure 
c, consult Table 5.1 for the corresponding z value. To use the table you will first have to 
subtract c from 1 and then halve the result, so that for c = 90% you use the table entry 
for 5%. Linear interpolation can be used for intermediate confidence levels. Then write 
the inequality in the preceding expression as an equality and invert it to find an 
expression for p.

The final step involves solving a quadratic equation. Although this is not hard to do, it 
leads to an unpleasantly formidable expression for the confidence limits:
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The ± in this expression gives two values for p that represent the upper and lower confidence 
boundaries. Although the formula looks complicated, it is not hard to work out in particular 
cases.
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This result can be used to obtain the values in the numeric example given earlier. 
Setting f = 75%, N = 1000, and c = 80% (so that z = 1.28) leads to the interval [0.732, 
0.767] for p, and N = 100 leads to [0.691, 0.801] for the same level of confidence. 
Note that the normal distribution assumption is only valid for large N (say, N > 100). 
Thus, f = 75% and N = 10 leads to confidence limits [0.549, 0.881], but these should 
be taken with a grain of salt.

Table 5.1  Confidence Limits for the Normal Distribution

Pr[X ≥ z] z

0.1% 3.09
0.5% 2.58
1% 2.33
5% 1.65

10% 1.28
20% 0.84
40% 0.25

5.3  CROSS-VALIDATION
Now consider what to do when the amount of data for training and testing is limited. 
The holdout method reserves a certain amount for testing and uses the remainder 
for training (and sets part of that aside for validation, if required). In practical terms, 
it is common to hold out one-third of the data for testing and use the remaining 
two-thirds for training.

Of course, you may be unlucky: The sample used for training (or testing) might 
not be representative. In general, you cannot tell whether a sample is representative 
or not. But there is one simple check that might be worthwhile: Each class in the 
full dataset should be represented in about the right proportion in the training and 
testing sets. If, by bad luck, all examples with a certain class were omitted from 
the training set, you could hardly expect a classifier learned from that data to perform 
well on examples of that class—and the situation would be exacerbated by the fact 
that the class would necessarily be overrepresented in the test set because none of 
its instances made it into the training set! Instead, you should ensure that the random 
sampling is done in a way that guarantees that each class is properly represented 
in both training and test sets. This procedure is called stratification, and we might 
speak of stratified holdout. While it is generally well worth doing, stratification 
provides only a primitive safeguard against uneven representation in training and 
test sets.

A more general way to mitigate any bias caused by the particular sample chosen 
for holdout is to repeat the whole process, training and testing, several times with 
different random samples. In each iteration a certain proportion, say two-thirds, of 
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the data is randomly selected for training, possibly with stratification, and the 
remainder is used for testing. The error rates on the different iterations are averaged 
to yield an overall error rate. This is the repeated holdout method of error rate 
estimation.

In a single holdout procedure, you might consider swapping the roles of the 
testing and training data—that is, train the system on the test data and test it on 
the training data—and average the two results, thus reducing the effect of uneven 
representation in training and test sets. Unfortunately, this is only really plausible 
with a 50:50 split between training and test data, which is generally not ideal—it 
is better to use more than half the data for training even at the expense of test data. 
However, a simple variant forms the basis of an important statistical technique 
called cross-validation. In cross-validation, you decide on a fixed number of folds, 
or partitions, of the data. Suppose we use three. Then the data is split into three 
approximately equal partitions; each in turn is used for testing and the remainder 
is used for training. That is, use two-thirds of the data for training and one-third 
for testing, and repeat the procedure three times so that in the end, every instance 
has been used exactly once for testing. This is called threefold cross-validation, 
and if stratification is adopted as well—which it often is—it is stratified threefold 
cross-validation.

The standard way of predicting the error rate of a learning technique given a 
single, fixed sample of data is to use stratified tenfold cross-validation. The data is 
divided randomly into 10 parts in which the class is represented in approximately 
the same proportions as in the full dataset. Each part is held out in turn and the 
learning scheme trained on the remaining nine-tenths; then its error rate is calculated 
on the holdout set. Thus, the learning procedure is executed a total of 10 times on 
different training sets (each set has a lot in common with the others). Finally, the 10 
error estimates are averaged to yield an overall error estimate.

Why 10? Extensive tests on numerous different datasets, with different learning 
techniques, have shown that 10 is about the right number of folds to get the best 
estimate of error, and there is also some theoretical evidence that backs this up. 
Although these arguments are by no means conclusive, and debate continues to 
rage in machine learning and data mining circles about what is the best scheme 
for evaluation, tenfold cross-validation has become the standard method in practi-
cal terms. Tests have also shown that the use of stratification improves results 
slightly. Thus, the standard evaluation technique in situations where only limited 
data is available is stratified tenfold cross-validation. Note that neither the strati-
fication nor the division into 10 folds has to be exact: It is enough to divide the 
data into 10 approximately equal sets in which the various class values are rep-
resented in approximately the right proportion. Moreover, there is nothing magic 
about the exact number 10: 5-fold or 20-fold cross-validation is likely to be almost 
as good.

A single tenfold cross-validation might not be enough to get a reliable error 
estimate. Different tenfold cross-validation experiments with the same learning 
scheme and dataset often produce different results because of the effect of random 
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variation in choosing the folds themselves. Stratification reduces the variation, but 
it certainly does not eliminate it entirely. When seeking an accurate error estimate, 
it is standard procedure to repeat the cross-validation process 10 times—that is, 10 
times tenfold cross-validation—and average the results. This involves invoking the 
learning algorithm 100 times on datasets that are all nine-tenths the size of the 
original. Getting a good measure of performance is a computation-intensive 
undertaking.

5.4  OTHER ESTIMATES
Tenfold cross-validation is the standard way of measuring the error rate of a learning 
scheme on a particular dataset; for reliable results, 10 times tenfold cross-validation. 
But many other methods are used instead. Two that are particularly prevalent are 
leave-one-out cross-validation and the bootstrap.

Leave-One-Out Cross-Validation
Leave-one-out cross-validation is simply n-fold cross-validation, where n is the 
number of instances in the dataset. Each instance in turn is left out, and the learning 
scheme is trained on all the remaining instances. It is judged by its correctness on 
the remaining instance—one or zero for success or failure, respectively. The results 
of all n judgments, one for each member of the dataset, are averaged, and that 
average represents the final error estimate.

This procedure is an attractive one for two reasons. First, the greatest possible 
amount of data is used for training in each case, which presumably increases the 
chance that the classifier is an accurate one. Second, the procedure is deterministic: 
No random sampling is involved. There is no point in repeating it 10 times, or 
repeating it at all: The same result will be obtained each time. Set against this is the 
high computational cost, because the entire learning procedure must be executed n 
times and this is usually infeasible for large datasets. Nevertheless, leave-one-out 
seems to offer a chance of squeezing the maximum out of a small dataset and getting 
as accurate an estimate as possible.

But there is a disadvantage to leave-one-out cross-validation, apart from the 
computational expense. By its very nature, it cannot be stratified—worse than that, 
it guarantees a nonstratified sample. Stratification involves getting the correct pro-
portion of examples in each class into the test set, and this is impossible when the 
test set contains only a single example. A dramatic, although highly artificial, illus-
tration of the problems this might cause is to imagine a completely random dataset 
that contains exactly the same number of instances of each of two classes. The best 
that an inducer can do with random data is to predict the majority class, giving a 
true error rate of 50%. But in each fold of leave-one-out, the opposite class to the 
test instance is in the majority—and therefore the predictions will always be incor-
rect, leading to an estimated error rate of 100%!
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The Bootstrap
The second estimation method we describe, the bootstrap, is based on the statistical 
procedure of sampling with replacement. Previously, whenever a sample was taken 
from the dataset to form a training or test set, it was drawn without replacement. 
That is, the same instance, once selected, could not be selected again. It is like 
picking teams for football: You cannot choose the same person twice. But dataset 
instances are not like people. Most learning schemes can use the same instance 
twice, and it makes a difference in the result of learning if it is present in the training 
set twice. (Mathematical sticklers will notice that we should not really be talking 
about “sets” at all if the same object can appear more than once.)

The idea of the bootstrap is to sample the dataset with replacement to form a 
training set. We will describe a particular variant, mysteriously (but for a reason that 
will soon become apparent) called the 0.632 bootstrap. For this, a dataset of n 
instances is sampled n times, with replacement, to give another dataset of n instances. 
Because some elements in this second dataset will (almost certainly) be repeated, 
there must be some instances in the original dataset that have not been picked—we 
will use these as test instances.

What is the chance that a particular instance will not be picked for the training set? It has 
a 1/n probability of being picked each time and so a 1 – 1/n probability of not being 
picked. Multiply these probabilities together for a sufficient number of picking 
opportunities, n, and the result is a figure of
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where e is the base of natural logarithms, 2.7183 (not the error rate!) This gives the 
chance of a particular instance not being picked at all. Thus, for a reasonably large 
dataset, the test set will contain about 36.8% of the instances and the training set will 
contain about 63.2% of them (now you can see why it’s called the 0.632 bootstrap). 
Some instances will be repeated in the training set, bringing it up to a total size of n, 
the same as in the original dataset.

The figure obtained by training a learning system on the training set and cal-
culating its error over the test set will be a pessimistic estimate of the true error 
rate because the training set, although its size is n, nevertheless contains only 63% 
of the instances, which is not a great deal compared, for example, with the 90% 
used in tenfold cross-validation. To compensate for this, we combine the test-set 
error rate with the resubstitution error on the instances in the training set. The 
resubstitution figure, as we warned earlier, gives a very optimistic estimate of the 
true error and should certainly not be used as an error figure on its own. But the 
bootstrap procedure combines it with the test error rate to give a final estimate e 
as follows:
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Then, the whole bootstrap procedure is repeated several times, with different 
replacement samples for the training set, and the results are averaged.

The bootstrap procedure may be the best way of estimating the error rate for 
very small datasets. However, like leave-one-out cross-validation, it has disadvan-
tages that can be illustrated by considering a special, artificial situation. In fact, the 
very dataset we considered above will do: a completely random dataset with two 
classes of equal size. The true error rate is 50% for any prediction rule. But a scheme 
that memorized the training set would give a perfect resubstitution score of 100%, 
so that etraining instances = 0, and the 0.632 bootstrap will mix this in with a weight of 
0.368 to give an overall error rate of only 31.6% (0.632 × 50% + 0.368 × 0%), which 
is misleadingly optimistic.

5.5  COMPARING DATA MINING SCHEMES
We often need to compare two different learning schemes on the same problem to 
see which is the better one to use. It seems simple: Estimate the error using cross-
validation (or any other suitable estimation procedure), perhaps repeated several 
times, and choose the scheme with the smaller estimate. This is quite sufficient in 
many practical applications: If one scheme has a lower estimated error than another 
on a particular dataset, the best we can do is to use the former scheme’s model. 
However, it may be that the difference is simply due to estimation error, and in some 
circumstances it is important to determine whether one scheme is really better than 
another on a particular problem. This is a standard challenge for machine learning 
researchers. If a new learning algorithm is proposed, its proponents must show that 
it improves on the state of the art for the problem at hand and demonstrate that the 
observed improvement is not just a chance effect in the estimation process.

This is a job for a statistical test based on confidence bounds, the kind we met 
previously when trying to predict true performance from a given test-set error rate. 
If there were unlimited data, we could use a large amount for training and evaluate 
performance on a large independent test set, obtaining confidence bounds just as 
before. However, if the difference turns out to be significant we must ensure that 
this is not just because of the particular dataset we happened to base the experiment 
on. What we want to determine is whether one scheme is better or worse than another 
on average, across all possible training and test datasets that can be drawn from the 
domain. Because the amount of training data naturally affects performance, all 
datasets should be the same size. Indeed, the experiment might be repeated with 
different sizes to obtain a learning curve.

For the moment, assume that the supply of data is unlimited. For definiteness, 
suppose that cross-validation is being used to obtain the error estimates (other esti-
mators, such as repeated cross-validation, are equally viable). For each learning 
scheme we can draw several datasets of the same size, obtain an accuracy estimate 
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for each dataset using cross-validation, and compute the mean of the estimates. Each 
cross-validation experiment yields a different, independent error estimate. What we 
are interested in is the mean accuracy across all possible datasets of the same size, 
and whether this mean is greater for one scheme or the other.

From this point of view, we are trying to determine whether the mean of a set 
of samples—cross-validation estimates for the various datasets that we sampled 
from the domain—is significantly greater than, or significantly less than, the mean 
of another. This is a job for a statistical device known as the t-test, or Student’s t-test. 
Because the same cross-validation experiment can be used for both learning schemes 
to obtain a matched pair of results for each dataset, a more sensitive version of the 
t-test known as a paired t-test can be used.

We need some notation. There is a set of samples x1, x2, …, xk obtained by successive 
tenfold cross-validations using one learning scheme, and a second set of samples y1, 
y2, …, yk obtained by successive tenfold cross-validations using the other. Each cross-
validation estimate is generated using a different dataset, but all datasets are of the same 
size and from the same domain. We will get best results if exactly the same cross-
validation partitions are used for both schemes, so that x1 and y1 are obtained using the 
same cross-validation split, as are x2 and y2, and so on. Denote the mean of the first set 
of samples by x and the mean of the second set by y . We are trying to determine whether 
x is significantly different from y .

If there are enough samples, the mean (x ) of a set of independent samples (x1, x2, …, 
xk) has a normal (i.e., Gaussian) distribution, regardless of the distribution underlying the 
samples themselves. Call the true value of the mean µ. If we knew the variance of that 
normal distribution, so that it could be reduced to have zero mean and unit variance, we 
could obtain confidence limits on µ given the mean of the samples (x ). However, the 
variance is unknown, and the only way we can obtain it is to estimate it from the set of 
samples.

That is not hard to do. The variance of x can be estimated by dividing the variance 
calculated from the samples x1, x2, …, xk—call it σx

2—by k. We can reduce the 
distribution of x to have zero mean and unit variance by using

x

kx

− µ
σ 2

The fact that we have to estimate the variance changes things somewhat. Because the 
variance is only an estimate, this does not have a normal distribution (although it does 
become normal for large values of k). Instead, it has what is called a Student’s 
distribution with k – 1 degrees of freedom. What this means in practice is that we have to 
use a table of confidence intervals for the Student’s distribution rather than the 
confidence table for the normal distribution given earlier. For 9 degrees of freedom (which 
is the correct number if we are using the average of 10 cross-validations) the appropriate 
confidence limits are shown in Table 5.2. If you compare them with Table 5.1 you will 
see that the Student’s figures are slightly more conservative—for a given degree of 
confidence, the interval is slightly wider—and this reflects the additional uncertainty 
caused by having to estimate the variance. Different tables are needed for different 
numbers of degrees of freedom, and if there are more than 100 degrees of freedom the 
confidence limits are very close to those for the normal distribution. Like Table 5.1, the 
figures in Table 5.2 are for a “one-sided” confidence interval.
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To decide whether the means x and y , each an average of the same number k of 
samples, are the same or not, we consider the differences di between corresponding 
observations, di = xi − yi. This is legitimate because the observations are paired. The 
mean of this difference is just the difference between the two means, d x y= − , and, 
like the means themselves, it has a Student’s distribution with k – 1 degrees of freedom. 
If the means are the same, the difference is zero (this is called the null hypothesis); 
if they’re significantly different, the difference will be significantly different from zero.  
So for a given confidence level, we will check whether the actual difference exceeds the 
confidence limit.

First, reduce the difference to a zero-mean, unit-variance variable called the t-statistic,

t
d

kd

=
σ 2

where σd
2 is the variance of the difference samples. Then, decide on a confidence 

level—generally, 5% or 1% is used in practice. From this, the confidence limit z is 
determined using Table 5.2 if k is 10; if it is not, a confidence table of the Student 
distribution for the k value in question is used. A two-tailed test is appropriate because we 
do not know in advance whether the mean of the x’s is likely to be greater than that of 
the y’s or vice versa; thus, for a 1% test we use the value corresponding to 0.5% in Table 
5.2. If the value of t according to the last formula is greater than z, or less than –z, we 
reject the null hypothesis that the means are the same and conclude that there really is a 
significant difference between the two learning methods on that domain for that dataset 
size.

Two observations are worth making on this procedure. The first is technical: What if 
the observations were not paired? That is, what if we were unable, for some reason, to 
assess the error of each learning scheme on the same datasets? What if the number of 
datasets for each scheme was not even the same? These conditions could arise if someone 
else had evaluated one of the schemes and published several different estimates for a 
particular domain and dataset size—or perhaps just their mean and variance—and we 
wished to compare this with a different learning scheme. Then it is necessary to use a 
regular, nonpaired t-test. Instead of taking the mean of the difference, d , we use the 
difference of the means, x y− . Of course, that’s the same thing: The mean of the 
difference is the difference of the means. But the variance of the difference d is not the 
same. If the variance of the samples x1, x2, …, xk is σx

2 and the variance of the samples 
y1, y2, …, y is σy

2,

σ σx y
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is a good estimate of the variance of the difference of the means. It is this variance (or 
rather its square root) that should be used as the denominator of the t-statistic given 
previously. The degrees of freedom, necessary for consulting Student’s confidence tables, 
should be taken conservatively to be the minimum of the degrees of freedom of the two 
samples. Essentially, knowing that the observations are paired allows the use of a better 
estimate for the variance, which will produce tighter confidence bounds.

The second observation concerns the assumption that there is essentially unlimited 
data, so that several independent datasets of the right size can be used. In practice, there 
is usually only a single dataset of limited size. What can be done? We could split the data 
into subsets (perhaps 10) and perform a cross-validation on each one. However, the 
overall result will only tell us whether a learning scheme is preferable for that particular 
size—one-tenth of the original dataset. Alternatively, the original dataset could be 
reused—for example, with different randomizations of the dataset for each cross-
validation. However, the resulting cross-validation estimates will not be independent 
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because they are not based on independent datasets. In practice, this means that a 
difference may be judged to be significant when in fact it is not. Indeed, just increasing 
the number of samples k—that is, the number of cross-validation runs—will eventually 
yield an apparently significant difference because the value of the t-statistic increases 
without bound.

Various modifications of the standard t-test have been proposed to circumvent this 
problem, all of them heuristic and somewhat lacking in theoretical justification. One that 
appears to work well in practice is the corrected resampled t-test. Assume for the moment 
that the repeated holdout method is used instead of cross-validation, repeated k times on 
different random splits of the same dataset to obtain accuracy estimates for two learning 
schemes. Each time, n1 instances are used for training and n2 for testing, and differences 
di are computed from performance on the test data. The corrected resampled t-test uses 
the modified statistic
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in exactly the same way as the standard t-statistic. A closer look at the formula shows that 
its value cannot be increased simply by increasing k. The same modified statistic can be 
used with repeated cross-validation, which is just a special case of repeated holdout in 
which the individual test sets for one cross-validation do not overlap. For tenfold cross-
validation repeated 10 times, k =100, n2/n1 = 0.1/0.9, and σd

2 is based on 100 
differences.

Table 5.2  Confidence Limits for Student’s Distribution 
with 9 Degrees of Freedom

Pr[X ≥ z] z

0.1% 4.30
0.5% 3.25
1% 2.82
5% 1.83

10% 1.38
20% 0.88

5.6  PREDICTING PROBABILITIES
Throughout this chapter we have tacitly assumed that the goal is to maximize the 
success rate of the predictions. The outcome for each test instance is either correct, 
if the prediction agrees with the actual value for that instance, or incorrect, if it does 
not. There are no grays: Everything is black or white, correct or incorrect. In many 
situations, this is the most appropriate perspective. If the learning scheme, when it 
is actually applied, results in either a correct or an incorrect prediction, success is 
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the right measure to use. This is sometimes called a 0 – 1 loss function: The “loss” 
is either 0 if the prediction is correct or 1 if it is not. The use of loss is conventional, 
although a more optimistic terminology might couch the outcome in terms of profit 
instead.

Other situations are softer-edged. Most learning schemes can associate a prob-
ability with each prediction (as the Naïve Bayes scheme does). It might be more 
natural to take this probability into account when judging correctness. For example, 
a correct outcome predicted with a probability of 99% should perhaps weigh more 
heavily than one predicted with a probability of 51%, and, in a two-class situation, 
perhaps the latter is not all that much better than an incorrect outcome predicted 
with probability 51%. Whether it is appropriate to take prediction probabilities into 
account depends on the application. If the ultimate application really is just a predic-
tion of the outcome, and no prizes are awarded for a realistic assessment of the 
likelihood of the prediction, it does not seem appropriate to use probabilities. If the 
prediction is subject to further processing, however—perhaps involving assessment 
by a person, or a cost analysis, or maybe even serving as input to a second-level 
learning process—then it may well be appropriate to take prediction probabilities 
into account.

Quadratic Loss Function
Suppose for a single instance there are k possible outcomes, or classes, and for 
a given instance the learning scheme comes up with a probability vector p1, p2, 
…, pk for the classes (where these probabilities sum to 1). The actual outcome 
for that instance will be one of the possible classes. However, it is convenient 
to express it as a vector a1, a2, …, ak whose ith component, where i is the actual 
class, is 1 and all other components are 0. We can express the penalty associated 
with this situation as a loss function that depends on both the p vector and the 
a vector.

One criterion that is frequently used to evaluate probabilistic prediction is the 
quadratic loss function:

( )p aj jj
−∑ 2

Note that this is for a single instance: The summation is over possible outputs, not 
over different instances. Just one of the a’s will be 1 and the rest 0, so the sum 
contains contributions of pj

2 for the incorrect predictions and (1– pi)2 for the correct 
one. Consequently, it can be written as

1 2 2− + ∑p pi jj

where i is the correct class. When the test set contains several instances, the loss 
function is summed over them all.



	 5.6  Predicting Probabilities� 161

It is an interesting theoretical fact that if you seek to minimize the value of the quadratic 
loss function in a situation where the actual class is generated probabilistically, the best 
strategy is to choose for the p vector the actual probabilities of the different outcomes—
that is, pi = Pr[class = i ]. If the true probabilities are known, they will be the best values 
for p. If they are not, a system that strives to minimize the quadratic loss function will be 
encouraged to use its best estimate of Pr[class = i ] as the value for pi.

This is quite easy to see. Denote the true probabilities by p1*, p2*, …, pk* so that pi* 
= Pr[class = i ]. The expected value of the quadratic loss function over test instances can 
be rewritten as

E p a E p E p a E a
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The first stage involves bringing the expectation inside the sum and expanding the square. 
For the second, pj is just a constant and the expected value of aj is simply pj*; moreover, 
because aj is either 0 or 1, aj

2 = aj and its expected value is pj* as well. The third stage is 
straightforward algebra. To minimize the resulting sum, it is clear that it is best to choose 
pj = pj*, so that the squared term disappears and all that remains is a term that is just 
the variance of the true distribution governing the actual class.

Minimizing the squared error has a long history in prediction problems. In the 
present context, the quadratic loss function forces the predictor to be honest about 
choosing its best estimate of the probabilities—or, rather, it gives preference to 
predictors that are able to make the best guess at the true probabilities. Moreover, 
the quadratic loss function has some useful theoretical properties that we will not 
go into here. For all these reasons, it is frequently used as the criterion of success 
in probabilistic prediction situations.

Informational Loss Function
Another popular criterion used to evaluate probabilistic prediction is the informa-
tional loss function,

− log2 pi

where the ith prediction is the correct one. This is in fact identical to the negative 
of the log-likelihood function that is optimized by logistic regression, described in 
Section 4.6 (modulo a constant factor, which is determined by the base of the loga-
rithm). It represents the information (in bits) required to express the actual class i 
with respect to the probability distribution p1, p2, …, pk. In other words, if you were 
given the probability distribution and someone had to communicate to you which 
class was the one that actually occurred, this is the number of bits they would need 
to encode the information if they did it as effectively as possible. (Of course, it is 
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always possible to use more bits.) Because probabilities are always less than 1, their 
logarithms are negative, and the minus sign makes the outcome positive. For 
example, in a two-class situation—heads or tails—with an equal probability of each 
class, the occurrence of a head would take 1 bit to transmit because −log2 1/2 is 1.

The expected value of the informational loss function, if the true probabilities are p1*, p2*, 
…, pk*, is

− − − −p p p p p pk k1 2 1 2 2 2 2* * *log log log…

Like the quadratic loss function, this expression is minimized by choosing pj = pj*, in 
which case the expression becomes the entropy of the true distribution:

− − − −p p p p p pk k1 2 1 2 2 2 2* * * * * *log log log…

Thus, the informational loss function also rewards honesty in predictors that know the true 
probabilities, and encourages predictors that do not to put forward their best guess.

One problem with the informational loss function is that if you assign a probabil-
ity of 0 to an event that actually occurs, the function’s value is infinity. This corre-
sponds to losing your shirt when gambling. Prudent predictors operating under the 
informational loss function do not assign zero probability to any outcome. This does 
lead to a problem when no information is available about that outcome on which to 
base a prediction. This is called the zero-frequency problem, and various plausible 
solutions have been proposed, such as the Laplace estimator discussed for Naïve 
Bayes in Chapter 4 (page 93).

Discussion
If you are in the business of evaluating predictions of probabilities, which of 
the two loss functions should you use? That’s a good question, and there is no 
universally agreed-on answer—it’s really a matter of taste. They both do the 
fundamental job expected of a loss function: They give maximum reward to 
predictors that are capable of predicting the true probabilities accurately. However, 
there are some objective differences between the two that may help you form 
an opinion.

The quadratic loss function takes into account not only the probability assigned 
to the event that actually occurred but also the other probabilities. For example, in 
a four-class situation, suppose you assigned 40% to the class that actually came up 
and distributed the remainder among the other three classes. The quadratic loss will 
depend on how you distributed it because of the sum of the pj

2 that occurs in the 
expression given earlier for the quadratic loss function. The loss will be smallest if 
the 60% was distributed evenly among the three classes: An uneven distribution will 
increase the sum of the squares. The informational loss function, on the other hand, 
depends solely on the probability assigned to the class that actually occurred. If 
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you’re gambling on a particular event coming up, and it does, who cares about 
potential winnings from other events?

If you assign a very small probability to the class that actually occurs, the infor-
mation loss function will penalize you massively. The maximum penalty, for a zero 
probability, is infinite. The quadratic loss function, on the other hand, is milder, being 
bounded by

1 2+ ∑ pjj

which can never exceed 2.
Finally, proponents of the informational loss function point to a general theory 

of performance assessment in learning called the minimum description length (MDL) 
principle. They argue that the size of the structures that a scheme learns can be 
measured in bits of information, and if the same units are used to measure the 
loss, the two can be combined in useful and powerful ways. We return to this in 
Section 5.9.

5.7  COUNTING THE COST
The evaluations that have been discussed so far do not take into account the cost of 
making wrong decisions, wrong classifications. Optimizing the classification rate 
without considering the cost of the errors often leads to strange results. In one case, 
machine learning was being used to determine the exact day that each cow in a dairy 
herd was in estrus, or “in heat.” Cows were identified by electronic ear tags, and 
various attributes were used such as milk volume and chemical composition (recorded 
automatically by a high-tech milking machine) and milking order—for cows are 
regular beasts and generally arrive in the milking shed in the same order, except in 
unusual circumstances such as estrus. In a modern dairy operation it’s important to 
know when a cow is ready: Animals are fertilized by artificial insemination and 
missing a cycle will delay calving unnecessarily, causing complications down the 
line. In early experiments, machine learning schemes stubbornly predicted that each 
cow was never in estrus. Like humans, cows have a menstrual cycle of approxi-
mately 30 days, so this “null” rule is correct about 97% of the time—an impressive 
degree of accuracy in any agricultural domain! What was wanted, of course, was 
rules that predicted the “in estrus” situation more accurately than the “not in estrus” 
one: The costs of the two kinds of error were different. Evaluation by classification 
accuracy tacitly assumes equal error costs.

Other examples where errors cost different amounts include loan decisions: The 
cost of lending to a defaulter is far greater than the lost-business cost of refusing a 
loan to a nondefaulter. And oil-slick detection: The cost of failing to detect an 
environment-threatening real slick is far greater than the cost of a false alarm. And 
load forecasting: The cost of gearing up electricity generators for a storm that doesn’t 
hit is far less than the cost of being caught completely unprepared. And diagnosis: 
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Table 5.3  Different Outcomes of a Two-Class Prediction

Predicted Class

yes no

Actual Class yes true positive false negative

no false positive true negative

The cost of misidentifying problems with a machine that turns out to be free of faults 
is less than the cost of overlooking problems with one that is about to fail. And 
promotional mailing: The cost of sending junk mail to a household that doesn’t 
respond is far less than the lost-business cost of not sending it to a household that 
would have responded. Why—these are all the examples from Chapter 1! In truth, 
you’d be hard pressed to find an application in which the costs of different kinds of 
errors were the same.

In the two-class case with classes yes and no—lend or not lend, mark a suspicious 
patch as an oil slick or not, and so on—a single prediction has the four different 
possible outcomes shown in Table 5.3. The true positives (TP) and true negatives 
(TN) are correct classifications. A false positive (FP) is when the outcome is incor-
rectly predicted as yes (or positive) when it is actually no (negative). A false negative 
(FN) is when the outcome is incorrectly predicted as negative when it is actually 
positive. The true positive rate is TP divided by the total number of positives, which 
is TP + FN; the false positive rate is FP divided by the total number of negatives, 
which is FP + TN. The overall success rate is the number of correct classifications 
divided by the total number of classifications:

TP TN

TP TN FP FN

+
+ + +

Finally, the error rate is 1 minus this.
In multiclass prediction, the result on a test set is often displayed as a two-

dimensional confusion matrix with a row and column for each class. Each matrix 
element shows the number of test examples for which the actual class is the row 
and the predicted class is the column. Good results correspond to large numbers 
down the main diagonal and small, ideally zero, off-diagonal elements. Table 5.4(a) 
shows a numeric example with three classes. In this case, the test set has 200 
instances (the sum of the nine numbers in the matrix), and 88 + 40 + 12 = 140 of 
them are predicted correctly, so the success rate is 70%.

But is this a fair measure of overall success? How many agreements would you 
expect by chance? This predictor predicts a total of 120 a’s, 60 b’s, and 20 c’s; what 
if you had a random predictor that predicted the same total numbers of the three 
classes? The answer is shown in Table 5.4(b). Its first row divides the 100 a’s in the 
test set into these overall proportions, and the second and third rows do the same 
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thing for the other two classes. Of course, the row and column totals for this matrix 
are the same as before—the number of instances hasn’t changed, and we have 
ensured that the random predictor predicts the same number of a’s, b’s, and c’s as 
the actual predictor.

This random predictor gets 60 + 18 + 4 = 82 instances correct. A measure called 
the Kappa statistic takes this expected figure into account by deducting it from the 
predictor’s successes and expressing the result as a proportion of the total for a 
perfect predictor, to yield 140 – 82 = 58 extra successes out of a possible total of 
200 – 82 = 118, or 49.2%. The maximum value of Kappa is 100%, and the expected 
value for a random predictor with the same column totals is 0. In summary, the 
Kappa statistic is used to measure the agreement between predicted and observed 
categorizations of a dataset, while correcting for an agreement that occurs by chance. 
However, like the plain success rate, it does not take costs into account.

Cost-Sensitive Classification
If the costs are known, they can be incorporated into a financial analysis of the 
decision-making process. In the two-class case, in which the confusion matrix is like 
that of Table 5.3, the two kinds of error—false positives and false negatives—will 
have different costs; likewise, the two types of correct classification may have  
different benefits. In the two-class case, costs can be summarized in the form of a 
2 × 2 matrix in which the diagonal elements represent the two types of correct clas-
sification and the off-diagonal elements represent the two types of error. In the 
multiclass case this generalizes to a square matrix whose size is the number of 
classes, and again the diagonal elements represent the cost of correct classification. 
Table 5.5(a) and (b) shows default cost matrixes for the two- and three-class cases, 
whose values simply give the number of errors: Misclassification costs are all 1.

Taking the cost matrix into account replaces the success rate by the average cost 
(or, thinking more positively, profit) per decision. Although we will not do so here, 
a complete financial analysis of the decision-making process might also take into 
account the cost of using the machine learning tool—including the cost of gathering 
the training data—and the cost of using the model, or decision structure, that it 

Table 5.5  Default Cost Matrixes: (a) Two-Class Case and (b) Three-Class Case

Predicted Class Predicted Class

yes no a b c

Actual 
Class

yes 0 1
Actual 
Class

a 0 1 1

no 1 0 b 1 0 1

c 1 1 0

(a) (b)
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produces—including the cost of determining the attributes for the test instances. If 
all costs are known, and the projected number of the four different outcomes in the 
cost matrix can be estimated, say using cross-validation, it is straightforward to 
perform this kind of financial analysis.

Given a cost matrix, you can calculate the cost of a particular learned model on 
a given test set just by summing the relevant elements of the cost matrix for the 
model’s prediction for each test instance. Here, costs are ignored when making 
predictions, but taken into account when evaluating them.

If the model outputs the probability associated with each prediction, it can be 
adjusted to minimize the expected cost of the predictions. Given a set of predicted 
probabilities for each outcome on a certain test instance, one normally selects the 
most likely outcome. Instead, the model could predict the class with the smallest 
expected misclassification cost. For example, suppose in a three-class situation the 
model assigns the classes a, b, and c to a test instance with probabilities pa, pb, and 
pc, and the cost matrix is that in Table 5.5(b). If it predicts a, the expected cost of 
the prediction is obtained by multiplying the first column of the matrix, [0,1,1], by 
the probability vector, [pa, pb, pc], yielding pb + pc , or 1 – pa , because the three 
probabilities sum to 1. Similarly, the costs for predicting the other two classes are 
1 – pb and 1 – pc. For this cost matrix, choosing the prediction with the lowest 
expected cost is the same as choosing the one with the greatest probability. For a 
different cost matrix it might be different.

We have assumed that the learning scheme outputs probabilities, as Naïve Bayes 
does. Even if they do not normally output probabilities, most classifiers can easily 
be adapted to compute them. In a decision tree, for example, the probability distribu-
tion for a test instance is just the distribution of classes at the corresponding leaf.

Cost-Sensitive Learning
We have seen how a classifier, built without taking costs into consideration, can be 
used to make predictions that are sensitive to the cost matrix. In this case, costs are 
ignored at training time but used at prediction time. An alternative is to do just the 
opposite: Take the cost matrix into account during the training process and ignore 
costs at prediction time. In principle, better performance might be obtained if the 
classifier were tailored by the learning algorithm to the cost matrix.

In the two-class situation, there is a simple and general way to make any learning 
scheme cost sensitive. The idea is to generate training data with a different propor-
tion of yes and no instances. Suppose you artificially increase the number of no 
instances by a factor of 10 and use the resulting dataset for training. If the learning 
scheme is striving to minimize the number of errors, it will come up with a decision 
structure that is biased toward avoiding errors on the no instances because such 
errors are effectively penalized tenfold. If data with the original proportion of no 
instances is used for testing, fewer errors will be made on these than on yes 
instances—that is, there will be fewer false positives than false negatives—because 
false positives have been weighted 10 times more heavily than false negatives. 
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Varying the proportion of instances in the training set is a general technique for 
building cost-sensitive classifiers.

One way to vary the proportion of training instances is to duplicate instances in 
the dataset. However, many learning schemes allow instances to be weighted. (As 
we mentioned in Section 3.2, this is a common technique for handling missing 
values.) Instance weights are normally initialized to 1. To build cost-sensitive clas-
sifiers the weights can be initialized to the relative cost of the two kinds of error, 
false positives and false negatives.

Lift Charts
In practice, costs are rarely known with any degree of accuracy, and people will 
want to ponder various different scenarios. Imagine you’re in the direct-mailing 
business and are contemplating a mass mailout of a promotional offer to 1,000,000 
households, most of whom won’t respond, of course. Let us say that, based on previ-
ous experience, the proportion that normally respond is known to be 0.1% (1000 
respondents). Suppose a data mining tool is available that, based on known informa-
tion about the households, identifies a subset of 100,000 for which the response rate 
is 0.4% (400 respondents). It may well pay off to restrict the mailout to these 100,000 
households; this, of course, depends on the mailing cost compared with the return 
gained for each response to the offer. In marketing terminology, the increase in 
response rate, a factor of 4 in this case, is known as the lift factor yielded by the 
learning tool. If you knew the costs, you could determine the payoff implied by a 
particular lift factor.

But you probably want to evaluate other possibilities too. The same data mining 
scheme, with different parameter settings, may be able to identify 400,000 house-
holds for which the response rate will be 0.2% (800 respondents), corresponding 
to a lift factor of 2. Again, whether this would be a more profitable target for 
the mailout can be calculated from the costs involved. It may be necessary to 
factor in the cost of creating and using the model, including collecting the infor-
mation that is required to come up with the attribute values. After all, if developing 
the model is very expensive, a mass mailing may be more cost effective than a 
targeted one.

Given a learning scheme that outputs probabilities for the predicted class of each 
member of the set of test instances (as Naïve Bayes does), your job is to find subsets 
of test instances that have a high proportion of positive instances, higher than in 
the test set as a whole. To do this, the instances should be sorted in descending 
order of predicted probability of yes. Then, to find a sample of a given size with 
the greatest possible proportion of positive instances, just read the requisite number 
of instances off the list, starting at the top. If each test instance’s class is known, 
you can calculate the lift factor by simply counting the number of positive instances 
that the sample includes, dividing by the sample size to obtain a success proportion, 
and dividing by the success proportion for the complete test set to determine the 
lift factor.
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Table 5.6  Data for a Lift Chart

Rank Predicted Actual Class

  1 0.95 yes
  2 0.93 yes
  3 0.93 no
  4 0.88 yes
  5 0.86 yes
  6 0.85 yes
  7 0.82 yes
  8 0.80 yes
  9 0.80 no
10 0.79 yes
11 0.77 no
12 0.76 yes
13 0.73 yes
14 0.65 no
15 0.63 yes
16 0.58 no
17 0.56 yes
18 0.49 no
19 0.48 yes
… … …

and not the actual classes, your best bet would be the top 10 ranking instances. 
Eight of these are positive, so the success proportion for this sample is 80%,  
corresponding to a lift factor of about 2.4.

If you knew the different costs involved, you could work them out for each sample 
size and choose the most profitable. But a graphical depiction of the various possibili-
ties will often be far more revealing than presenting a single “optimal” decision. 
Repeating the operation for different-size samples allows you to plot a lift chart like 
that of Figure 5.1. The horizontal axis shows the sample size as a proportion of the 
total possible mailout. The vertical axis shows the number of responses obtained. The 
lower left and upper right points correspond to no mailout at all, with a response of 
0, and a full mailout, with a response of 1000. The diagonal line gives the expected 
result for different-size random samples. But we do not choose random samples; we 
choose those instances that, according to the data mining tool, are most likely to 
generate a positive response. These correspond to the upper line, which is derived by 
summing the actual responses over the corresponding percentage of the instance list 
sorted in probability order. The two particular scenarios described previously are 
marked: a 10% mailout that yields 400 respondents and a 40% one that yields 800.

Where you’d like to be in a lift chart is near the upper left corner: At the very 
best, 1000 responses from a mailout of just 1000, where you send only to those 

Table 5.6 shows an example, 
for a small dataset that has 150 
instances, of which 50 are yes 
responses—an overall success 
proportion of 33%. The instances 
have been sorted in descending 
probability order according to the 
predicted probability of a yes 
response. The first instance is  
the one that the learning scheme 
thinks is the most likely to be 
positive, the second is the next 
most likely, and so on. The 
numeric values of the probabili-
ties are unimportant: Rank is the 
only thing that matters. With each 
rank is given the actual class of 
the instance. Thus, the learning 
scheme was correct about items 1 
and 2—they are indeed positives—
but wrong about item 3, which 
turned out to be negative. Now, if 
you were seeking the most prom-
ising sample of size 10, but only 
knew the predicted probabilities 
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FIGURE 5.1 

A hypothetical lift chart. 
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households that will respond and are rewarded with a 100% success rate. Any selec-
tion procedure worthy of the name will keep you above the diagonal—otherwise, 
you’d be seeing a response that is worse than for random sampling. So the operating 
part of the diagram is the upper triangle, and the farther to the upper left the better.

Figure 5.2(a) shows a visualization that allows various cost scenarios to be 
explored in an interactive fashion (called the cost–benefit analyzer, it forms 
part of the Weka workbench described in Part III). Here it is displaying results 
for predictions generated by the Naïve Bayes classifier on a real-world direct-
mail data set. In this example, 47,706 instances were used for training and a 
further 47,706 for testing. The test instances were ranked according to the 
predicted probability of a response to the mailout. The graphs show a lift chart 
on the left and the total cost (or benefit), plotted against the sample size, on 
the right. At the lower left is a confusion matrix; at the lower right is a cost 
matrix.

Cost or benefit values associated with incorrect or correct classifications can be 
entered into the matrix and affect the shape of the curve above. The horizontal slider 
in the middle allows users to vary the percentage of the population that is selected 
from the ranked list. Alternatively, one can determine the sample size by adjusting 
the recall level (the proportion of positives to be included in the sample) or by 
adjusting a threshold on the probability of the positive class, which here corresponds 
to a response to the mailout. When the slider is moved, a large cross shows the cor-
responding point on both graphs. The total cost or benefit associated with the 
selected sample size is shown at the lower right, along with the expected response 
to a random mailout of the same size.
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FIGURE 5.2 

Analyzing the expected benefit of a mailing campaign when the cost of mailing is  
(a) $0.50 and (b) $0.80. 

(a)

(b)
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In the cost matrix in Figure 5.2(a), a cost of $0.50—the cost of mailing—has 
been associated with nonrespondents and a benefit of $15.00 with respondents (after 
deducting the mailing cost). Under these conditions, and using the Naïve Bayes 
classifier, there is no subset from the ranked list of prospects that yields a greater 
profit than mailing to the entire population. However, a slightly higher mailing cost 
changes the situation dramatically, and Figure 5.2(b) shows what happens when it 
is increased to $0.80. Assuming the same profit of $15.00 per respondent, a maximum 
profit of $4,560.60 is achieved by mailing to the top 46.7% of the population. In 
this situation, a random sample of the same size achieves a loss of $99.59.

ROC Curves
Lift charts are a valuable tool, widely used in marketing. They are closely related 
to a graphical technique for evaluating data mining schemes known as ROC curves, 
which are used in just the same situation, where the learner is trying to select samples 
of test instances that have a high proportion of positives. The acronym stands for 
receiver operating characteristic, a term used in signal detection to characterize the 
tradeoff between hit rate and false-alarm rate over a noisy channel. ROC curves 
depict the performance of a classifier without regard to class distribution or error 
costs. They plot the true positive rate on the vertical axis against the true negative 
rate on the horizontal axis. The former is the number of positives included in the 
sample, expressed as a percentage of the total number of positives (TP Rate = 
100 × TP/(TP + FN)); the latter is the number of negatives included in the 
sample, expressed as a percentage of the total number of negatives (FP Rate = 
100 × FP/(FP + TN)). The vertical axis is the same as the lift chart’s except that it 
is expressed as a percentage. The horizontal axis is slightly different—it is the 
number of negatives rather than the sample size. However, in direct marketing situ-
ations where the proportion of positives is very small anyway (like 0.1%), there is 
negligible difference between the size of a sample and the number of negatives it 
contains, so the ROC curve and lift chart look very similar. As with lift charts, the 
upper left corner is the place to be.

Figure 5.3 shows an example ROC curve—the jagged line—for the sample of 
test data shown earlier in Table 5.6. You can follow it along with the table. From 
the origin: Go up two (two positives), along one (one negative), up five (five posi-
tives), along two (two negatives), up one, along one, up two, and so on. Each point 
corresponds to drawing a line at a certain position on the ranked list, counting the 
yes’s and no’s above it, and plotting them vertically and horizontally, respectively. 
As you go farther down the list, corresponding to a larger sample, the number of 
positives and negatives both increase.

The jagged ROC line in Figure 5.3 depends intimately on the details of the par-
ticular sample of test data. This sample dependence can be reduced by applying 
cross-validation. For each different number of no’s—that is, each position along the 
horizontal axis—take just enough of the highest-ranked instances to include that 
number of no’s, and count the number of yes’s they contain. Finally, average that 
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FIGURE 5.3 

A sample ROC curve. 

0

20

40

60

80

100

0 20 40 60 80 100
False Positives (%)

T
ru

e 
P

os
it

iv
es

 (
%

)

number over different folds of the cross-validation. The result is a smooth curve like 
that in Figure 5.3—although in reality such curves do not generally look quite so 
smooth.

This is just one way of using cross-validation to generate ROC curves. A simpler 
approach is to collect the predicted probabilities for all the various test sets (of which 
there are 10 in a tenfold cross-validation), along with the true class labels of the 
corresponding instances, and generate a single ranked list based on this data. This 
assumes that the probability estimates from the classifiers built from the different 
training sets are all based on equally sized random samples of the data. It is not clear 
which method is preferable. However, the latter method is easier to implement.

If the learning scheme does not allow the instances to be ordered, you can first 
make it cost-sensitive as described earlier. For each fold of a tenfold cross-validation, 
weight the instances for a selection of different cost ratios, train the scheme on each 
weighted set, count the true positives and false positives in the test set, and plot the 
resulting point on the ROC axes. (It doesn’t matter whether the test set is weighted 
or not because the axes in the ROC diagram are expressed as the percentage of true 
and false positives.) However, for probabilistic classifiers such as Naïve Bayes it is 
far more costly than the method described previously because it involves a separate 
learning problem for every point on the curve.

It is instructive to look at ROC curves obtained using different learning schemes. 
For example, in Figure 5.4, method A excels if a small, focused sample is sought—
that is, if you are working toward the left side of the graph. Clearly, if you aim to 
cover just 40% of the true positives you should choose method A, which gives a 
false positive rate of around 5%, rather than method B, which gives more than 20% 
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FIGURE 5.4 

ROC curves for two learning schemes. 
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false positives. But method B excels if you are planning a large sample: If you are 
covering 80% of the true positives, B will give a false positive rate of 60% as com-
pared with method A’s 80%. The shaded area is called the convex hull of the two 
curves, and you should always operate at a point that lies on the upper boundary of 
the convex hull.

What about the region in the middle where neither method A nor method B lies 
on the convex hull? It is a remarkable fact that you can get anywhere in the shaded 
region by combining methods A and B and using them at random with appropriate 
probabilities. To see this, choose a particular probability cutoff for method A that 
gives true and false positive rates of tA and fA, respectively, and another cutoff for 
method B that gives tB and fB. If you use these two schemes at random with prob-
abilities p and q, where p + q = 1, then you will get true and false positive rates 
of p . tA + q . tB and p . fA + q . fB. This represents a point lying on the straight line 
joining the points (tA, fA) and (tB, fB), and by varying p and q you can trace out the 
whole line between these two points. By this device, the entire shaded region can 
be reached. Only if a particular scheme generates a point that lies on the convex 
hull should it be used alone. Otherwise, it would always be better to use a combi-
nation of classifiers corresponding to a point that lies on the convex hull.

Recall–Precision Curves
People have grappled with the fundamental tradeoff illustrated by lift charts and 
ROC curves in a wide variety of domains. Information retrieval is a good example. 
Given a query, a Web search engine produces a list of hits that represent documents 



supposedly relevant to the query. Compare one system that locates 100 documents, 
40 of which are relevant, with another that locates 400 documents, 80 of which are 
relevant. Which is better? The answer should now be obvious: It depends on the 
relative cost of false positives, documents returned that aren’t relevant, and false 
negatives, documents that are relevant but aren’t returned. Information retrieval 
researchers define parameters called recall and precision:

Recall
number of documents retrieved that are relevant

tota
=

ll number of documents that are relevant

Precision
number of documents retrieved that are relevant

t
=

ootal number of documents that are retrieved

For example, if the list of yes’s and no’s in Table 5.6 represented a ranked list 
of retrieved documents and whether they were relevant or not, and the entire col-
lection contained a total of 40 relevant documents, then “recall at 10” would refer 
to the recall for the top 10 documents—that is, 8/40 = 20%—while “precision at 
10” would be 8/10 = 80%. Information retrieval experts use recall–precision curves 
that plot one against the other, for different numbers of retrieved documents, in just 
the same way as ROC curves and lift charts—except that, because the axes are dif-
ferent, the curves are hyperbolic in shape and the desired operating point is toward 
the upper right.

Discussion
Table 5.7 summarizes the three different ways introduced for evaluating the same 
basic tradeoff; TP, FP, TN, and FN are the numbers of true positives, false positives, 
true negatives, and false negatives, respectively. You want to choose a set of instances 
with a high proportion of yes instances and a high coverage of the yes instances: 
You can increase the proportion by (conservatively) using a smaller coverage, or 
(liberally) increase the coverage at the expense of the proportion. Different tech-
niques give different tradeoffs, and can be plotted as different lines on any of these 
graphical charts.

People also seek single measures that characterize performance. Two that are 
used in information retrieval are three-point average recall, which gives the average 
precision obtained at recall values of 20%, 50%, and 80%, and 11-point average 
recall, which gives the average precision obtained at recall values of 0%, 10%, 20%, 
30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Also used in information 
retrieval is the F-measure, which is

2 2

2

× ×
+

= ×
× + +

recall precision

recall precision

TP

TP FP FN

Different terms are used in different domains. Physicians, for example, talk about 
the sensitivity and specificity of diagnostic tests. Sensitivity refers to the proportion 
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of people with disease who have a positive test result—that is, tp. Specificity refers 
to the proportion of people without disease who have a negative test result, which 
is 1 – fp. Sometimes the product of these is used as an overall measure:

sensitivity specificity
TP TN

TP FN FP TN
× = − = ×

+ × +
tp fp( )

( ) ( )
1

Finally, of course, there is our old friend the success rate:

TP TN

TP FP TN FN

+
+ + +

To summarize ROC curves in a single quantity, people sometimes use the area 
under the curve (AUC) because, roughly speaking, the larger the area the better the 
model. The area also has a nice interpretation as the probability that the classifier 
ranks a randomly chosen positive instance above a randomly chosen negative one. 
Although such measures may be useful if costs and class distributions are unknown 
and one scheme must be chosen to handle all situations, no single number is able to 
capture the tradeoff. That can only be done by two-dimensional depictions such as 
lift charts, ROC curves, and recall–precision diagrams.

Several methods are commonly employed for computing the area under the ROC 
curve. One, corresponding to a geometric interpretation, is to approximate it by 
fitting several trapezoids under the curve and summing up their area. Another is to 
compute the probability that the classifier ranks a randomly chosen positive instance 
above a randomly chosen negative one. This can be accomplished by calculating the 
Mann–Whitney U statistic, or, more specifically, the ρ statistic from the U statistic. 
This value is easily obtained from a list of test instances sorted in descending order 
of predicted probability of the positive class. For each positive instance, count how 
many negative ones are ranked below it (increase the count by 1

2 if positive and 
negative instances tie in rank). The U statistic is simply the total of these counts. 
The ρ statistic is obtained by dividing U by the product of the number of positive 
and negative instances in the test set—in other words, the U value that would result 
if all positive instances were ranked above the negative ones.

The area under the precision–recall curve (AUPRC) is an alternative summary 
statistic that is preferred by some practitioners, particularly in the information 
retrieval area.

Cost Curves 
ROC curves and their relatives are very useful for exploring the tradeoffs among 
different classifiers over a range of scenarios. However, they are not ideal for evalu-
ating machine learning models in situations with known error costs. For example, 
it is not easy to read off the expected cost of a classifier for a fixed cost matrix and 
class distribution. Neither can you easily determine the ranges of applicability of 
different classifiers. For example, from the crossover point between the two ROC 
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curves in Figure 5.4 it is hard to tell for what cost and class distributions classifier 
A outperforms classifier B.

Cost curves are a different kind of display on which a single classifier corre-
sponds to a straight line that shows how the performance varies as the class distribu-
tion changes. Again, they work best in the two-class case, although you can always 
make a multiclass problem into a two-class one by singling out one class and evalu-
ating it against the remaining ones.

Figure 5.5(a) plots the expected error against the probability of one of the classes. 
You could imagine adjusting this probability by resampling the test set in a non
uniform way. We denote the two classes by + and –. The diagonals show the per-
formance of two extreme classifiers: One always predicts +, giving an expected error 
of 1 if the dataset contains no + instances and 0 if all its instances are +; the other 
always predicts –, giving the opposite performance. The dashed horizontal line 
shows the performance of the classifier that is always wrong, and the x-axis itself 
represents the classifier that is always correct. In practice, of course, neither of these 
is realizable. Good classifiers have low error rates, so where you want to be is as 
close to the bottom of the diagram as possible.

The line marked A represents the error rate of a particular classifier. If you cal-
culate its performance on a certain test set, its false positive rate, fp, is its expected 
error on a subsample of the test set that contains only examples that are negative 
(p[+] = 0), and its false negative rate, fn, is the error on a subsample that contains 
only positive examples, (p[+] = 1). These are the values of the intercepts at the left 
and right, respectively. You can see immediately from the plot that if p[+] is smaller 
than about 0.2, predictor A is outperformed by the extreme classifier that always 
predicts –, while if it is larger than about 0.65, the other extreme classifier is better.

FIGURE 5.5 

Effect of varying the probability threshold: (a) error curve and (b) cost curve. 



So far we have not taken costs into account, or rather we have used the default 
cost matrix in which all errors cost the same. Cost curves, which do take cost into 
account, look very similar—very similar indeed—but the axes are different. Figure 
5.5(b) shows a cost curve for the same classifier A (note that the vertical scale has 
been enlarged, for convenience, and ignore the gray lines for now). It plots the 
expected cost of using A against the probability cost function, which is a distorted 
version of p[+] that retains the same extremes: 0 when p[+] = 0 and 1 when 
p[+] = 1. Denote by C[+ | –] the cost of predicting + when the instance is actually 
–, and the reverse by C[– | +]. Then the axes of Figure 5.5(b) are

Normalized expected cost = × + + × − +fn p fp pC C[ ] ( [ ])1

Probability cost function p
p C

p C p C
C[ ]

[ ] [ | ]

[ ] [ | ] [ ] [
+ = + − +

+ − + + − ++ −| ]

We are assuming here that correct predictions have no cost: C[+ | +] = C[– | –] = 0. 
If that is not the case, the formulas are a little more complex.

The maximum value that the normalized expected cost can have is 1—that is 
why it is “normalized.” One nice thing about cost curves is that the extreme cost 
values at the left and right sides of the graph are fp and fn, just as they are for the 
error curve, so you can draw the cost curve for any classifier very easily.

Figure 5.5(b) also shows classifier B, whose expected cost remains the same 
across the range—that is, its false positive and false negative rates are equal. As you 
can see, it outperforms classifier A if the probability cost function exceeds about 
0.45, and knowing the costs we could easily work out what this corresponds to in 
terms of class distribution. In situations that involve different class distributions, 
cost curves make it easy to tell when one classifier will outperform another.

In what circumstances might this be useful? To return to our example of predict-
ing when cows will be in estrus, their 30-day cycle, or 1/30 prior probability, is 
unlikely to vary greatly (barring a genetic cataclysm!). But a particular herd may 
have different proportions of cows that are likely to reach estrus in any given week, 
perhaps synchronized with—who knows?—the phase of the moon. Then, different 
classifiers would be appropriate at different times. In the oil spill example, different 
batches of data may have different spill probabilities. In these situations cost curves 
can help to show which classifier to use when.

Each point on a lift chart, ROC curve, or recall–precision curve represents a 
classifier, typically obtained by using different threshold values for a method such 
as Naïve Bayes. Cost curves represent each classifier by a straight line, and a suite 
of classifiers will sweep out a curved envelope whose lower limit shows how well 
that type of classifier can do if the parameter is well chosen. Figure 5.5(b) indicates 
this with a few gray lines. If the process were continued, it would sweep out the 
dotted parabolic curve.

The operating region of classifier B ranges from a probability cost value of about 
0.25 to a value of about 0.75. Outside this region, classifier B is outperformed by 
the trivial classifiers represented by dashed lines. Suppose we decide to use classifier 
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B within this range and the appropriate trivial classifier below and above it. All 
points on the parabola are certainly better than this scheme. But how much better? 
It is hard to answer such questions from an ROC curve, but the cost curve makes 
them easy. The performance difference is negligible if the probability cost value is 
around 0.5, and below a value of about 0.2 and above 0.8 it is barely perceptible. 
The greatest difference occurs at probability cost values of 0.25 and 0.75 and is 
about 0.04, or 4% of the maximum possible cost figure.

5.8  EVALUATING NUMERIC PREDICTION
All the evaluation measures we have described pertain to classification situations 
rather than numeric prediction situations. The basic principles—using an indepen-
dent test set rather than the training set for performance evaluation, the holdout 
method, cross-validation—apply equally well to numeric prediction. But the basic 
quality measure offered by the error rate is no longer appropriate: Errors are not 
simply present or absent; they come in different sizes.

Several alternative measures, some of which are summarized in Table 5.8, can be 
used to evaluate the success of numeric prediction. The predicted values on the test 
instances are p1, p2, …, pn; the actual values are a1, a2, …, an. Notice that pi means 

Mean-squared error ( ) ( )p a p a
n

n n1 1
2 2− + … + −
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*Here, a is the mean value over the training data.
**Here, a is the mean value over the test data.

Table 5.8  Performance Measures for Numeric Prediction
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something very different here from what it meant in the last section: There it was  
the probability that a particular prediction was in the ith class; here it refers to the 
numerical value of the prediction for the ith test instance.

Mean-squared error is the principal and most commonly used measure; some-
times the square root is taken to give it the same dimensions as the predicted value 
itself. Many mathematical techniques (such as linear regression, explained in Chapter 
4) use the mean-squared error because it tends to be the easiest measure to manipu-
late mathematically: It is, as mathematicians say, “well behaved.” However, here we 
are considering it as a performance measure: All the performance measures are easy 
to calculate, so mean-squared error has no particular advantage. The question is, is 
it an appropriate measure for the task at hand?

Mean absolute error is an alternative: Just average the magnitude of the indi-
vidual errors without taking account of their sign. Mean-squared error tends to 
exaggerate the effect of outliers—instances when the prediction error is larger than 
the others—but absolute error does not have this effect: All sizes of error are treated 
evenly according to their magnitude.

Sometimes it is the relative rather than absolute error values that are of impor-
tance. For example, if a 10% error is equally important whether it is an error of 50 
in a prediction of 500 or an error of 0.2 in a prediction of 2, then averages of absolute 
error will be meaningless—relative errors are appropriate. This effect would be taken 
into account by using the relative errors in the mean-squared error calculation or the 
mean absolute error calculation.

Relative squared error in Table 5.8 refers to something quite different. The error 
is made relative to what it would have been if a simple predictor had been used. The 
simple predictor in question is just the average of the actual values from the training 
data, denoted by a. Thus, relative squared error takes the total squared error and 
normalizes it by dividing by the total squared error of the default predictor. The root 
relative squared error is obtained in the obvious way.

The next error measure goes by the glorious name of relative absolute error and 
is just the total absolute error, with the same kind of normalization. In these three 
relative error measures, the errors are normalized by the error of the simple predictor 
that predicts average values.

The final measure in Table 5.8 is the correlation coefficient, which measures the 
statistical correlation between the a’s and the p’s. The correlation coefficient ranges 
from 1 for perfectly correlated results, through 0 when there is no correlation, to –1 
when the results are perfectly correlated negatively. Of course, negative values 
should not occur for reasonable prediction methods. Correlation is slightly different 
from the other measures because it is scale independent in that, if you take a particu-
lar set of predictions, the error is unchanged if all the predictions are multiplied by 
a constant factor and the actual values are left unchanged. This factor appears in 
every term of SPA in the numerator and in every term of SP in the denominator, thus 
canceling out. (This is not true for the relative error figures, despite normalization: 
If you multiply all the predictions by a large constant, then the difference between 
the predicted and actual values will change dramatically, as will the percentage 
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Table 5.9  Performance Measures for Four Numeric Prediction Models

A B C D

Root mean-squared error 67.8 91.7 63.3 57.4
Mean absolute error 41.3 38.5 33.4 29.2
Root relative squared error 42.2% 57.2% 39.4% 35.8%
Relative absolute error 43.1% 40.1% 34.8% 30.4%
Correlation coefficient 0.88 0.88 0.89 0.91

errors.) It is also different in that good performance leads to a large value of the 
correlation coefficient, whereas because the other methods measure error, good 
performance is indicated by small values.

Which of these measures is appropriate in any given situation is a matter 
that can only be determined by studying the application itself. What are we 
trying to minimize? What is the cost of different kinds of error? Often it is not 
easy to decide. The squared error measures and root-squared error measures 
weigh large discrepancies much more heavily than small ones, whereas the abso-
lute error measures do not. Taking the square root (root mean-squared error) just 
reduces the figure to have the same dimensionality as the quantity being predicted. 
The relative error figures try to compensate for the basic predictability or unpre-
dictability of the output variable: If it tends to lie fairly close to its average 
value, then you expect prediction to be good and the relative figure compensates 
for this. Otherwise, if the error figure in one situation is far greater than in 
another situation, it may be because the quantity in the first situation is inher-
ently more variable and therefore harder to predict, not because the predictor is 
any worse.

Fortunately, it turns out that in most practical situations the best numerical 
prediction method is still the best no matter which error measure is used. For 
example, Table 5.9 shows the result of four different numeric prediction techniques 
on a given dataset, measured using cross-validation. Method D is the best accord-
ing to all five metrics: It has the smallest value for each error measure and the 
largest correlation coefficient. Method C is the second best by all five metrics. 
The performance of A and B is open to dispute: They have the same correlation 
coefficient; A is better than B according to mean-squared and relative squared 
errors, and the reverse is true for absolute and relative absolute error. It is likely 
that the extra emphasis that the squaring operation gives to outliers accounts for 
the differences in this case.

When comparing two different learning schemes that involve numeric prediction, 
the methodology developed in Section 5.5 still applies. The only difference is that 
success rate is replaced by the appropriate performance measure (e.g., root mean-
squared error) when performing the significance test.
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5.9  MINIMUM DESCRIPTION LENGTH PRINCIPLE
What is learned by a machine learning scheme is a kind of “theory” of the domain 
from which the examples are drawn, a theory that is predictive in that it is capable 
of generating new facts about the domain—in other words, the class of unseen 
instances. Theory is rather a grandiose term: We are using it here only in the sense 
of a predictive model. Thus, theories might comprise decision trees or sets of  
rules—they don’t have to be any more “theoretical” than that.

There is a long-standing tradition in science that, other things being equal, 
simple theories are preferable to complex ones. This is known as Occam’s Razor 
after the medieval philosopher William of Occam (or Ockham). Occam’s Razor 
shaves philosophical hairs off a theory. The idea is that the best scientific theory 
is the smallest one that explains all the facts. As Einstein is reputed to have said, 
“Everything should be made as simple as possible, but no simpler.” Of course, 
quite a lot is hidden in the phrase “other things being equal,” and it can be hard 
to assess objectively whether a particular theory really does “explain” all the facts 
on which it is based—that’s what controversy in science is all about.

In our case, in machine learning, most theories make errors. And if what is 
learned is a theory, then the errors it makes are like exceptions to the theory. One 
way to ensure that other things are equal is to insist that the information embodied 
in the exceptions is included as part of the theory when its “simplicity” is judged.

Imagine an imperfect theory for which there are a few exceptions. Not all the 
data is explained by the theory, but most is. What we do is simply adjoin the 
exceptions to the theory, specifying them explicitly as exceptions. This new theory 
is larger: That is a price that, quite justifiably, has to be paid for its inability to 
explain all the data. However, it may be that the simplicity—is it too much to call 
it elegance?—of the original theory is sufficient to outweigh the fact that it does 
not quite explain everything compared with a large, baroque theory that is more 
comprehensive and accurate.

For example, even though Kepler’s three laws of planetary motion did not at the 
time account for the known data quite so well as Copernicus’ latest refinement of 
the Ptolemaic theory of epicycles, they had the advantage of being far less complex, 
and that would have justified any slight apparent inaccuracy. Kepler was well aware 
of the benefits of having a theory that was compact, despite the fact that his theory 
violated his own aesthetic sense because it depended on “ovals” rather than pure 
circular motion. He expressed this in a forceful metaphor: “I have cleared the Augean 
stables of astronomy of cycles and spirals, and left behind me only a single cartload 
of dung.”

The minimum description length, or MDL, principle takes the stance that the best 
theory for a body of data is one that minimizes the size of the theory plus the amount 
of information necessary to specify the exceptions relative to the theory—the small-
est “cartload of dung.” In statistical estimation theory, this has been applied success-
fully to various parameter-fitting problems. It applies to machine learning as follows: 
Given a set of instances, a learning scheme infers a theory—be it ever so simple; 
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unworthy, perhaps, to be called a “theory”—from them. Using a metaphor of com-
munication, imagine that the instances are to be transmitted through a noiseless 
channel. Any similarity that is detected among them can be exploited to give a more 
compact coding. According to the MDL principle, the best theory is the one that 
minimizes the number of bits required to communicate the theory, along with the 
labels of the examples from which it was made.

Now the connection with the informational loss function introduced in Section 
5.6 should be starting to emerge. That function measures the error in terms of the 
number of bits required to transmit the instances’ class labels, given the probabi-
listic predictions made by the theory. According to the MDL principle, we need 
to add to this the “size” of the theory in bits, suitably encoded, to obtain an overall 
figure for complexity. However, the MDL principle refers to the information required 
to transmit the examples from which the theory was formed—that is, the training 
instances, not a test set. The overfitting problem is avoided because a complex 
theory that overfits will be penalized relative to a simple one by virtue of the fact 
that it takes more bits to encode. At one extreme is a very complex, highly over-
fitted theory that makes no errors on the training set. At the other is a very simple 
theory—the null theory—which does not help at all when transmitting the training 
set. And in between are theories of intermediate complexity, which make proba-
bilistic predictions that are imperfect and need to be corrected by transmitting 
some information about the training set. The MDL principle provides a means of 
comparing all these possibilities on an equal footing to see which is the best. We 
have found the holy grail: an evaluation scheme that works on the training set 
alone and does not need a separate test set. But the devil is in the details, as we 
will see.

Suppose a learning scheme comes up with a theory T, based on a training 
set E of examples, that requires a certain number of bits L[T] to encode, where 
L is for length. We are only interested in predicting class labels correctly, so we 
assume that E stands for the collection of class labels in the training set. Given 
the theory, the training set itself can be encoded in a certain number of  
bits, L[E  | T]. L[E  | T] is in fact given by the informational loss function summed 
over all members of the training set. Then the total description length of theory 
plus training set is

L L[ ] [ | ]T E T+

and the MDL principle recommends choosing the theory T that minimizes this sum.
There is a remarkable connection between the MDL principle and basic probabil-

ity theory. Given a training set E, we seek the “most likely” theory T—that is, 
the theory for which the a posteriori probability Pr[T | E]—the probability after the 
examples have been seen—is maximized. Bayes’ rule of conditional probability  
(the very same rule that we encountered in Section 4.2) dictates that

Pr[ | ]
Pr[ | ]Pr[ ]

Pr[ ]
T E

E T T

E
=
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Taking negative logarithms,

− = − − +log Pr[ | ] log Pr[ | ] log Pr[ ] log Pr[ ]T E E T T E

Maximizing the probability is the same as minimizing its negative logarithm. 
Now (as we saw in Section 5.6) the number of bits required to code something is just 
the negative logarithm of its probability. Furthermore, the final term, log Pr[E], 
depends solely on the training set and not on the learning method. Thus, choosing the 
theory that maximizes the probability Pr[T | E] is tantamount to choosing the theory 
that minimizes

L L[ | ] [ ]E T T+

In other words, the MDL principle!
This astonishing correspondence with the notion of maximizing the a posteriori 

probability of a theory after the training set has been taken into account gives cre-
dence to the MDL principle. But it also points out where the problems will sprout 
when the principle is applied in practice. The difficulty with applying Bayes’ rule 
directly is in finding a suitable prior probability distribution Pr[T] for the theory. In 
the MDL formulation, that translates into finding how to code the theory T into bits 
in the most efficient way. There are many ways of coding things, and they all depend 
on presuppositions that must be shared by encoder and decoder. If you know in 
advance that the theory is going to take a certain form, you can use that information 
to encode it more efficiently. How are you going to actually encode T? The devil is 
in the details.

Encoding E with respect to T to obtain L[E | T] seems a little more straightfor-
ward: We have already met the informational loss function. But actually, when you 
encode one member of the training set after another, you are encoding a sequence 
rather than a set. It is not necessary to transmit the training set in any particular 
order, and it ought to be possible to use that fact to reduce the number of bits 
required. Often, this is simply approximated by subtracting log n! (where n is the 
number of elements in E), which is the number of bits needed to specify a particular 
permutation of the training set (and because this is the same for all theories, it doesn’t 
actually affect the comparison between them). But one can imagine using the fre-
quency of the individual errors to reduce the number of bits needed to code them. 
Of course, the more sophisticated the method that is used to code the errors, the less 
the need for a theory in the first place—so whether a theory is justified or not depends 
to some extent on how the errors are coded. The details, the details.

We end this section as we began, on a philosophical note. It is important to 
appreciate that Occam’s Razor, the preference of simple theories over complex ones, 
has the status of a philosophical position or “axiom” rather than something that can 
be proven from first principles. While it may seem self-evident to us, this is a func-
tion of our education and the times we live in. A preference for simplicity is—or 
may be—culture specific rather than absolute.
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The Greek philosopher Epicurus (who enjoyed good food and wine and suppos-
edly advocated sensual pleasure—in moderation—as the highest good) expressed 
almost the opposite sentiment. His principle of multiple explanations advises that “If 
more than one theory is consistent with the data, keep them all” on the basis that if 
several explanations are equally in agreement, it may be possible to achieve a higher 
degree of precision by using them together—and, anyway, it would be unscientific to 
discard some arbitrarily. This brings to mind instance-based learning, in which all the 
evidence is retained to provide robust predictions, and resonates strongly with deci-
sion combination methods such as bagging and boosting (described in Chapter 8) 
that actually do gain predictive power by using multiple explanations together.

5.10  APPLYING THE MDL PRINCIPLE TO CLUSTERING
One of the nice things about the minimum description length principle is that, unlike 
other evaluation criteria, it can be applied under widely different circumstances. 
Although in some sense equivalent to Bayes’ rule in that, as we have seen, devising 
a coding scheme for theories is tantamount to assigning them a prior probability 
distribution, schemes for coding are somehow far more tangible and easier to think 
about in concrete terms than intuitive prior probabilities. To illustrate this we will 
briefly describe—without entering into coding details—how you might go about 
applying the MDL principle to clustering.

Clustering seems intrinsically difficult to evaluate. Whereas classification or 
association learning has an objective criterion of success—predictions made on test 
cases are either right or wrong—this is not so with clustering. It seems that the only 
realistic evaluation is whether the result of learning—the clustering—proves useful 
in the application context. (It is worth pointing out that really this is the case for all 
types of learning, not just clustering.)

Despite this, clustering can be evaluated from a description-length perspective. 
Suppose a cluster-learning technique divides the training set E into k clusters. If 
these clusters are natural ones, it should be possible to use them to encode E more 
efficiently. The best clustering will support the most efficient encoding.

One way of encoding the instances in E with respect to a given clustering is to 
start by encoding the cluster centers—the average value of each attribute over all 
instances in the cluster. Then, for each instance in E, transmit which cluster it belongs 
to (in log2 k bits) followed by its attribute values with respect to the cluster center—
perhaps as the numeric difference of each attribute value from the center. Couched 
as it is in terms of averages and differences, this description presupposes numeric 
attributes and raises thorny questions of how to code numbers efficiently. Nominal 
attributes can be handled in a similar manner: For each cluster there is a probability 
distribution for the attribute values, and the distributions are different for different 
clusters. The coding issue becomes more straightforward: Attribute values are coded 
with respect to the relevant probability distribution, a standard operation in data 
compression.
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If the data exhibits extremely strong clustering, this technique will result in a 
smaller description length than simply transmitting the elements of E without any 
clusters. However, if the clustering effect is not so strong, it will likely increase 
rather than decrease the description length. The overhead of transmitting cluster-
specific distributions for attribute values will more than offset the advantage gained 
by encoding each training instance relative to the cluster it lies in. This is where 
more sophisticated coding techniques come in. Once the cluster centers have been 
communicated, it is possible to transmit cluster-specific probability distributions 
adaptively, in tandem with the relevant instances: The instances themselves help to 
define the probability distributions, and the probability distributions help to define 
the instances. We will not venture further into coding techniques here. The point is 
that the MDL formulation, properly applied, may be flexible enough to support the 
evaluation of clustering. But actually doing it satisfactorily in practice is not easy.

5.11  FURTHER READING
The statistical basis of confidence tests is well covered in most statistics texts, which 
also give tables of the normal distribution and Student’s distribution. (We use an 
excellent course text by Wild and Seber (1995) that we recommend very strongly if 
you can get hold of it.) “Student” is the nom de plume of a statistician called William 
Gosset, who obtained a post as a chemist in the Guinness brewery in Dublin, Ireland, 
in 1899 and invented the t-test to handle small samples for quality control in 
brewing. The corrected resampled t-test was proposed by Nadeau and Bengio (2003). 
Cross-validation is a standard statistical technique, and its application in machine 
learning has been extensively investigated and compared with the bootstrap by 
Kohavi (1995a). The bootstrap technique itself is thoroughly covered by Efron and 
Tibshirani (1993).

The Kappa statistic was introduced by Cohen (1960). Ting (2002) has investi-
gated a heuristic way of generalizing to the multiclass case the algorithm given in 
Section 5.7 to make two-class learning schemes cost sensitive. Lift charts are 
described by Berry and Linoff (1997). The use of ROC analysis in signal detection 
theory is covered by Egan (1975); this work has been extended for visualizing and 
analyzing the behavior of diagnostic systems (Swets, 1988) and is also used in 
medicine (Beck and Schultz, 1986). Provost and Fawcett (1997) brought the idea of 
ROC analysis to the attention of the machine learning and data mining community. 
Witten et al. (1999b) explain the use of recall and precision in information retrieval 
systems; the F-measure is described by van Rijsbergen (1979). Drummond and Holte 
(2000) introduced cost curves and investigated their properties.

The MDL principle was formulated by Rissanen (1985). Kepler’s discovery of 
his economical three laws of planetary motion, and his doubts about them, are 
recounted by Koestler (1964).

Epicurus’ principle of multiple explanations is mentioned by Li and Vityani 
(1992), quoting from Asmis (1984).
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CHAPTER 

6 

Implementations: Real  
Machine Learning Schemes

We have seen the basic ideas of several machine learning methods and studied in 
detail how to assess their performance on practical data mining problems. Now we 
are well prepared to look at real, industrial-strength, machine learning algorithms. 
Our aim is to explain these algorithms both at a conceptual level and with a fair 
amount of technical detail so that you can understand them fully and appreciate the 
key implementation issues that arise.

In truth, there is a world of difference between the simplistic methods described 
in Chapter 4 and the actual algorithms that are widely used in practice. The principles 
are the same. So are the inputs and outputs—methods of knowledge representation. 
But the algorithms are far more complex, principally because they have to deal 
robustly and sensibly with real-world problems such as numeric attributes, missing 
values, and—most challenging of all—noisy data. To understand how the various 
schemes cope with noise, we will have to draw on some of the statistical knowledge 
that we learned in Chapter 5.

Chapter 4 opened with an explanation of how to infer rudimentary rules and then 
examined statistical modeling and decision trees. Then we returned to rule induction 
and continued with association rules, linear models, the nearest-neighbor method of 
instance-based learning, and clustering. This chapter develops all these topics.

We begin with decision tree induction and work up to a full description of the 
C4.5 system, a landmark decision tree program that is probably the machine learning 
workhorse most widely used in practice to date. Then we describe decision rule 
induction. Despite the simplicity of the idea, inducing decision rules that perform 
comparably with state-of-the-art decision trees turns out to be quite difficult in 
practice. Most high-performance rule inducers find an initial rule set and then refine 
it using a rather complex optimization stage that discards or adjusts individual rules 
to make them work better together. We describe the ideas that underlie rule learning 
in the presence of noise and then go on to cover a scheme that operates by forming 
partial decision trees, an approach that has been demonstrated to perform well while 
avoiding complex and ad hoc heuristics. Following this, we take a brief look at how 
to generate rules with exceptions, which were described in Section 3.4, and examine 
fast data structures for learning association rules.

There has been a resurgence of interest in linear models with the introduction of 
support vector machines, a blend of linear modeling and instance-based learning. 
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Support vector machines select a small number of critical boundary instances called 
support vectors from each class and build a linear discriminant function that sepa-
rates them as widely as possible. This instance-based approach transcends the limita-
tions of linear boundaries by making it practical to include extra nonlinear terms in 
the function, making it possible to form quadratic, cubic, and higher-order decision 
boundaries. The same techniques can be applied to the perceptron described in 
Section 4.6 to implement complex decision boundaries, and also to least squares 
regression. An older technique for extending the perceptron is to connect units 
together into multilayer “neural networks.” All of these ideas are described in 
Section 6.4.

Section 6.5 describes classic instance-based learners, developing the simple 
nearest-neighbor method introduced in Section 4.7 and showing some more pow-
erful alternatives that perform explicit generalization. Following that we extend 
linear regression for numeric prediction to a more sophisticated procedure that 
comes up with the tree representation introduced in Section 3.3 and go on to 
describe locally weighted regression, an instance-based strategy for numeric pre-
diction. Then we examine Bayesian networks, a potentially very powerful way of 
extending the Naïve Bayes method to make it less “naïve” by dealing with datasets 
that have internal dependencies. Next we return to clustering and review some 
methods that are more sophisticated than simple k-means, methods that produce 
hierarchical clusters and probabilistic clusters. We also look at semi-supervised 
learning, which can be viewed as combining clustering and classification. Finally, 
we discuss more advanced schemes for multi-instance learning than those covered 
in Section 4.9.

Because of the nature of the material it contains, this chapter differs from the 
others in the book. Sections can be read independently, and each is self-contained, 
including the references to further reading, which are gathered together in Discus-
sion sections.

6.1  DECISION TREES
The first machine learning scheme that we will develop in detail, the C4.5 algorithm, 
derives from the simple divide-and-conquer algorithm for producing decision trees 
that was described in Section 4.3. It needs to be extended in several ways before it 
is ready for use on real-world problems. First, we consider how to deal with numeric 
attributes and, after that, missing values. Then we look at the all-important problem 
of pruning decision trees, because although trees constructed by the divide-and-
conquer algorithm as described perform well on the training set, they are usually 
overfitted to the training data and do not generalize well to independent test sets. 
We then briefly consider how to convert decision trees to classification rules and 
examine the options provided by the C4.5 algorithm itself. Finally, we look at an 
alternative pruning strategy that is implemented in the famous CART system for 
learning classification and regression trees.
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Numeric Attributes
The method we described in Section 4.3 only works when all the attributes are 
nominal, whereas, as we have seen, most real datasets contain some numeric attri-
butes. It is not too difficult to extend the algorithm to deal with these. For a numeric 
attribute we will restrict the possibilities to a two-way, or binary, split. Suppose we 
use the version of the weather data that has some numeric features (see Table 1.3). 
Then, when temperature is being considered for the first split, the temperature values 
involved are

64 65 68 69 70 71 72 75 80 81 83 85
yes no yes yes yes no no

yes
yes
yes

no yes yes no

Repeated values have been collapsed together, and there are only 11 possible posi-
tions for the breakpoint—8 if the breakpoint is not allowed to separate items of the 
same class. The information gain for each can be calculated in the usual way. For 
example, the test temperature < 71.5 produces four yes’s and two no’s, whereas 
temperature > 71.5 produces five yes’s and three no’s, and so the information value 
of this test is

info info info([ , ], [ , ]) ( ) ([ , ]) ( ) ([ , ]) .4 2 5 3 6 14 4 2 8 14 5 3 0 93= × + × = 99 bits

It is common to place numeric thresholds halfway between the values that delimit 
the boundaries of a concept, although something might be gained by adopting a more 
sophisticated policy. For example, we will see in the following that although the 
simplest form of instance-based learning puts the dividing line between concepts in 
the middle of the space between them, other methods that involve more than just 
the two nearest examples have been suggested.

When creating decision trees using the divide-and-conquer method, once the 
first attribute to split on has been selected, a top-level tree node is created that 
splits on that attribute, and the algorithm proceeds recursively on each of the child 
nodes. For each numeric attribute, it appears that the subset of instances at each 
child node must be re-sorted according to that attribute’s values—and, indeed, this 
is how programs for inducing decision trees are usually written. However, it is 
not actually necessary to re-sort because the sort order at a parent node can be 
used to derive the sort order for each child, leading to a speedier implementation. 
Consider the temperature attribute in the weather data, whose sort order (this time 
including duplicates) is

64 65 68 69 70 71 72 72 75 75 80 81 83 85
7 6 5 9 4 14 8 12 10 11 2 13 3 1

The italicized numbers below each temperature value give the number of the 
instance that has that value. Thus, instance number 7 has temperature value 64, 
instance 6 has temperature 65, and so on. Suppose we decide to split at the top level 
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9 8 11 2 1

on the attribute outlook. Consider the child node for which outlook = sunny—in fact, 
the examples with this value of outlook are numbers 1, 2, 8, 9, and 11. If the italicized 
sequence is stored with the example set (and a different sequence must be stored for 
each numeric attribute)—that is, instance 7 contains a pointer to instance 6, instance 
6 points to instance 5, instance 5 points to instance 9, and so on—then it is a simple 
matter to read off the examples for which outlook = sunny in order. All that is neces-
sary is to scan through the instances in the indicated order, checking the outlook 
attribute for each and writing down the ones with the appropriate value:

Thus, repeated sorting can be avoided by storing with each subset of instances the 
sort order for that subset according to each numeric attribute. The sort order must 
be determined for each numeric attribute at the beginning; no further sorting is 
necessary thereafter.

When a decision tree tests a nominal attribute as described in Section 4.3, a 
branch is made for each possible value of the attribute. However, we have restricted 
splits on numeric attributes to be binary. This creates an important difference between 
numeric attributes and nominal ones: Once you have branched on a nominal attri-
bute, you have used all the information that it offers; however, successive splits on 
a numeric attribute may continue to yield new information. Whereas a nominal 
attribute can only be tested once on any path from the root of a tree to the leaf, a 
numeric one can be tested many times. This can yield trees that are messy and dif-
ficult to understand because the tests on any single numeric attribute are not located 
together but can be scattered along the path. An alternative, which is harder to 
accomplish but produces a more readable tree, is to allow a multiway test on a 
numeric attribute, testing against several different constants at a single node of the 
tree. A simpler but less powerful solution is to prediscretize the attribute as described 
in Section 7.2.

Missing Values
The next enhancement to the decision tree–building algorithm deals with the prob-
lems of missing values. Missing values are endemic in real-world datasets. As 
explained in Chapter 2 (page 58), one way of handling them is to treat them as just 
another possible value of the attribute; this is appropriate if the fact that the attribute 
is missing is significant in some way. In that case, no further action need be taken. 
But if there is no particular significance in the fact that a certain instance has a 
missing attribute value, a more subtle solution is needed. It is tempting to simply 
ignore all instances in which some of the values are missing, but this solution is 
often too draconian to be viable. Instances with missing values often provide a good 
deal of information. Sometimes the attributes with values that are missing play no 
part in the decision, in which case these instances are as good as any other.

One question is how to apply a given decision tree to an instance in which some 
of the attributes to be tested have missing values. We outlined a solution in Section 
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3.3 that involves notionally splitting the instance into pieces, using a numeric 
weighting scheme, and sending part of it down each branch in proportion to the 
number of training instances going down that branch. Eventually, the various parts 
of the instance will each reach a leaf node, and the decisions at these leaf nodes 
must be recombined using the weights that have percolated to the leaves. The infor-
mation gain and gain ratio calculations described in Section 4.3 can also be applied 
to partial instances. Instead of having integer counts, the weights are used when 
computing both gain figures.

Another question is how to partition the training set once a splitting attribute has 
been chosen, to allow recursive application of the decision tree formation procedure 
on each of the daughter nodes. The same weighting procedure is used. Instances for 
which the relevant attribute value is missing are notionally split into pieces, one 
piece for each branch, in the same proportion as the known instances go down the 
various branches. Pieces of the instance contribute to decisions at lower nodes in 
the usual way through the information gain calculation, except that they are weighted 
accordingly. They may be further split at lower nodes, of course, if the values of 
other attributes are unknown as well.

Pruning
Fully expanded decision trees often contain unnecessary structure, and it is generally 
advisable to simplify them before they are deployed. Now it is time to learn how to 
prune decision trees.

By building the complete tree and pruning it afterward we are adopting a strategy 
of postpruning (sometimes called backward pruning) rather than prepruning (or 
forward pruning). Prepruning would involve trying to decide during the tree-
building process when to stop developing subtrees—quite an attractive prospect 
because that would avoid all the work of developing subtrees only to throw them 
away afterward. However, postpruning does seem to offer some advantages. For 
example, situations occur in which two attributes individually seem to have nothing 
to contribute but are powerful predictors when combined—a sort of combination-
lock effect in which the correct combination of the two attribute values is very 
informative but the attributes taken individually are not. Most decision tree builders 
postprune; however, prepruning can be a viable alternative when runtime is of 
particular concern.

Two rather different operations have been considered for postpruning: subtree 
replacement and subtree raising. At each node, a learning scheme might decide 
whether it should perform subtree replacement, subtree raising, or leave the subtree 
as it is, unpruned. Subtree replacement is the primary pruning operation, and we 
look at it first. The idea is to select some subtrees and replace them with single 
leaves. For example, the whole subtree in Figure 1.3(a), involving two internal nodes 
and four leaf nodes, has been replaced by the single leaf bad. This will certainly 
cause the accuracy on the training set to decrease if the original tree was produced 
by the decision tree algorithm described previously, because that continued to build 
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FIGURE 6.1 

Example of subtree raising, where (a) node C is “raised” to subsume node B (b). 
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the tree until all leaf nodes were pure (or until all attributes had been tested). 
However, it may increase the accuracy on an independently chosen test set.

When subtree replacement is implemented, it proceeds from the leaves and works 
back up toward the root. In the Figure 1.3 example, the whole subtree in (a) would 
not be replaced at once. First, consideration would be given to replacing the three 
daughter nodes in the health plan contribution subtree with a single leaf node. 
Assume that a decision is made to perform this replacement—we will explain how 
this decision is made shortly. Then, continuing to work back from the leaves, con-
sideration would be given to replacing the working hours per week subtree, which 
now has just two daughter nodes, by a single leaf node. In the Figure 1.3 example, 
this replacement was indeed made, which accounts for the entire subtree in (a) being 
replaced by a single leaf marked bad. Finally, consideration would be given to 
replacing the two daughter nodes in the wage increase 1st year subtree with a single 
leaf node. In this case, that decision was not made, so the tree remains as shown in 
Figure 1.3(a). Again, we will examine how these decisions are actually made shortly.

The second pruning operation, subtree raising, is more complex, and it is not 
clear that it is necessarily always worthwhile. However, because it is used in the 
influential decision tree–building system C4.5, we describe it here. Subtree raising 
does not occur in the Figure 1.3 example, so we use the artificial example of Figure 
6.1 for illustration. Here, consideration is given to pruning the tree in Figure 6.1(a), 
and the result is shown in Figure 6.1(b). The entire subtree from C downward has 
been “raised” to replace the B subtree. Note that although the daughters of B and C 
are shown as leaves, they can be entire subtrees. Of course, if we perform this raising 
operation, it is necessary to reclassify the examples at the nodes marked 4 and 5 into 
the new subtree headed by C. This is why the daughters of that node are marked 
with primes—1′, 2′, and 3′—to indicate that they are not the same as the original 
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daughters 1, 2, and 3 but differ by the inclusion of the examples originally covered 
by 4 and 5.

Subtree raising is a potentially time-consuming operation. In actual implementa-
tions it is generally restricted to raising the subtree of the most popular branch. That 
is, we consider doing the raising illustrated in Figure 6.1 provided that the branch 
from B to C has more training examples than the branches from B to node 4 or from 
B to node 5. Otherwise, if (for example) node 4 were the majority daughter of B, 
we would consider raising node 4 to replace B and reclassifying all examples under 
C, as well as the examples from node 5, into the new node.

Estimating Error Rates
So much for the two pruning operations. Now we must address the question of how 
to decide whether to replace an internal node by a leaf (for subtree replacement) or 
whether to replace an internal node by one of the nodes below it (for subtree raising). 
To make this decision rationally, it is necessary to estimate the error rate that would 
be expected at a particular node given an independently chosen test set. We need to 
estimate the error at internal nodes as well as at leaf nodes. If we had such an esti-
mate, it would be clear whether to replace, or raise, a particular subtree simply by 
comparing the estimated error of the subtree with that of its proposed replacement. 
Before estimating the error for a subtree proposed for raising, examples that lie under 
siblings of the current node—the examples at 4 and 5 of Figure 6.1—would have 
to be temporarily reclassified into the raised tree.

It is no use taking the training set error as the error estimate: That would not lead 
to any pruning because the tree has been constructed expressly for that particular 
training set. One way of coming up with an error estimate is the standard verification 
technique: Hold back some of the data originally given and use it as an independent 
test set to estimate the error at each node. This is called reduced-error pruning. It 
suffers from the disadvantage that the actual tree is based on less data.

The alternative is to try to make some estimate of error based on the training 
data itself. That is what C4.5 does, and we will describe its method here. It is a 
heuristic based on some statistical reasoning, but the statistical underpinning is rather 
weak. However, it seems to work well in practice. The idea is to consider the set of 
instances that reach each node and imagine that the majority class is chosen to 
represent that node. That gives us a certain number of “errors,” E, out of the total 
number of instances, N. Now imagine that the true probability of error at the node 
is q, and that the N instances are generated by a Bernoulli process with parameter 
q, of which E turn out to be errors.

This is almost the same situation as we considered when looking at the holdout 
method in Section 5.2, where we calculated confidence intervals on the true success 
probability p given a certain observed success rate. There are two differences. One 
is trivial: Here we are looking at the error rate q rather than the success rate p; these 
are simply related by p + q = 1. The second is more serious: Here the figures E and 
N are measured from the training data, whereas in Section 5.2 we were considering 
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The mathematics involved is just the same as before. Given a particular confidence c (the 
default figure used by C4.5 is c = 25%), we find confidence limits z such that
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where N is the number of samples, f = E /N is the observed error rate, and q is the true 
error rate. As before, this leads to an upper confidence limit for q. Now we use that upper 
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Note the use of the + sign before the square root in the numerator to obtain the upper 
confidence limit. Here, z is the number of standard deviations corresponding to the 
confidence c, which for c = 25% is z = 0.69.

To see how all this works in practice, let’s look again at the labor negotiations decision 
tree of Figure 1.3, salient parts of which are reproduced in Figure 6.2 with the number of 
training examples that reach the leaves added. We use the previous formula with a 25% 
confidence figure—that is, with z = 0.69. Consider the lower left leaf, for which E = 2, N 
= 6, and so f = 0.33. Plugging these figures into the formula, the upper confidence limit 
is calculated as e = 0.47. That means that instead of using the training set error rate for 
this leaf, which is 33%, we will use the pessimistic estimate of 47%. This is pessimistic 
indeed, considering that it would be a bad mistake to let the error rate exceed 50% for a 
two-class problem. But things are worse for the neighboring leaf, where E = 1 and N = 2, 
because the upper confidence limit becomes e = 0.72. The third leaf has the same value 
of e as the first. The next step is to combine the error estimates for these three leaves in 
the ratio of the number of examples they cover, 6 : 2 : 6, which leads to a combined error 
estimate of 0.51. Now we consider the error estimate for the parent node, health plan 
contribution. This covers nine bad examples and five good ones, so the training set error 
rate is f = 5/14. For these values, the previous formula yields a pessimistic error estimate 
of e = 0.46. Because this is less than the combined error estimate of the three children, 
they are pruned away.

The next step is to consider the working hours per week node, which now has two 
children that are both leaves. The error estimate for the first, with E = 1 and N = 2, is 
e = 0.72, while for the second it is e = 0.46, as we have just seen. Combining these in 
the appropriate ratio of 2 : 14 leads to a value that is higher than the error estimate for  
the working hours node, so the subtree is pruned away and replaced by a leaf node.

The estimated error figures obtained in these examples should be taken with a grain  
of salt because the estimate is only a heuristic one and is based on a number of shaky 
assumptions: the use of the upper confidence limit; the assumption of a normal 
distribution; and the fact that statistics from the training set are used. However, the 
qualitative behavior of the error formula is correct and the method seems to work 
reasonably well in practice. If necessary, the underlying confidence level, which we have 

taken to be 25%, can be tweaked to produce more satisfactory results.

independent test data. Because of this difference we make a pessimistic estimate of 
the error rate by using the upper confidence limit rather than stating the estimate as 
a confidence range.
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Complexity of Decision Tree Induction
Now that we have learned how to accomplish the pruning operations, we have finally 
covered all the central aspects of decision tree induction. Let’s take stock and 
examine the computational complexity of inducing decision trees. We will use the 
standard order notation: O(n) stands for a quantity that grows at most linearly with 
n, O(n2) grows at most quadratically with n, and so on.

Suppose the training data contains n instances and m attributes. We need to make 
some assumption about the size of the tree, and we will assume that its depth is on 
the order of log n, that is O(log n). This is the standard rate of growth of a tree with 
n leaves, provided that it remains “bushy” and doesn’t degenerate into a few very 
long, stringy branches. Note that we are tacitly assuming that most of the instances 
are different from each other and—this is almost the same thing—that the m attri-
butes provide enough tests to allow the instances to be differentiated. For example, 
if there were only a few binary attributes, they would allow only so many instances 
to be differentiated and the tree could not grow past a certain point, rendering an 
“in the limit” analysis meaningless.

The computational cost of building the tree in the first place is O(mnlog n). 
Consider the amount of work done for one attribute over all nodes of the tree. Not 
all the examples need to be considered at each node, of course. But at each possible 
tree depth, the entire set of n instances must be considered in the worst case. And 
because there are log n different depths in the tree, the amount of work for this one 
attribute is O(n log n). At each node all attributes are considered, so the total amount 
of work is O(mn log n).

FIGURE 6.2 

Pruning the labor negotiations decision tree. 
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This reasoning makes some assumptions. If some attributes are numeric, they 
must be sorted, but once the initial sort has been done there is no need to re-sort at 
each tree depth if the appropriate algorithm is used (described previously—see page 
193). The initial sort takes O(n log n) operations for each of up to m attributes; thus, 
the above complexity figure is unchanged. If the attributes are nominal, all attributes 
do not have to be considered at each tree node because attributes that are used further 
up the tree cannot be reused. However, if attributes are numeric, they can be reused 
and so they have to be considered at every tree level.

Next, consider pruning by subtree replacement. First an error estimate must be 
made for every tree node. Provided that counts are maintained appropriately, this is 
linear in the number of nodes in the tree. Then each node needs to be considered 
for replacement. The tree has at most n leaves, one for each instance. If it were a 
binary tree, each attribute being numeric or two-valued, that would give it 2n – 1 
nodes; multiway branches would only serve to decrease the number of internal 
nodes. Thus, the complexity of subtree replacement is O(n).

Finally, subtree lifting has a basic complexity equal to subtree replacement. But 
there is an added cost because instances need to be reclassified during the lifting 
operation. During the whole process, each instance may have to be reclassified at 
every node between its leaf and the root—that is, as many as O(log n) times. That 
makes the total number of reclassifications O(n log n). And reclassification is not a 
single operation: One that occurs near the root will take O(log n) operations, and 
one of average depth will take half of this. Thus, the total complexity of subtree 
lifting is as follows: O(n(log n)2).

Taking into account all these operations, the full complexity of decision tree 
induction is

O( log ) O( (log ) )mn n n n+ 2

From Trees to Rules
It is possible to read a set of rules directly off a decision tree, as noted in Section 
3.4, by generating a rule for each leaf and making a conjunction of all the tests 
encountered on the path from the root to that leaf. This produces rules that are 
unambiguous in that it doesn’t matter in what order they are executed. However, the 
rules are more complex than necessary.

The estimated error rate described previously provides exactly the mechanism 
necessary to prune the rules. Given a particular rule, each condition in it is considered 
for deletion by tentatively removing it, working out which of the training examples 
are now covered by the rule, calculating from this a pessimistic estimate of the error 
rate of the new rule, and comparing this with the pessimistic estimate for the original 
rule. If the new rule is better, delete that condition and carry on, looking for other 
conditions to delete. Leave the rule when there are no remaining conditions that will 
improve it if they are removed. Once all rules have been pruned in this way, it is 
necessary to see if there are any duplicates and remove them from the rule set.
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This is a greedy approach to detecting redundant conditions in a rule, and there 
is no guarantee that the best set of conditions will be removed. An improvement 
would be to consider all subsets of conditions, but this is usually prohibitively 
expensive. Another solution might be to use an optimization technique such as 
simulated annealing or a genetic algorithm to select the best version of this rule. 
However, the simple greedy solution seems to produce quite good rule sets.

The problem, even with the greedy method, is computational cost. For every 
condition that is a candidate for deletion, the effect of the rule must be reevalu-
ated on all the training instances. This means that rule generation from trees tends 
to be very slow. The next section describes much faster methods that generate 
classification rules directly without forming a decision tree first.

C4.5: Choices and Options
The decision tree program C4.5 and its successor C5.0 were devised by Ross Quinlan 
over a 20-year period beginning in the late 1970s. A complete description of C4.5, 
the early 1990s version, appears as an excellent and readable book (Quinlan, 1993), 
along with the full source code. The more recent version, C5.0, is available com-
mercially. Its decision tree induction seems to be essentially the same as that used 
by C4.5, and tests show some differences but negligible improvements. However, 
its rule generation is greatly sped up and clearly uses a different technique, although 
this has not been described in the open literature.

C4.5 works essentially as described in the previous sections. The default confi-
dence value is set at 25% and works reasonably well in most cases; possibly it should 
be altered to a lower value, which causes more drastic pruning, if the actual error 
rate of pruned trees on test sets is found to be much higher than the estimated error 
rate. There is one other important parameter whose effect it is to eliminate tests for 
which almost all of the training examples have the same outcome. Such tests are 
often of little use. Consequently, tests are not incorporated into the decision tree 
unless they have at least two outcomes that have at least a minimum number of 
instances. The default value for this minimum is 2, but it is controllable and should 
perhaps be increased for tasks that have a lot of noisy data.

Another heuristic in C4.5 is that candidate splits on numeric attributes are only 
considered if they cut off a certain minimum number of instances: at least 10% of the 
average number of instances per class at the current node, or 25 instances—whichever 
value is smaller (but the minimum just mentioned, 2 by default, is also enforced).

C4.5 Release 8, the last noncommercial version of C4.5, includes an MDL-based 
adjustment to the information gain for splits on numeric attributes. More specifically, 
if there are S candidate splits on a certain numeric attribute at the node currently 
considered for splitting, log2(S)/N is subtracted from the information gain, where N 
is the number of instances at the node. This heuristic, described by Quinlan (1986), 
is designed to prevent overfitting. The information gain may be negative after sub-
traction, and tree growing will stop if there are no attributes with positive informa-
tion gain—a form of prepruning. We mention this here because it can be surprising 
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to obtain a pruned tree even if postpruning has been turned off! This heuristic is also 
implemented in the software described in Part 3 of this book.

Cost-Complexity Pruning
As mentioned, the postpruning method in C4.5 is based on shaky statistical assump-
tions, and it turns out that it often does not prune enough. On the other hand, it is 
very fast and thus popular in practice. However, in many applications it is worth-
while expending more computational effort to obtain a more compact decision tree. 
Experiments have shown that C4.5’s pruning method can yield unnecessary addi-
tional structure in the final tree: Tree size continues to grow when more instances 
are added to the training data even when this does not further increase performance 
on independent test data. In that case, the more conservative cost-complexity pruning 
method from the Classification and Regression Trees (CART) learning system may 
be more appropriate.

Cost-complexity pruning is based on the idea of first pruning those subtrees that, 
relative to their size, lead to the smallest increase in error on the training data. The 
increase in error is measured by a quantity α that is defined to be the average error 
increase per leaf of the subtree concerned. By monitoring this quantity as pruning 
progresses, the algorithm generates a sequence of successively smaller pruned trees. 
In each iteration it prunes all subtrees that exhibit the smallest value of α among the 
remaining subtrees in the current version of the tree.

Each candidate tree in the resulting sequence of pruned trees corresponds to one 
particular threshold value, αi. The question becomes, which tree should be chosen 
as the final classification model? To determine the most predictive tree, cost-
complexity pruning either uses a holdout set to estimate the error rate of each tree, 
or, if data is limited, employs cross-validation.

Using a holdout set is straightforward. However, cross-validation poses the 
problem of relating the α values observed in the sequence of pruned trees for train-
ing fold k of the cross-validation to the α values from the sequence of trees for the 
full dataset: These values are usually different. This problem is solved by first com-
puting the geometric average of αi and αi+1 for tree i from the full dataset. Then, for 
each fold k of the cross-validation, the tree that exhibits the largest α value smaller 
than this average is picked. The average of the error estimates for these trees from 
the k folds, estimated from the corresponding test datasets, is the cross-validation 
error for tree i from the full dataset.

Discussion
Top-down induction of decision trees is probably the most extensively researched 
method of machine learning used in data mining. Researchers have investigated a 
panoply of variations for almost every conceivable aspect of the learning process—
for example, different criteria for attribute selection or modified pruning methods. 
However, they are rarely rewarded by substantial improvements in accuracy over a 
spectrum of diverse datasets. As discussed, the pruning method used by the CART 
system for learning decision trees (Breiman et al., 1984) can often produce smaller 
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trees than C4.5’s pruning method. This has been investigated empirically by Oates 
and Jensen (1997).

In our description of decision trees, we have assumed that only one attribute is 
used to split the data into subsets at each node of the tree. However, it is possible 
to allow tests that involve several attributes at a time. For example, with numeric 
attributes each test can be on a linear combination of attribute values. Then the final 
tree consists of a hierarchy of linear models of the kind we described in Section 4.6, 
and the splits are no longer restricted to being axis-parallel. Trees with tests involv-
ing more than one attribute are called multivariate decision trees, in contrast to the 
simple univariate trees that we normally use. The CART system has the option of 
generating multivariate tests. They are often more accurate and smaller than univari-
ate trees but take much longer to generate and are also more difficult to interpret. 
We briefly mention one way of generating them in the Principal Components Analy-
sis section in Section 7.3.

6.2  CLASSIFICATION RULES
We call the basic covering algorithm for generating rules that was described in 
Section 4.4 a separate-and-conquer technique because it identifies a rule that covers 
instances in a class (and excludes ones not in the class), separates them out, and 
continues on those that are left. Such algorithms have been used as the basis of many 
systems that generate rules. There, we described a simple correctness-based measure 
for choosing what test to add to the rule at each stage. However, there are many 
other possibilities, and the particular criterion that is used has a significant effect on 
the rules produced. We examine different criteria for choosing tests in this section. 
We also look at how the basic rule-generation algorithm can be extended to more 
practical situations by accommodating missing values and numeric attributes.

But the real problem with all these rule-generation schemes is that they tend to 
overfit the training data and do not generalize well to independent test sets, particularly 
on noisy data. To be able to generate good rule sets for noisy data, it is necessary to 
have some way of measuring the real worth of individual rules. The standard approach 
to assessing the worth of rules is to evaluate their error rate on an independent set of 
instances, held back from the training set, and we explain this next. After that, we 
describe two industrial-strength rule learners: one that combines the simple separate-
and-conquer technique with a global optimization step, and another that works by 
repeatedly building partial decision trees and extracting rules from them. Finally, we 
consider how to generate rules with exceptions, and exceptions to the exceptions.

Criteria for Choosing Tests
When we introduced the basic rule learner in Section 4.4, we had to figure out a 
way of deciding which of many possible tests to add to a rule to prevent it from 
covering any negative examples. For this we used the test that maximizes the ratio 
p/t, where t is the total number of instances that the new rule will cover, and p is 
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the number of these that are positive—that is, belong to the class in question. This 
attempts to maximize the “correctness” of the rule on the basis that the higher the 
proportion of positive examples it covers, the more correct a rule is. One alternative 
is to calculate an information gain:

p
p

t

P

T
log log−





where p and t are the number of positive instances and the total number of instances 
covered by the new rule, as before, and P and T are the corresponding number of 
instances that satisfied the rule before the new test was added. The rationale for this 
is that it represents the total information gained regarding the current positive 
examples, which is given by the number of them that satisfy the new test, multiplied 
by the information gained regarding each one.

The basic criterion for choosing a test to add to a rule is to find one that covers 
as many positive examples as possible while covering as few negative examples as 
possible. The original correctness-based heuristic, which is just the percentage of 
positive examples among all examples covered by the rule, attains a maximum when 
no negative examples are covered regardless of the number of positive examples 
covered by the rule. Thus, a test that makes the rule exact will be preferred to one 
that makes it inexact, no matter how few positive examples the former rule covers 
nor how many positive examples the latter covers. For example, if we consider a 
test that covers one example that is positive, this criterion will prefer it over a test 
that covers 1000 positive examples along with one negative one.

The information-based heuristic, on the other hand, places far more emphasis on 
covering a large number of positive examples regardless of whether the rule so 
created is exact. Of course, both algorithms continue adding tests until the final rule 
produced is exact, which means that the rule will be finished earlier using the cor-
rectness measure whereas more terms will have to be added if the information-based 
measure is used. Thus, the correctness-based measure might find special cases and 
eliminate them completely, saving the larger picture for later (when the more general 
rule might be simpler because awkward special cases have already been dealt with), 
whereas the information-based one will try to generate high-coverage rules first and 
leave the special cases until later. It is by no means obvious that either strategy is 
superior to the other at producing an exact rule set. Moreover, the whole situation 
is complicated by the fact that, as described in the following, rules may be pruned 
and inexact ones tolerated.

Missing Values, Numeric Attributes
As with divide-and-conquer decision tree algorithms, the nasty practical consider-
ations of missing values and numeric attributes need to be addressed. In fact, there 
is not much more to say. Now that we know how these problems can be solved for 
decision tree induction, appropriate solutions for rule induction are easily given.
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When producing rules using covering algorithms, missing values can be best 
treated as though they don’t match any of the tests. This is particularly suitable when 
a decision list is being produced, because it encourages the learning algorithm to 
separate out positive instances using tests that are known to succeed. It has the effect 
either that instances with missing values are dealt with by rules involving other 
attributes that are not missing, or that any decisions about them are deferred until 
most of the other instances have been taken care of, at which time tests will probably 
emerge that involve other attributes. Covering algorithms for decision lists have a 
decided advantage over decision tree algorithms in this respect: Tricky examples 
can be left until late in the process, at which time they will appear less tricky because 
most of the other examples have already been classified and removed from the 
instance set.

Numeric attributes can be dealt with in exactly the same way as they are dealt 
with for trees. For each numeric attribute, instances are sorted according to the 
attribute’s value and, for each possible threshold, a binary less-than/greater-than 
test is considered and evaluated in exactly the same way that a binary attribute 
would be.

Generating Good Rules
Suppose you don’t want to generate perfect rules that guarantee to give the correct 
classification on all instances in the training set, but would rather generate “sensible” 
ones that avoid overfitting the training set and thereby stand a better chance of 
performing well on new test instances. How do you decide which rules are worth-
while? How do you tell when it becomes counterproductive to continue adding terms 
to a rule to exclude a few pesky instances of the wrong type, all the while excluding 
more and more instances of the correct type?

Let’s look at a few examples of possible rules—some good and some bad—for 
the contact lens problem in Table 1.1. Consider first the rule

If astigmatism = yes and tear production rate = normal
	 then recommendation = hard

This gives a correct result for four out of the six cases that it covers; thus, its success 
fraction is 4/6. Suppose we add a further term to make the rule a “perfect” one:

If astigmatism = yes and tear production rate = normal
	 and age = young then recommendation = hard

This improves accuracy to 2/2. Which rule is better? The second one is more accurate 
on the training data but covers only two cases, whereas the first one covers six. It 
may be that the second version is just overfitting the training data. For a practical 
rule learner we need a principled way of choosing the appropriate version of a rule, 
preferably one that maximizes accuracy on future test data.

Suppose we split the training data into two parts that we will call a growing set 
and a pruning set. The growing set is used to form a rule using the basic covering 
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algorithm. Then a test is deleted from the rule, and the effect is evaluated by trying 
out the truncated rule on the pruning set and seeing whether it performs better than 
the original rule. This pruning process repeats until the rule cannot be improved by 
deleting any further tests. The whole procedure is repeated for each class, obtaining 
one best rule for each class, and the overall best rule is established by evaluating 
the rules on the pruning set. This rule is then added to the rule set, the instances  
it covers are removed from the training data—from both growing and pruning  
sets—and the process is repeated.

Why not do the pruning as we build up the rule, rather than building up the whole 
thing and then throwing parts away? That is, why not preprune rather than post-
prune? Just as when pruning decision trees it is often best to grow the tree to its 
maximum size and then prune back, so with rules it is often best to make a perfect 
rule and then prune it. Who knows?—adding that last term may make a really good 
rule, a situation that we might never have noticed had we adopted an aggressive 
prepruning strategy.

It is essential that the growing and pruning sets are separate because it is mis
leading to evaluate a rule on the very data that was used to form it: That would lead 
to serious errors by preferring rules that were overfitted. Usually the training set is 
split so that two-thirds of instances are used for growing and one-third for pruning. 
A disadvantage, of course, is that learning occurs from instances in the growing set 
only, so the algorithm might miss important rules because some key instances had 
been assigned to the pruning set. Moreover, the wrong rule might be preferred 
because the pruning set contains only one-third of the data and may not be com-
pletely representative. These effects can be ameliorated by resplitting the training 
data into growing and pruning sets at each cycle of the algorithm—that is, after each 
rule is finally chosen.

The idea of using a separate pruning set for pruning—which is applicable to 
decision trees as well as rule sets—is called reduced-error pruning. The variant 
previously described prunes a rule immediately after it has been grown; it is called 
incremental reduced-error pruning. Another possibility is to build a full, unpruned, 
rule set first, pruning it afterwards by discarding individual tests. However, this 
method is much slower.

Of course, there are many different ways to assess the worth of a rule based on 
the pruning set. A simple measure is to consider how well the rule would do at 
discriminating the predicted class from other classes if it were the only rule in the 
theory, operating under the closed-world assumption. Suppose it gets p instances 
right out of the t instances that it covers, and there are P instances of this class 
out a total of T instances altogether. The instances that it does not cover include 
N – n negative ones, where n = t – p is the number of negative instances that the 
rule covers and N = T – P is the total number of negative instances. Thus, in total 
the rule makes correct decisions on p + (N – n) instances, and so has an overall 
success ratio of

[ ( )]p N n T+ −
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FIGURE 6.3 

Algorithm for forming rules by incremental reduced-error pruning. 

Initialize E to the instance set 
Split E into Grow and Prune in the ratio 2:1 
  For each class C for which Grow and Prune both contain an instance 
    Use the basic covering algorithm to create the best perfect rule
      for class C 
    Calculate the worth w(R) for the rule on Prune, and for the rule

with the final condition omitted w(R-) 
    While w(R-) > w(R), remove the final condition from the rule and

repeat the previous step 
  From the rules generated, select the one with the largest w(R) 
  Print the rule 
  Remove the instances covered by the rule from E 
Continue 

This quantity, evaluated on the test set, has been used to evaluate the success of a 
rule when using reduced-error pruning.

This measure is open to criticism because it treats noncoverage of negative 
examples as being as important as coverage of positive ones, which is unrealistic in 
a situation where what is being evaluated is one rule that will eventually serve 
alongside many others. For example, a rule that gets p = 2000 instances right out of 
a total coverage of 3000 (i.e., it gets n = 1000 wrong) is judged as more successful 
than one that gets p = 1000 out of a total coverage of 1001 (i.e., n = 1 wrong), because 
[p + (N – n)]/T is [1000 + N]/T in the first case but only [999 + N]/T in the second. 
This is counterintuitive: The first rule is clearly less predictive than the second 
because it has a 33.3% as opposed to only a 0.1% chance of being incorrect.

Using the success rate p/t as a measure, as was done in the original formulation 
of the covering algorithm (Figure 4.8), is not the perfect solution either because it 
would prefer a rule that got a single instance right (p = 1) out of a total coverage of 
1 (so n = 0) to the far more useful rule that got 1000 right out of 1001. Another 
heuristic that has been used is (p – n)/t, but that suffers from exactly the same 
problem because (p – n)/t = 2p/t – 1 and so the result, when comparing one rule 
with another, is just the same as with the success rate. It seems hard to find a simple 
measure of the worth of a rule that corresponds with intuition in all cases.

Whatever heuristic is used to measure the worth of a rule, the incremental 
reduced-error pruning algorithm is the same. A possible rule-learning algorithm 
based on this idea is given in Figure 6.3. It generates a decision list, creating rules 
for each class in turn and choosing at each stage the best version of the rule accord-
ing to its worth on the pruning data. The basic covering algorithm for rule generation 
(Figure 4.8) is used to come up with good rules for each class, choosing conditions 
to add to the rule using the accuracy measure p/t that we described earlier.
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This method has been used to produce rule-induction schemes that can process 
vast amounts of data and operate very quickly. It can be accelerated by generating 
rules for the classes in order rather than generating a rule for each class at every 
stage and choosing the best. A suitable ordering is the increasing order in which they 
occur in the training set so that the rarest class is processed first and the most 
common ones are processed later. Another significant speedup is obtained by stop-
ping the whole process when a rule of sufficiently low accuracy is generated, so as 
not to spend time generating a lot of rules at the end with very small coverage. 
However, very simple terminating conditions (such as stopping when the accuracy 
for a rule is lower than the default accuracy for the class it predicts) do not give the 
best performance. One criterion that seems to work well is a rather complicated one 
based on the MDL principle, described later.

Using Global Optimization
In general, rules generated using incremental reduced-error pruning in this manner 
seem to perform quite well, particularly on large datasets. However, it has been 
found that a worthwhile performance advantage can be obtained by performing a 
global optimization step on the set of rules induced. The motivation is to increase 
the accuracy of the rule set by revising or replacing individual rules. Experiments 
show that both the size and the performance of rule sets are significantly improved 
by postinduction optimization. On the other hand, the process itself is rather complex.

To give an idea of how elaborate—and heuristic—industrial-strength rule learn-
ers become, Figure 6.4 shows an algorithm called RIPPER, an acronym for repeated 
incremental pruning to produce error reduction. Classes are examined in increasing 
size and an initial set of rules for a class is generated using incremental reduced-error 
pruning. An extra stopping condition is introduced that depends on the description 
length of the examples and rule set. The description-length DL is a complex formula 
that takes into account the number of bits needed to send a set of examples with 
respect to a set of rules, the number of bits required to send a rule with k conditions, 
and the number of bits needed to send the integer k—times an arbitrary factor of 
50% to compensate for possible redundancy in the attributes.

Having produced a rule set for the class, each rule is reconsidered and two 
variants produced, again using reduced-error pruning—but at this stage, instances 
covered by other rules for the class are removed from the pruning set, and success 
rate on the remaining instances is used as the pruning criterion. If one of the two 
variants yields a better description length, it replaces the rule. Next we reactivate 
the original building phase to mop up any newly uncovered instances of the class. 
A final check is made, to ensure that each rule contributes to the reduction of 
description length, before proceeding to generate rules for the next class.

Obtaining Rules from Partial Decision Trees
There is an alternative approach to rule induction that avoids global optimization 
but nevertheless produces accurate, compact rule sets. The method combines the 
divide-and-conquer strategy for decision tree learning with the separate-and-conquer 



Initialize E to the instance set 
For each class C, from smallest to largest 
    BUILD:  
        Split E into Growing and Pruning sets in the ratio 2:1 
        Repeat until (a) there are no more uncovered examples of C; or

(b) the description length (DL) of ruleset and examples is
64 bits greater than the smallest DL found so far, or (c)

        GROW phase: Grow a rule by greedily adding conditions until the
rule is 100% accurate by testing every possible value of
each attribute and selecting the condition with greatest

        PRUNE phase: Prune conditions in last-to-first order. Continue
as long as the worth W of the rule increases 

    OPTIMIZE: 
        GENERATE VARIANTS: 
        For each rule R for class C, 
           Split E afresh into Growing and Pruning sets 
           Remove all instances from the Pruning set that are covered

by other rules for C 
           Use GROW and PRUNE to generate and prune two competing rules

from the newly split data: 
   R1 is a new rule, rebuilt from scratch; 
   R2 is generated by greedily adding antecedents to R. 
           Prune using the metric A (instead of W) on this reduced data 
        SELECT REPRESENTATIVE:  
        Replace R by whichever of R, R1 and R2 has the smallest DL. 
    MOP UP: 
        If there are residual uncovered instances of class C, return to

the BUILD stage to generate more rules based on these

    CLEAN UP:
        Calculate DL for the whole ruleset and for the ruleset with each

rule in turn omitted; delete any rule that increases the DL 

the error rate exceeds 50%:

information gain G 

instances. 

Remove instances covered by the rules just generated

(a)

Continue

FIGURE 6.4 

RIPPER: (a) algorithm for rule learning and (b) meaning of symbols. 

p = number of positive examples covered by this rule (true

n = number of negative examples covered by this rule (false

t = p + n; total number of examples covered by this rule    
n′ = N – n; number of negative examples not covered by this rule
           (true negatives) 
P = number of positive examples of this class 
N = number of negative examples of this class 
T = P + N; total number of examples of this class    

G = p[log(p/t)–log(P/T)]

W  = 

A = ; accuracy for this rule 

p+1
t+2
p+n′
T

positives) 

negatives) 

(b)
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FIGURE 6.5 

Algorithm for expanding examples into a partial tree. 

Expand-subset (S): 
  Choose a test T and use it to split the set of examples into subsets 
  Sort subsets into increasing order of average entropy 
  while (there is a subset X that has not yet been expanded 
         AND all subsets expanded so far are leaves) 
    expand-subset(X) 
  if (all the subsets expanded are leaves 

      AND estimated error for subtree ≥ estimated error for node) 
    undo expansion into subsets and make node a leaf 

one for rule learning. It adopts the separate-and-conquer strategy in that it builds a 
rule, removes the instances it covers, and continues creating rules recursively for 
the remaining instances until none are left. However, it differs from the standard 
approach in the way that each rule is created. In essence, to make a single rule a 
pruned decision tree is built for the current set of instances, the leaf with the largest 
coverage is made into a rule, and the tree is discarded.

The prospect of repeatedly building decision trees only to discard most of them 
is not as bizarre as it first seems. Using a pruned tree to obtain a rule instead of 
pruning a rule incrementally by adding conjunctions one at a time avoids a tendency 
to overprune, which is a characteristic problem of the basic separate-and-conquer 
rule learner. Using the separate-and-conquer methodology in conjunction with deci-
sion trees adds flexibility and speed. It is indeed wasteful to build a full decision 
tree just to obtain a single rule, but the process can be accelerated significantly 
without sacrificing the advantages.

The key idea is to build a partial decision tree instead of a fully explored one. A 
partial decision tree is an ordinary decision tree that contains branches to undefined 
subtrees. To generate such a tree, the construction and pruning operations are inte-
grated in order to find a “stable” subtree that can be simplified no further. Once this 
subtree has been found, tree building ceases and a single rule is read off.

The tree-building algorithm is summarized in Figure 6.5: It splits a set of instances 
recursively into a partial tree. The first step chooses a test and divides the instances 
into subsets accordingly. The choice is made using the same information-gain heu-
ristic that is normally used for building decision trees (Section 4.3). Then the subsets 
are expanded in increasing order of their average entropy. The reason for this is that 
the later subsets will most likely not end up being expanded, and a subset with low-
average entropy is more likely to result in a small subtree and therefore produce a 
more general rule. This proceeds recursively until a subset is expanded into a leaf, 
and then continues further by backtracking. But as soon as an internal node appears 
that has all its children expanded into leaves, the algorithm checks whether that node 
is better replaced by a single leaf. This is just the standard subtree replacement 
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FIGURE 6.6 

Example of building a partial tree. 
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operation of decision tree pruning (see Section 6.1). If replacement is performed the 
algorithm backtracks in the standard way, exploring siblings of the newly replaced 
node. However, if during backtracking a node is encountered all of whose children 
expanded so far are not leaves—and this will happen as soon as a potential subtree 
replacement is not performed—then the remaining subsets are left unexplored and 
the corresponding subtrees are left undefined. Due to the recursive structure of the 
algorithm, this event automatically terminates tree generation.

Figure 6.6 shows a step-by-step example. During the stages in Figure 6.6(a–c), 
tree building continues recursively in the normal way—except that at each point the 
lowest-entropy sibling is chosen for expansion: node 3 between stages (a) and (b). 
Gray elliptical nodes are as yet unexpanded; rectangular ones are leaves. Between 
stages (b) and (c), the rectangular node will have lower entropy than its sibling, node 
5, but cannot be expanded further because it is a leaf. Backtracking occurs and node 
5 is chosen for expansion. Once stage of Figure 6.6(c) is reached, there is a node—
node 5—that has all its children expanded into leaves, and this triggers pruning. 
Subtree replacement for node 5 is considered and accepted, leading to stage (d). 
Next node 3 is considered for subtree replacement, and this operation is again 
accepted. Backtracking continues, and node 4, having lower entropy than node 2, is 
expanded into two leaves. Now subtree replacement is considered for node 4, but 
suppose that node 4 is not replaced. At this point, the process terminates with the 
three-leaf partial tree of stage (e).
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If the data is noise-free and contains enough instances to prevent the algorithm 
from doing any pruning, just one path of the full decision tree has to be explored. 
This achieves the greatest possible performance gain over the naïve method that 
builds a full decision tree each time. The gain decreases as more pruning takes place. 
For datasets with numeric attributes, the asymptotic time complexity of the algo-
rithm is the same as building the full decision tree because in this case the complexity 
is dominated by the time required to sort the attribute values in the first place.

Once a partial tree has been built, a single rule is extracted from it. Each leaf 
corresponds to a possible rule, and we seek the “best” leaf of those subtrees (typi-
cally a small minority) that have been expanded into leaves. Experiments show that 
it is best to aim at the most general rule by choosing the leaf that covers the greatest 
number of instances.

When a dataset contains missing values, they can be dealt with exactly as they 
are when building decision trees. If an instance cannot be assigned to any given 
branch because of a missing attribute value, it is assigned to each of the branches 
with a weight proportional to the number of training instances going down that 
branch, normalized by the total number of training instances with known values at 
the node. During testing, the same procedure is applied separately to each rule, thus 
associating a weight with the application of each rule to the test instance. That weight 
is deducted from the instance’s total weight before it is passed to the next rule in 
the list. Once the weight has reduced to 0, the predicted class probabilities are com-
bined into a final classification according to the weights.

This yields a simple but surprisingly effective method for learning decision lists 
for noisy data. Its main advantage over other comprehensive rule-generation schemes 
is simplicity, because other methods appear to require a complex global optimization 
stage to achieve the same level of performance.

Rules with Exceptions
In Section 3.4 (page 73) we learned that a natural extension of rules is to allow them 
to have exceptions, and exceptions to the exceptions, and so on—indeed, the whole 
rule set can be considered as exceptions to a default classification rule that is used 
when no other rules apply. The method of generating a “good” rule, using one of 
the measures described previously, provides exactly the mechanism needed to gener-
ate rules with exceptions.

First, a default class is selected for the top-level rule: It is natural to use the class 
that occurs most frequently in the training data. Then, a rule is found pertaining to 
any class other than the default one. Of all such rules it is natural to seek the one 
with the most discriminatory power—for example, the one with the best evaluation 
on a test set. Suppose this rule has the form

if <condition> then class = <new class>

It is used to split the training data into two subsets: one containing instances for 
which the rule’s condition is true and the other containing those for which it is false. 
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FIGURE 6.7 

Rules with exceptions for the iris data. 

 --> Iris setosa 
 50/150 

 petal length >= 2.45
 petal width < 1.75
 petal length < 5.35

 --> Iris versicolor 
49/52 

 petal length >= 4.95
 petal width < 1.55

 --> Iris virginica 
2/2 

 petal length >= 3.35
 --> Iris virginica 

47/48 

 sepal length < 4.95
 sepal width >= 2.45

 --> Iris virginica 
1/1 

 petal length < 4.85
 sepal length < 5.95

 --> Iris versicolor 
1/1 

If either subset contains instances of more than one class, the algorithm is invoked 
recursively on that subset. For the subset for which the condition is true, the “default 
class” is the new class as specified by the rule; for the subset where the condition 
is false, the default class remains as it was before.

Let’s examine how this algorithm would work for the rules with exceptions that 
were given in Section 3.4 for the iris data of Table 1.4. We will represent the rules in 
the graphical form shown in Figure 6.7, which is in fact equivalent to the textual rules 
noted in Figure 3.8. The default of Iris setosa is the entry node at the top left. Hori-
zontal, dotted paths show exceptions, so the next box, which contains a rule that 
concludes Iris versicolor, is an exception to the default. Below this is an alternative, 
a second exception—alternatives are shown by vertical, solid lines—leading to the 
conclusion Iris virginica. Following the upper path horizontally leads to an exception 
to the Iris versicolor rule that overrides it whenever the condition in the top right box 
holds, with the conclusion Iris virginica. Below this is an alternative, leading (as it 
happens) to the same conclusion. Returning to the box at bottom center, this has its 
own exception, the lower right box, which gives the conclusion Iris versicolor. The 
numbers at the lower right of each box give the “coverage” of the rule, expressed as 
the number of examples that satisfy it divided by the number that satisfy its condition 
but not its conclusion. For example, the condition in the top center box applies to 52 
of the examples, and 49 of them are Iris versicolor. The strength of this representation 
is that you can get a very good feeling for the effect of the rules from the boxes toward 
the left side; the boxes at the right cover just a few exceptional cases.

To create these rules, the default is first set to Iris setosa by taking the most 
frequently occurring class in the dataset. This is an arbitrary choice because, for this 
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dataset, all classes occur exactly 50 times; as shown in Figure 6.7 this default “rule” 
is correct in 50 out of 150 cases. Then the best rule that predicts another class is 
sought. In this case it is

if petal-length ≥ 2.45 and petal-length < 5.355
	 and petal-width < 1.75 then Iris-versicolor

This rule covers 52 instances, of which 49 are Iris versicolor. It divides the dataset 
into two subsets: the 52 instances that satisfy the condition of the rule and the 
remaining 98 that do not.

We work on the former subset first. The default class for these instances is Iris 
versicolor: There are only three exceptions, all of which happen to be Iris virginica. 
The best rule for this subset that does not predict Iris versicolor is

if petal-length ≥ 4.95 and petal-width < 1.55 then Iris-virginica

It covers two of the three Iris virginicas and nothing else. Again, it divides the subset 
into two: those instances that satisfy its condition and those that do not. Fortunately, 
in this case, all those instances that satisfy the condition do indeed have class Iris 
virginica, so there is no need for a further exception. However, the remaining 
instances still include the third Iris virginica, along with 49 Iris versicolors, which 
are the default at this point. Again the best rule is sought:

if sepal-length < 4.95 and sepal-width ≥ 2.45 then Iris-virginica

This rule covers the remaining Iris virginica and nothing else, so it also has no 
exceptions. Furthermore, all remaining instances in the subset that do not satisfy its 
condition have the class Iris versicolor, which is the default, so no more needs to 
be done.

Return now to the second subset created by the initial rule, the instances that do 
not satisfy the condition

petal-length ≥ 2.45 and petal-length < 5.355 and petal-width < 1.75

Of the rules for these instances that do not predict the default class Iris setosa, the 
best is

if petal-length ≥ 3.35 then Iris-virginica

It covers all 47 Iris virginicas that are in the example set (3 were removed by the 
first rule, as explained previously). It also covers 1 Iris versicolor. This needs to be 
taken care of as an exception, by the final rule:

if petal-length < 4.85 and sepal-length < 5.95 then Iris-versicolor

Fortunately, the set of instances that do not satisfy its condition are all the default, 
Iris setosa. Thus, the procedure is finished.

The rules that are produced have the property that most of the examples are 
covered by the high-level rules and the lower-level ones really do represent excep-
tions. For example, the last exception clause and the deeply nested else clause both 
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cover a solitary example, and removing them would have little effect. Even the 
remaining nested exception rule covers only two examples. Thus, one can get an 
excellent feeling for what the rules do by ignoring all the deeper structure and 
looking only at the first level or two. That is the attraction of rules with exceptions.

Discussion
All algorithms for producing classification rules that we have described use the basic 
covering or separate-and-conquer approach. For the simple, noise-free case this 
produces PRISM (Cendrowska, 1987), an algorithm that is simple and easy to 
understand. When applied to two-class problems with the closed-world assumption, 
it is only necessary to produce rules for one class: Then the rules are in disjunctive 
normal form and can be executed on test instances without any ambiguity arising. 
When applied to multiclass problems, a separate rule set is produced for each class; 
thus, a test instance may be assigned to more than one class, or to no class, and 
further heuristics are necessary if a unique prediction is sought.

To reduce overfitting in noisy situations, it is necessary to produce rules that are 
not “perfect” even on the training set. To do this it is necessary to have a measure 
for the “goodness,” or worth, of a rule. With such a measure it is then possible to 
abandon the class-by-class approach of the basic covering algorithm and start by 
generating the very best rule, regardless of which class it predicts, and then remove 
all examples covered by this rule and continue the process. This yields a method for 
producing a decision list rather than a set of independent classification rules, and 
decision lists have the important advantage that they do not generate ambiguities 
when interpreted.

The idea of incremental reduced-error pruning is from Fürnkranz and Widmer 
(1994) and forms the basis for fast and effective rule induction. The RIPPER rule 
learner is from Cohen (1995), although the published description appears to differ 
from the implementation in precisely how the description length (DL) affects the 
stopping condition. What we have presented here is the basic idea of the algorithm; 
there are many more details in the implementation.

The whole question of measuring the value of a rule has not yet been satis-
factorily resolved. Many different measures have been proposed, some blatantly 
heuristic and others based on information-theoretical or probabilistic grounds. 
However, there seems to be no consensus on the best measure to use. An exten-
sive theoretical study of various criteria has been performed by Fürnkranz and 
Flach (2005).

The rule-learning scheme based on partial decision trees was developed by Frank 
and Witten (1998). On standard benchmark datasets it produces rule sets that are as 
accurate as rules generated by C4.5 and more accurate than those of RIPPER; 
however, it produces larger rule sets than RIPPER. Its main advantage over other 
schemes is not performance but simplicity: By combining top-down decision tree 
induction with separate-and-conquer rule learning, it produces good rule sets without 
any need for global optimization.
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The procedure for generating rules with exceptions was developed as an option in 
the Induct system by Gaines and Compton (1995), who called them ripple-down rules. 
In an experiment with a large medical dataset (22,000 instances, 32 attributes, and 60 
classes), they found that people can understand large systems of rules with exceptions 
more readily than equivalent systems of regular rules because that is the way they 
think about the complex medical diagnoses that are involved. Richards and Compton 
(1998) describe their role as an alternative to classic knowledge engineering.

6.3  ASSOCIATION RULES
In Section 4.5 we studied the Apriori algorithm for generating association rules that 
meet minimum support and confidence thresholds. Apriori follows a generate-and-
test methodology for finding frequent item sets, generating successively longer 
candidate item sets from shorter ones that are known to be frequent. Each different 
size of candidate item set requires a scan through the dataset to determine whether 
its frequency exceeds the minimum support threshold. Although some improvements 
to the algorithm have been suggested to reduce the number of scans of the dataset, 
the combinatorial nature of this generation process can prove costly, particularly if 
there are many item sets or item sets are large. Both conditions readily occur even 
for modest datasets when low support thresholds are used. Moreover, no matter 
how high the threshold, if the data is too large to fit in main memory, it is undesir-
able to have to scan it repeatedly—and many association rule applications involve 
truly massive datasets.

These effects can be ameliorated by using appropriate data structures. We 
describe a method called FP-growth that uses an extended prefix tree—a frequent-
pattern tree, or FP-tree—to store a compressed version of the dataset in main 
memory. Only two passes are needed to map a dataset into an FP-tree. The algorithm 
then processes the tree in a recursive fashion to grow large item sets directly, instead 
of generating candidate item sets and then having to test them against the entire 
database.

Building a Frequent-Pattern Tree
Like Apriori, the FP-growth algorithm begins by counting the number of times 
individual items (i.e., attribute–value pairs) occur in the dataset. After this initial 
pass, a tree structure is created in a second pass. Initially, the tree is empty and the 
structure emerges as each instance in the dataset is inserted into it.

The key to obtaining a compact tree structure that can be quickly processed to 
find large item sets is to sort the items in each instance in descending order of their 
frequency of occurrence in the dataset, which has already been recorded in the first 
pass, before inserting them into the tree. Individual items in each instance that do 
not meet the minimum support threshold are not inserted into the tree, effectively 
removing them from the dataset. The hope is that many instances will share those 
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items that occur most frequently individually, resulting in a high degree of compres-
sion close to the tree’s root.

We illustrate the process with the weather data, reproduced in Table 6.1(a), using 
a minimum support threshold of 6. The algorithm is complex, and its complexity 
far exceeds what would be reasonable for such a trivial example, but a small illus-
tration is the best way of explaining it. Table 6.1(b) shows the individual items, 
with their frequencies, that are collected in the first pass. They are sorted into 
descending order and ones whose frequency exceeds the minimum threshold are 
bolded. Table 6.1(c) shows the original instances, numbered as in Table 6.1(a), with 
the items in each instance sorted into descending frequency order. Finally, to give 

Table 6.1  Preparing Weather Data for Insertion into an FP-Tree

(a) Outlook Temperature Humidity Windy Play

1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rainy mild high false yes
5 rainy cool normal false yes
6 rainy cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false yes

10 rainy mild normal false yes
11 sunny mild normal true yes
12 overcast mild high true yes
13 overcast hot normal false yes
14 rainy mild high true no

(b)

play = yes 9
windy = false 8
humidity = normal 7
humidity = high 7
windy = true 6
temperature = mild 6
play = no 5
outlook = sunny 5
outlook = rainy 5
temperature = hot 4
temperature = cool 4
outlook = overcast 4

Continued
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(c)

1 windy = false, humidity = high, play = no, 
outlook = sunny, temperature = hot

2 humidity = high, windy = true, play = no, 
outlook = sunny, temperature = hot

3 play = yes, windy = false, humidity = high, 
temperature = hot, outlook = overcast

4 play = yes, windy = false, humidity = high, 
temperature = mild, outlook = rainy

5 play = yes, windy = false, humidity = normal, 
outlook = rainy, temperature = cool

6 humidity = normal, windy = true, play = no, outlook 
= rainy, temperature = cool

7 play = yes, humidity = normal, windy = true, 
temperature = cool, outlook = overcast

8 windy = false, humidity = high, 
temperature = mild, play = no, outlook = sunny

9 play = yes, windy = false, humidity = normal, 
outlook = sunny, temperature = cool

10 play = yes, windy = false, humidity = normal, 
temperature = mild, outlook = rainy

11 play = yes, humidity = normal, windy = true, 
temperature = mild, outlook = sunny

12 play = yes, humidity = high, windy = true, 
temperature = mild, outlook = overcast

13 play = yes, windy = false, humidity = normal, 
temperature = hot, outlook = overcast

14 humidity = high, windy = true, temperature = mild, 
play = no, outlook = rainy

(d)

play = yes and windy = false 6
play = yes and humidity = normal 6

(a) The original data, (b) frequency ordering of items with frequent item sets in bold, (c) the data with 
each instance sorted into frequency order, and (d) the two multiple-item frequent item sets.

Table 6.1  Preparing Weather Data for Insertion into an FP-Tree Continued

an advance peek at the final outcome, Table 6.1(d) shows the only two multiple-
item sets whose frequency satisfies the minimum support threshold. Along with the 
six single-item sets shown in bold in Table 6.1(b), these form the final answer: a 
total of eight item sets. We are going to have to do a lot of work to find the two 
multiple-item sets in Table 6.1(d) using the FP-tree method.
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Figure 6.8(a) shows the FP-tree structure that results from this data with a 
minimum support threshold of 6. The tree itself is shown with solid arrows. The 
numbers at each node show how many times the sorted prefix of items, up to 
and including the item at that node, occur in the dataset. For example, following 
the third branch from the left in the tree we can see that, after sorting, two 
instances begin with the prefix humidity = high—that is, the second and last 
instances of Table 6.1(c). Continuing down that branch, the next node records 
that the same two instances also have windy = true as their next most frequent 
item. The lowest node in the branch shows that one of these two instances—
that is, the last in Table 6.1(c)—contains temperature = mild as well. The other 
instance—that is, the second in Table 6.1(c)—drops out at this stage because its 
next most frequent item does not meet the minimum support constraint and is 
therefore omitted from the tree.

On the left side of the diagram a “header table” shows the frequencies of the 
individual items in the dataset (Table 6.1(b)). These items appear in descending 
frequency order, and only those with at least minimum support are included. Each 
item in the header table points to its first occurrence in the tree, and subsequent 
items in the tree with the same name are linked together to form a list. These 
lists, emanating from the header table, are shown in Figure 6.8(a) by dashed 
arrows.

It is apparent from the tree that only two nodes have counts that satisfy the 
minimum support threshold, corresponding to the item sets play = yes (count of 
9) and play = yes and windy = false (count of 6) in the leftmost branch. Each entry 
in the header table is itself a single-item set that also satisfies the threshold. This 
identifies as part of the final answer all the bold items in Table 6.1(b) and the first 
item set in Table 6.1(d). Since we know the outcome in advance we can see that 
there is only one more item set to go—the second in Table 6.1(d). But there is no 
hint of it in the data structure of Figure 6.8(a), and we will have to do a lot of 
work to discover it!

Finding Large Item Sets
The purpose of the links from the header table into the tree structure is to facili-
tate traversal of the tree to find other large item sets, apart from the two that are 
already in the tree. This is accomplished by a divide-and-conquer approach that 
recursively processes the tree to grow large item sets. Each header table list is 
followed in turn, starting from the bottom of the table and working upward. 
Actually, the header table can be processed in any order, but it is easier to think 
about processing the longest paths in the tree first, and these correspond to the 
lower-frequency items.

Starting from the bottom of the header table, we can immediately add tempera-
ture = mild to the list of large item sets. Figure 6.8(b) shows the result of the next 
stage, which is an FP-tree for just those instances in the dataset that include 
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temperature = mild. This tree was not created by rescanning the dataset but by further 
processing of the tree in Figure 6.8(a), as follows.

To see if a larger item set containing temperature = mild can be grown, we follow 
its link from the header table. This allows us to find all instances that contain tempera-
ture = mild. From here the new tree in Figure 6.8(b) is created, with counts projected 
from the original tree corresponding to the set of instances that are conditional on the 
presence of temperature = mild. This is done by propagating the counts from the tem-
perature = mild nodes up the tree, each node receiving the sum of its children’s counts.

A quick glance at the header table for this new FP-tree shows that the temperature 
= mild pattern cannot be grown any larger because there are no individual items, con-
ditional on temperature = mild, that meet the minimum support threshold. Note, 
however, that it is necessary to create the whole Figure 6.8(b) tree in order to discover 
this because it is effectively being created bottom up and the counts in the header table 
to the left are computed from the numbers in the tree. The recursion exits at this point, 
and processing continues on the remaining header table items in the original FP-tree.

Figure 6.8(c) shows a second example, the FP-tree that results from following 
the header table link for humidity = normal. Here the windy = false node has a count 
of 4, corresponding to the four instances that had humidity = normal in the node’s 
left branch in the original tree. Similarly, play = yes has a count of 6, corresponding 
to the four instances from windy = false and the two instances that contain humidity 
= normal from the middle branch of the subtree rooted at play = yes in Figure 6.8(a).

Processing the header list for this FP-tree shows that the humidity = normal item 
set can be grown to include play = yes since these two occur together six times, 
which meets the minimum support constraint. This corresponds to the second item 
set in Table 6.1(d), which in fact completes the output. However, in order to be sure 
that there are no other eligible item sets it is necessary to continue processing the 
entire header link table in Figure 6.8(a).

Once the recursive tree mining process is complete all large item sets that meet 
the minimum support threshold have been found. Then association rules are created 
using the approach explained in Section 4.5. Studies have claimed that the FP-growth 
algorithm is up to an order of magnitude faster than Apriori at finding large item 
sets, although this depends on the details of the implementation and the nature of 
the dataset.

Discussion
The process of recursively creating projected FP-trees can be efficiently implemented 
within a single prefix tree structure by having a list of frequencies, indexed by recur-
sion depth, at each node in the tree and each element of the header table. The tree 
structure itself is usually far smaller than the original dataset, and if the dataset is 
dense it achieves a high level of compression. This outweighs the overhead imposed 
by the pointers and counters that must be maintained at each node. Only when the 
support threshold is set very low does the FP-tree’s ability to compress the dataset 
degrade. Under these conditions, the tree becomes bushy, with little node sharing.  
On massive datasets for which the frequent-pattern tree exceeds main memory, 
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disk-resident trees can be constructed using indexing techniques that have been 
developed for relational database systems.

The FP-tree data structure and FP-growth algorithm for finding large item sets 
without candidate generation were introduced by Han et al. (2000) following pio-
neering work by Zaki et al. (1997); Han et al. (2004) give a more comprehensive 
description. It has been extended in various ways. Wang et al. (2003) develop an 
algorithm called CLOSET+ to mine closed item sets—that is, sets for which there 
is no proper superset that has the same support. Finding large closed item sets pro-
vides essentially the same information as finding the complete set of large item sets, 
but produces few redundant rules and thus eases the task that users face when exam-
ining the output of the mining process. GSP (Generalized Sequential Patterns) is a 
method based on the Apriori algorithm for mining patterns in databases of event 
sequences (Srikant and Agrawal, 1996). A similar approach to FP-growth is used for 
event sequences by algorithms called PrefixSpan (Pei et al., 2004) and CloSpan (Yan 
et al., 2003), and for graph patterns by algorithms called gSpan (Yan and Han, 2002) 
and CloseGraph (Yan and Han, 2003).

Ceglar and Roddick (2006) provide a comprehensive survey of association rule 
mining. Some authors have worked on integrating association rule mining with 
classification. For example, Liu et al. (1998) mine a kind of association rule that 
they call a “class association rule,” and build a classifier on the rules that are found 
using a technique they call CBA (Classification Based on Associations). Mutter  
et al. (2004) use classification to evaluate the output of confidence-based association 
rule mining, and find that standard learners for classification rules are generally 
preferable to CBA when runtime and size of the rule sets is of concern.

6.4  EXTENDING LINEAR MODELS
Section 4.6 described how simple linear models can be used for classification in 
situations where all attributes are numeric. Their biggest disadvantage is that they 
can only represent linear boundaries between classes, which makes them too simple 
for many practical applications. Support vector machines use linear models to imple-
ment nonlinear class boundaries. (Although it is a widely used term, support vector 
machines is something of a misnomer: These are algorithms, not machines.) How 
can this be possible? The trick is easy: Transform the input using a nonlinear 
mapping. In other words, transform the instance space into a new space. With a 
nonlinear mapping, a straight line in the new space doesn’t look straight in the 
original instance space. A linear model constructed in the new space can represent 
a nonlinear decision boundary in the original space.

Imagine applying this idea directly to the ordinary linear models in Section 4.6. 
For example, the original set of attributes could be replaced by one giving all prod-
ucts of n factors that can be constructed from these attributes. An example for two 
attributes, including all products with three factors, is

x w a w a a w a a w a= + + +1 1
3

2 1
2

2 3 1 2
2

4 2
3
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Here, x is the outcome, a1 and a2 are the two attribute values, and there are four 
weights wi to be learned. As described in Section 4.6, the result can be used for 
classification by training one linear system for each class and assigning an unknown 
instance to the class that gives the greatest output x—the standard technique of 
multiresponse linear regression. Then, a1 and a2 will be the attribute values for the 
test instance.

To generate a linear model in the space that is spanned by these products, 
each training instance is mapped into the new space by computing all possible 
three-factor products of its two attribute values. The learning algorithm is then 
applied to the transformed instances. To classify an instance, it is processed by 
the same transformation prior to classification. There is nothing to stop us from 
adding in more synthetic attributes. For example, if a constant term were included, 
the original attributes and all two-factor products of them would yield a total of 
10 weights to be learned. (Alternatively, adding an additional attribute with a 
value that was always a constant would have the same effect.) Indeed, polynomi-
als of sufficiently high degree can approximate arbitrary decision boundaries to 
any required accuracy.

It seems too good to be true—and it is. As you will probably have guessed, 
problems arise with this procedure due to the large number of coefficients introduced 
by the transformation in any realistic setting. The first snag is computational com-
plexity. With 10 attributes in the original dataset, suppose we want to include all 
products with five factors: then the learning algorithm will have to determine more 
than 2000 coefficients. If its runtime is cubic in the number of attributes, as it is for 
linear regression, training will be infeasible. That is a problem of practicality. The 
second problem is one of principle: overfitting. If the number of coefficients is large 
relative to the number of training instances, the resulting model will be “too 
nonlinear”—it will overfit the training data. There are just too many parameters in 
the model.

Maximum-Margin Hyperplane
Support vector machines address both problems. They are based on an algorithm 
that finds a special kind of linear model: the maximum-margin hyperplane. We 
already know what a hyperplane is—it’s just another term for a linear model. To 
visualize a maximum-margin hyperplane, imagine a two-class dataset whose classes 
are linearly separable—that is, there is a hyperplane in instance space that classifies 
all training instances correctly. The maximum-margin hyperplane is the one that 
gives the greatest separation between the classes—it comes no closer to either than 
it has to. An example is shown in Figure 6.9, where the classes are represented by 
open and filled circles, respectively. Technically, the convex hull of a set of points 
is the tightest enclosing convex polygon: Its outline emerges when you connect every 
point of the set to every other point. Because we have supposed that the two classes 
are linearly separable, their convex hulls cannot overlap. Among all hyperplanes that 
separate the classes, the maximum-margin hyperplane is the one that is as far as 
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can easily construct the maximum-margin hyperplane. All other training instances 
are irrelevant—they can be deleted without changing the position and orientation of 
the hyperplane.

FIGURE 6.9 

A maximum-margin hyperplane. 

maximum margin hyperplane

support vectors

A hyperplane separating the two classes might be written as

x w w a w a= + +0 1 1 2 2

in the two-attribute case, where a1 and a2 are the attribute values and there are three 
weights wi to be learned. However, the equation defining the maximum-margin hyperplane 
can be written in another form, in terms of the support vectors. Write the class value y of 
a training instance as either 1 (for yes, it is in this class) or –1 (for no, it is not). Then 
the maximum-margin hyperplane can be written as

x b yi i
i

= + •∑ α a(i) a
 is support vector

Here, yi is the class value of training instance a(i), while b and αi are numeric parameters 
that have to be determined by the learning algorithm. Note that a(i) and a are vectors. The 
vector a represents a test instance—just as the vector [a1, a2] represented a test instance 
in the earlier formulation. The vectors a(i) are the support vectors, those circled in Figure 
6.9; they are selected members of the training set. The term a(i) • a represents the dot 
product of the test instance with one of the support vectors: a(i) • a = Σja(i)jaj. If you are 
not familiar with dot product notation, you should still be able to understand the gist of 
what follows: Just think of a(i) as the whole set of attribute values for the ith support 
vector. Finally, b and αi are parameters that determine the hyperplane, just as the weights 
w0, w1, and w2 are parameters that determine the hyperplane in the earlier formulation.

It turns out that finding the support vectors for the training instances and determining 
the parameters b and αi belongs to a standard class of optimization problems known as 
constrained quadratic optimization. There are off-the-shelf software packages for solving 
these problems (see Fletcher, 1987, for a comprehensive and practical account of solution 
methods). However, the computational complexity can be reduced, and learning accelerated, 
if special-purpose algorithms for training support vector machines are applied—but the 
details of these algorithms lie beyond the scope of this book (see Platt, 1998).

possible from both convex hulls—it is 
the perpendicular bisector of the short-
est line connecting the hulls (shown 
dashed in the figure).

The instances that are closest to  
the maximum-margin hyperplane—
the ones with the minimum distance to 
it—are called support vectors. There 
is always at least one support vector 
for each class, and often there are 
more. The important thing is that the 
set of support vectors uniquely defines 
the maximum-margin hyperplane for 
the learning problem. Given the sup
port vectors for the two classes, we 
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Nonlinear Class Boundaries
We motivated the introduction of support vector machines by claiming that they can 
be used to model nonlinear class boundaries. However, so far we have only described 
the linear case. Consider what happens when an attribute transformation, as described 
before, is applied to the training data before determining the maximum-margin 
hyperplane. Recall that there are two problems with the straightforward application 
of such transformations to linear models: computational complexity on the one hand 
and overfitting on the other.

With support vectors, overfitting is unlikely to occur. The reason is that it is 
inevitably associated with instability: With an algorithm that overfits, changing one 
or two instance vectors will make sweeping changes to large sections of the decision 
boundary. But the maximum-margin hyperplane is relatively stable: It only moves 
if training instances are added or deleted that are support vectors—and this is true 
even in the high-dimensional space spanned by the nonlinear transformation. Over-
fitting is caused by too much flexibility in the decision boundary. The support vectors 
are global representatives of the whole set of training points, and there are usually 
few of them, which gives little flexibility. Thus, overfitting is less likely to occur.

What about computational complexity? This is still a problem. Suppose that the 
transformed space is a high-dimensional one so that the transformed support vectors 
and test instance have many components. According to the preceding equation, every 
time an instance is classified its dot product with all support vectors must be calcu-
lated. In the high-dimensional space produced by the nonlinear mapping this is rather 
expensive. Obtaining the dot product involves one multiplication and one addition 
for each attribute, and the number of attributes in the new space can be huge. This 
problem occurs not only during classification but also during training because the 
optimization algorithms have to calculate the same dot products very frequently. 
Fortunately, it turns out that it is possible to calculate the dot product before the 
nonlinear mapping is performed, on the original attribute set, using a so-called kernel 
function based on the dot product.

A high-dimensional version of the preceding equation is simply

x b yi i
n= + •∑α ( )a(i) a

where n is chosen as the number of factors in the transformation (three in the example 
we used earlier). If you expand the term (a(i) • a)n, you will find that it contains all the 
high-dimensional terms that would have been involved if the test and training vectors were 
first transformed by including all products of n factors and the dot product of the result 
was taken. (If you actually do the calculation, you will notice that some constant  
factors—binomial coefficients—are introduced. However, these do not matter: It is the 
dimensionality of the space that concerns us; the constants merely scale the axes.)

Because of this mathematical equivalence, the dot products can be computed in the 
original low-dimensional space, and the problem becomes feasible. In implementation 
terms, you take a software package for constrained quadratic optimization and every time 
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The function (x • y)n, which computes the dot product of two vectors x and y 
and raises the result to the power n, is called a polynomial kernel. A good way of 
choosing the value of n is to start with 1 (a linear model) and increment it until the 
estimated error ceases to improve. Usually, quite small values suffice. To include 
lower-order terms, we can use the kernel (x • y + 1)n.

Other kernel functions can be used instead to implement different nonlinear 
mappings. Two that are often suggested are the radial basis function (RBF) kernel 
and the sigmoid kernel. Which one produces the best results depends on the applica-
tion, although the differences are rarely large in practice. It is interesting to note that 
a support vector machine with the RBF kernel is simply a type of neural network 
called an RBF network (which we describe later), and one with the sigmoid kernel 
implements another type of neural network, a multilayer perceptron with one hidden 
layer (also described later).

Mathematically, any function K(x, y) is a kernel function if it can be written as 
K(x, y) = Φ(x) • Φ(y), where Φ is a function that maps an instance into a (potentially 
high-dimensional) feature space. In other words, the kernel function represents a dot 
product in the feature space created by Φ. Practitioners sometimes apply functions 
that are not proper kernel functions (the sigmoid kernel with certain parameter set-
tings is an example). Despite the lack of theoretical guarantees, this can nevertheless 
produce accurate classifiers.

Throughout this section, we have assumed that the training data is linearly 
separable—either in the instance space or in the new space spanned by the nonlinear 
mapping. It turns out that support vector machines can be generalized to the case 
where the training data is not separable. This is accomplished by placing an upper 
bound on the coefficients αi. Unfortunately, this parameter must be chosen by the 
user, and the best setting can only be determined by experimentation. Also, except 
in trivial cases it is not possible to determine a priori whether the data is linearly 
separable or not.

Finally, we should mention that compared with other methods such as decision 
tree learners, even the fastest training algorithms for support vector machines are slow 
when applied in the nonlinear setting. However, they often produce very accurate 
classifiers because subtle and complex decision boundaries can be obtained.

Support Vector Regression
The maximum-margin hyperplane concept only applies to classification. However, 
support vector machine algorithms have been developed for numeric prediction 
that share many of the properties encountered in the classification case: They 

a(i) • a is evaluated you evaluate (a(i) • a)n instead. It’s as simple as that because in both 
the optimization and the classification algorithms these vectors are only used in this dot 
product form. The training vectors, including the support vectors, and the test instance all 
remain in the original low-dimensional space throughout the calculations.
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FIGURE 6.10 

Support vector regression: (a) ε = 1, (b) ε = 2, and (c) ε = 0.5. 
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produce a model that can usually be expressed in terms of a few support vectors 
and can be applied to nonlinear problems using kernel functions. As with regular 
support vector machines, we will describe the concepts involved, but will not 
attempt to describe the algorithms that actually perform the work.

As with linear regression, covered in Section 4.6, the basic idea is to find a 
function that approximates the training points well by minimizing the prediction 
error. The crucial difference is that all deviations up to a user-specified parameter 
ε are simply discarded. Also, when minimizing the error, the risk of overfitting is 
reduced by simultaneously trying to maximize the flatness of the function. Another 
difference is that what is minimized is normally the predictions’ absolute error 
instead of the squared error used in linear regression. (There are, however, versions 
of the algorithm that use the squared error instead.)

A user-specified parameter ε defines a tube around the regression function in 
which errors are ignored: For linear support vector regression, the tube is a cylinder. 
If all training points can fit within a tube of width 2ε, the algorithm outputs the 
function in the middle of the flattest tube that encloses them. In this case the total 
perceived error is 0. Figure 6.10(a) shows a regression problem with one attribute, 
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a numeric class, and eight instances. In this case ε was set to 1, so the width of the 
tube around the regression function (indicated by dotted lines) is 2. Figure 6.10(b) 
shows the outcome of the learning process when ε is set to 2. As you can see, the 
wider tube makes it possible to learn a flatter function.

The value of ε controls how closely the function will fit the training data. Too 
large a value will produce a meaningless predictor—in the extreme case, when 2ε 
exceeds the range of class values in the training data, the regression line is horizontal 
and the algorithm just predicts the mean class value. On the other hand, for small 
values of ε there may be no tube that encloses all the data. In that case, some train-
ing points will have nonzero error, and there will be a tradeoff between the prediction 
error and the tube’s flatness. In Figure 6.10(c), ε was set to 0.5 and there is no tube 
of width 1 that encloses all the data.

For the linear case, the support vector regression function can be written as

x b i
i

= + •∑ α a(i) a
 is support vector

As with classification, the dot product can be replaced by a kernel function for 
nonlinear problems. The support vectors are all those points that do not fall strictly 
within the tube—that is, the points outside the tube and on its border. As with 
classification, all other points have coefficient 0 and can be deleted from the train-
ing data without changing the outcome of the learning process. In contrast to the 
classification case, the αi may be negative.

We have mentioned that as well as minimizing the error, the algorithm simultane-
ously tries to maximize the flatness of the regression function. In Figures 6.10(a) 
and (b), where there is a tube that encloses all the training data, the algorithm simply 
outputs the flattest tube that does so. However, in Figure 6.10(c), there is no tube 
with error 0, and a tradeoff is struck between the prediction error and the tube’s 
flatness. This tradeoff is controlled by enforcing an upper limit C on the absolute 
value of the coefficients αi. The upper limit restricts the influence of the support 
vectors on the shape of the regression function and is a parameter that the user must 
specify in addition to ε. The larger C is, the more closely the function can fit the 
data. In the degenerate case ε = 0, the algorithm simply performs least-absolute-error 
regression under the coefficient size constraint and all training instances become 
support vectors. Conversely, if ε is large enough that the tube can enclose all the 
data, the error becomes 0, there is no tradeoff to make, and the algorithm outputs 
the flattest tube that encloses the data irrespective of the value of C.

Kernel Ridge Regression
Chapter 4 introduced classic least-squares linear regression as a technique for pre-
dicting numeric quantities. In the previous section we saw how the powerful idea 
of support vector machines can be applied to regression and, furthermore, how 
nonlinear problems can be tackled by replacing the dot product in the support vector 
formulation by a kernel function—this is often known as the “kernel trick.” For 
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classic linear regression using squared loss, only simple matrix operations are needed 
to find the model, but this is not the case for support vector regression with the 
user-specified loss parameter ε. It would be nice to combine the power of the kernel 
trick with the simplicity of standard least-squares regression. Kernel ridge regression 
does just that. In contrast to support vector regression, it does not ignore errors 
smaller than ε, and the squared error is used instead of the absolute error.

Instead of expressing the linear regression model’s predicted class value for a given test 
instance a as a weighted sum of the attribute values, as in Chapter 4, it can be expressed 
as a weighted sum over the dot products of each training instance aj and the test instance 
in question:

α j j
j

n

a a•
=
∑

0

where we assume that the function goes through the origin and an intercept is not 
required. This involves a coefficient αj for each training instance, which resembles the 
situation with support vector machines—except that here j ranges over all instances in the 
training data, not just the support vectors. Again, the dot product can be replaced by a 
kernel function to yield a nonlinear model.

The sum of the squared errors of the model’s predictions on the training data is given by
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This is the squared loss, just as in Chapter 4, and again we seek to minimize it by 
choosing appropriate αj’s. But now there is a coefficient for each training instance, not 
just for each attribute, and most data sets have far more instances than attributes. This 
means that there is a serious risk of overfitting the training data when a kernel function is 
used instead of the dot product to obtain a nonlinear model.

That is where the ridge part of kernel ridge regression comes in. Instead of minimizing 
the squared loss, we trade closeness of fit against model complexity by introducing a 
penalty term:
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The second sum penalizes large coefficients. This prevents the model from placing too much 
emphasis on individual training instances by giving them large coefficients, unless this yields 
a correspondingly large drop in error. The parameter λ controls the tradeoff between closeness 
of fit and model complexity. When matrix operations are used to solve for the coefficients of 
the model, the ridge penalty also has the added benefit of stabilizing degenerate cases. For 
this reason, it is often applied in standard least-squares linear regression as well.

Although kernel ridge regression has the advantage over support vector machines 
of computational simplicity, one disadvantage is that there is no sparseness in the 
vector of coefficients—in other words, no concept of “support vectors.” This makes 
a difference at prediction time because support vector machines have to sum only 
over the set of support vectors, not the entire training set.
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In a typical situation with more instances than attributes, kernel ridge regression 
is more computationally expensive than standard linear regression, even when using 
the dot product rather than a kernel. This is because of the complexity of the matrix 
inversion operation used to find the model’s coefficient vector. Standard linear regres-
sion requires inverting an m × m matrix, which has complexity O(m3), where m is the 
number of attributes in the data. Kernel ridge regression, on the other hand, involves 
an n × n matrix, with complexity O(n3) where n is the number of instances in the train-
ing data. Nevertheless, it is advantageous to use kernel ridge regression in cases where 
a nonlinear fit is desired, or where there are more attributes than training instances.

Kernel Perceptron
In Section 4.6 we introduced the perceptron algorithm for learning a linear classifier. 
It turns out that the kernel trick can also be used to upgrade this algorithm to learn 
nonlinear decision boundaries.

To see this, we first revisit the linear case. The perceptron algorithm repeatedly iterates 
through the training data instance by instance and updates the weight vector every time 
one of these instances is misclassified based on the weights learned so far. The weight 
vector is updated simply by adding or subtracting the instance’s attribute values to or 
from it. This means that the final weight vector is just the sum of the instances that  
have been misclassified. The perceptron makes its predictions based on whether

w aii i∑
is greater or less than 0, where wi is the weight for the ith attribute and ai the corresponding 
attribute value of the instance that we wish to classify. Instead, we could use

y j a j ai iji
( ) ( )′∑∑

Here, a′ (j ) is the jth misclassified training instance, a′(j )i its ith attribute value, and y (j ) 
its class value (either +1 or –1). To implement this we no longer keep track of an explicit 
weight vector: We simply store the instances that have been misclassified so far and use 
the previous expression to make a prediction.

It looks like we’ve gained nothing—in fact, the algorithm is much slower because it 
iterates through all misclassified training instances every time a prediction is made. 
However, closer inspection of this formula reveals that it can be expressed in terms of dot 
products between instances. First, swap the summation signs to yield

y j a j a
j i ii

( ) ( )∑ ∑ ′

The second sum is just a dot product between two instances and can be written as

y j
j

( ) ′ •∑ a ( ) aj

This rings a bell! A similar expression for support vector machines enabled the use of 
kernels. Indeed, we can apply exactly the same trick here and use a kernel function 
instead of the dot product. Writing this function as K(…) gives

y j K
j

( ) ( , )′∑ a ( ) aj

In this way the perceptron algorithm can learn a nonlinear classifier simply by keeping 
track of the instances that have been misclassified during the training process and using 
this expression to form each prediction.
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If a separating hyperplane exists in the high-dimensional space implicitly created 
by the kernel function, this algorithm will learn one. However, it won’t learn the 
maximum-margin hyperplane found by a support vector machine classifier. This 
means that classification performance is usually worse. On the plus side, the  
algorithm is easy to implement and supports incremental learning.

This classifier is called the kernel perceptron. It turns out that all sorts of algo-
rithms for learning linear models can be upgraded by applying the kernel trick in a 
similar fashion. For example, logistic regression can be turned into kernel logistic 
regression. As we saw before, the same applies to regression problems: Linear 
regression can also be upgraded using kernels. Again, a drawback of these advanced 
methods for linear and logistic regression (if they are done in a straightforward 
manner) is that the solution is not “sparse”: Every training instance contributes to 
the solution vector. In support vector machines and the kernel perceptron, only some 
of the training instances affect the solution, and this can make a big difference in 
computational efficiency.

The solution vector found by the perceptron algorithm depends greatly on the 
order in which the instances are encountered. One way to make the algorithm more 
stable is to use all the weight vectors encountered during learning, not just the final 
one, letting them vote on a prediction. Each weight vector contributes a certain 
number of votes. Intuitively, the “correctness” of a weight vector can be measured 
roughly as the number of successive trials after its inception in which it correctly 
classified subsequent instances and thus didn’t have to be changed. This measure 
can be used as the number of votes given to the weight vector, giving an algorithm 
known as the voted perceptron that performs almost as well as a support vector 
machine. (Note that, as mentioned earlier, the various weight vectors in the voted 
perceptron don’t need to be stored explicitly, and the kernel trick can be applied 
here too.)

Multilayer Perceptrons
Using a kernel is not the only way to create a nonlinear classifier based on the per-
ceptron. In fact, kernel functions are a recent development in machine learning. 
Previously, neural network proponents used a different approach for nonlinear clas-
sification: They connected many simple perceptron-like models in a hierarchical 
structure. This can represent nonlinear decision boundaries.

Section 4.6 explained that a perceptron represents a hyperplane in instance 
space. We mentioned there that it is sometimes described as an artificial “neuron.” 
Of course, human and animal brains successfully undertake very complex clas-
sification tasks—for example, image recognition. The functionality of each indi-
vidual neuron that is in a brain is certainly not sufficient to perform these feats. 
How can they be solved by brainlike structures? The answer must lie in the 
fact that the neurons in the brain are massively interconnected, allowing a problem 
to be decomposed into subproblems that can be solved at the neuron level.  
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This observation inspired the development of artificial networks of neurons—
neural nets.

Consider the simple dataset in Figure 6.11. Part (a) shows a two-dimensional 
instance space with four instances having classes 0 and 1, represented by white and 
black dots, respectively. No matter how you draw a straight line through this space, 
you will not be able to find one that separates all the black points from all the white 
ones. In other words, the problem is not linearly separable, and the simple percep-
tron algorithm will fail to generate a separating hyperplane (in this two-dimensional 
instance space a hyperplane is just a straight line). The situation is different in 
Figure 6.11(b) and Figure 6.11(c): Both these problems are linearly separable. The 
same holds for Figure 6.11(d), which shows two points in a one-dimensional 
instance space (in the case of one dimension the separating hyperplane degenerates 
to a separating point).

If you are familiar with propositional logic, you may have noticed that the four 
situations in Figure 6.11 correspond to four types of logical connectives. Figure 
6.11(a) represents a logical XOR (exclusive-OR), where the class is 1 if and only 
if exactly one of the attributes has value 1. Figure 6.11(b) represents logical AND, 
where the class is 1 if and only if both attributes have value 1. Figure 6.11(c) 
represents OR, where the class is 0 only if both attributes have value 0. Figure 
6.11(d) represents NOT, where the class is 0 if and only if the attribute has value 
1. Because the last three are linearly separable, a perceptron can represent AND, 
OR, and NOT. Indeed, perceptrons for the corresponding datasets are shown in 
Figures 6.11(f–h), respectively. However, a simple perceptron cannot represent  
XOR because that is not linearly separable. To build a classifier for this type of 
problem a single perceptron is not sufficient—we need several of them.

Figure 6.11(e) shows a network with three perceptrons, or units, labeled A, B, and 
C. The first two are connected to what is sometimes called the input layer of the 
network, representing the attributes in the data. As in a simple perceptron, the input 
layer has an additional constant input called the bias. However, the third unit does not 
have any connections to the input layer. Its input consists of the output of units A and 
B (either 0 or 1) and another constant bias unit. These three units make up the hidden 
layer of the multilayer perceptron. They are called “hidden” because the units have 
no direct connection to the environment. This layer is what enables the system to 
represent XOR. You can verify this by trying all four possible combinations of input 
signals. For example, if attribute a1 has value 1 and a2 has value 1, then unit A will 
output 1 (because 1 × 1 + 1 × 1 + −0.5 × 1 > 0), unit B will output 0 (because –1 × 1 
+ –1 × 1 + –1.5 × 1 < 0), and unit C will output 0 (because 1 × 1 + 1 × 0 + –1.5 × 1 < 
0). This is the correct answer. Closer inspection of the behavior of the three units 
reveals that the first one represents OR, the second represents NAND (NOT com-
bined with AND), and the third represents AND. Together they represent the expres-
sion (a1 OR a2) AND (a1 NAND a2), which is precisely the definition of XOR.

As this example illustrates, any expression from propositional calculus can be 
converted into a multilayer perceptron, because the three connectives AND, OR, and 
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Example datasets and corresponding perceptrons. 
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NOT are sufficient for this and we have seen how each can be represented using a 
perceptron. Individual units can be connected together to form arbitrarily complex 
expressions. Hence, a multilayer perceptron has the same expressive power as, say, 
a decision tree. In fact, it turns out that a two-layer perceptron (not counting the 
input layer) is sufficient. In this case, each unit in the hidden layer corresponds to a 
variant of AND—because we assume that it may negate some of the inputs before 
forming the conjunction—joined by an OR that is represented by a single unit in 
the output layer. In other words, each node in the hidden layer has the same role as 
a leaf in a decision tree or a single rule in a set of decision rules.

The big question is how to learn a multilayer perceptron. There are two aspects to 
the problem: learning the structure of the network and learning the connection 
weights. It turns out that there is a relatively simple algorithm for determining the 
weights given a fixed network structure. This algorithm is called backpropagation and 
is described in the next section. However, although there are many algorithms that 
attempt to identify network structure, this aspect of the problem is commonly solved 
by experimentation—perhaps combined with a healthy dose of expert knowledge. 
Sometimes the network can be separated into distinct modules that represent identifi-
able subtasks (e.g., recognizing different components of an object in an image recogni-
tion problem), which opens up a way of incorporating domain knowledge into the 
learning process. Often a single hidden layer is all that is necessary, and an appropriate 
number of units for that layer is determined by maximizing the estimated accuracy.

Backpropagation
Suppose we have some data and seek a multilayer perceptron that is an accurate 
predictor for the underlying classification problem. Given a fixed network structure, 
we must determine appropriate weights for the connections in the network. In the 
absence of hidden layers, the perceptron learning rule from Section 4.6 can be used 
to find suitable values. But suppose there are hidden units. We know what the output 
unit should predict and could adjust the weights of the connections leading to that 
unit based on the perceptron rule. But the correct outputs for the hidden units are 
unknown, so the rule cannot be applied there.

It turns out that, roughly speaking, the solution is to modify the weights of the 
connections leading to the hidden units based on the strength of each unit’s contribu-
tion to the final prediction. There is a standard mathematical optimization algorithm, 
called gradient descent, which achieves exactly that. Unfortunately, it requires 
taking derivatives, and the step function that the simple perceptron uses to convert 
the weighted sum of the inputs into a 0/1 prediction is not differentiable. We need 
to see whether the step function can be replaced by something else.

Figure 6.12(a) shows the step function: If the input is smaller than 0, it outputs 0; 
otherwise, it outputs 1. We want a function that is similar in shape but differentiable. A 
commonly used replacement is shown in Figure 6.12(b). In neural networks terminol-
ogy it is called the sigmoid function, and the version we consider here is defined by

f x
e x

( ) =
+ −

1

1
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FIGURE 6.12 

Step versus sigmoid: (a) step function and (b) sigmoid function. 
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We encountered it in Section 4.6 when we described the logit transform used in 
logistic regression. In fact, learning a multilayer perceptron is closely related to 
logistic regression.

To apply the gradient descent procedure, the error function—the thing that is to 
be minimized by adjusting the weights—must also be differentiable. The number of 
misclassifications—measured by the discrete 0 – 1 loss mentioned in Section 5.6—
does not fulfill this criterion. Instead, multilayer perceptrons are usually trained by 
minimizing the squared error of the network’s output, essentially treating it as an 
estimate of the class probability. (Other loss functions are also applicable. For 
example, if the negative log-likelihood is used instead of the squared error, learning 
a sigmoid-based perceptron is identical to logistic regression.)

We work with the squared-error loss function because it is most widely used. 
For a single training instance, it is

E y f x= −
1

2
2( ( ))

where f(x) is the network’s prediction obtained from the output unit and y is the 
instance’s class label (in this case, it is assumed to be either 0 or 1). The factor 1

2 is 
included just for convenience and will drop out when we start taking derivatives.

Gradient descent exploits information given by the derivative of the function that 
is to be minimized—in this case, the error function. As an example, consider a 
hypothetical error function that happens to be identical to w 2 + 1, shown in Figure 
6.13. The x-axis represents a hypothetical parameter w that is to be optimized. The 
derivative of w 2 + 1 is simply 2w. The crucial observation is that, based on 
the derivative, we can figure out the slope of the function at any particular point. If 
the derivative is negative, the function slopes downward to the right; if it is positive, 
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FIGURE 6.13 

Gradient descent using the error function w 2 + 1. 
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it slopes downward to the left; and the size of the derivative determines how steep 
the decline is. Gradient descent is an iterative optimization procedure that uses this 
information to adjust a function’s parameters. It takes the value of the derivative, 
multiplies it by a small constant called the learning rate, and subtracts the result 
from the current parameter value. This is repeated for the new parameter value, and 
so on, until a minimum is reached.

Returning to the example, assume that the learning rate is set to 0.1 and the 
current parameter value w is 4. The derivative is double this—8 at this point. Multi
plying by the learning rate yields 0.8, and subtracting this from 4 gives 3.2, which 
becomes the new parameter value. Repeating the process for 3.2, we get 2.56, then 
2.048, and so on. The little crosses in Figure 6.13 show the values encountered in 
this process. The process stops once the change in parameter value becomes too 
small. In the example this happens when the value approaches 0, the value corre-
sponding to the location on the x-axis where the minimum of the hypothetical error 
function is located.

The learning rate determines the step size and hence how quickly the search 
converges. If it is too large and the error function has several minima, the search 
may overshoot and miss a minimum entirely, or it may oscillate wildly. If it is too 
small, progress toward the minimum may be slow. Note that gradient descent can 
only find a local minimum. If the function has several minima—and error functions 
for multilayer perceptrons usually have many—it may not find the best one. This is 
a significant drawback of standard multilayer perceptrons compared with, for 
example, support vector machines.
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To use gradient descent to find the weights of a multilayer perceptron, the derivative of 
the squared error must be determined with respect to each parameter—that is, each 
weight in the network. Let’s start with a simple perceptron without a hidden layer. 
Differentiating the error function with respect to a particular weight wi yields

dE
dw

f x y
f x
dwi i

= −( ( ) )
( )

Here, f(x) is the perceptron’s output and x is the weighted sum of the inputs.
To compute the second factor on the right side, the derivative of the sigmoid function 

f(x) is needed. It turns out that this has a particularly simple form that can be written in 
terms of f(x) itself:

df x
dx

f x f x
( )

( )( ( ))= −1

We use f ′(x) to denote this derivative. But we seek the derivative with respect to wi, not x. 
Because

x w ai ii
= ∑

the derivative of f(x) with respect to wi is

df x
dw

f x a
i

i
( )

( )= ′

Plugging this back into the derivative of the error function yields

dE
dw

f x y f x a
i

i= − ′( ( ) ) ( )

This expression gives all that is needed to calculate the change of weight wi caused by a 
particular example vector a (extended by 1 to represent the bias, as explained previously). 
Having repeated this computation for each training instance, we add up the changes 
associated with a particular weight wi, multiply by the learning rate, and subtract the 
result from wi’s current value.

So far so good. But all this assumes that there is no hidden layer. With a hidden layer, 
things get a little trickier. Suppose f(xi) is the output of the ith hidden unit, wij is the weight 
of the connection from input j to the ith hidden unit, and wi is the weight of the ith hidden 
unit to the output unit. The situation is depicted in Figure 6.14. As before, f(x) is the 
output of the single unit in the output layer. The update rule for the weights wi is essentially 
the same as above, except that ai is replaced by the output of the ith hidden unit:

dE
dw

f x y f x f x
i

i= − ′( ( ) ) ( ) ( )

However, to update the weights wij the corresponding derivatives must be calculated. 
Applying the chain rule gives

dE
dw

dE
dx

dx
dw

f x y f x
dx

dwij ij ij

= = − ′( ( ) ) ( )

The first two factors are the same as in the previous equation. To compute the third 
factor, differentiate further. Because

x w f xi ii
= ∑ ( )

then

dx
dw

w
df x
dwij

i
i

ij

= ( )
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Furthermore,

x w ai ij jj
= ∑

so

df x
dw

f x
dx
dw

f x ai

ij
i

i

ij
i j

( )
( ) ( )= ′ = ′

This means that we are finished. Putting everything together yields an equation for the 
derivative of the error function with respect to the weights wij:

dE
dw

f x y f x w f x a
ij

i i j= − ′ ′( ( ) ) ( ) ( )

As before, we calculate this value for every training instance, add up the changes 
associated with a particular weight wij, multiply by the learning rate, and subtract the 
outcome from the current value of wij.

This derivation applies to a perceptron with one hidden layer. If there are two hidden 
layers, the same strategy can be applied a second time to update the weights pertaining  
to the input connections of the first hidden layer, propagating the error from the output  
unit through the second hidden layer to the first one. Because of this error propagation 
mechanism, this version of the generic gradient descent strategy is called backpropagation.

FIGURE 6.14 

Multilayer perceptron with a hidden layer. 
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We have tacitly assumed that the network’s output layer has just one unit, which 
is appropriate for two-class problems. For more than two classes, a separate network 
could be learned for each class that distinguishes it from the remaining classes. A 
more compact classifier can be obtained from a single network by creating an output 
unit for each class, connecting every unit in the hidden layer to every output unit. 
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The squared error for a particular training instance is the sum of squared errors taken 
over all output units. The same technique can be applied to predict several targets, 
or attribute values, simultaneously by creating a separate output unit for each one. 
Intuitively, this may give better predictive accuracy than building a separate classi-
fier for each class attribute if the underlying learning tasks are in some way related.

We have assumed that weights are only updated after all training instances have 
been fed through the network and all the corresponding weight changes have been 
accumulated. This is batch learning because all the training data is processed 
together. But exactly the same formulas can be used to update the weights incre-
mentally after each training instance has been processed. This is called stochastic 
backpropagation because the overall error does not necessarily decrease after every 
update. It can be used for online learning, in which new data arrives in a continuous 
stream and every training instance is processed just once. In both variants of back-
propagation, it is often helpful to standardize the attributes to have zero mean and 
unit standard deviation. Before learning starts, each weight is initialized to a small, 
randomly chosen value based on a normal distribution with zero mean.

Like any other learning scheme, multilayer perceptrons trained with backpropa-
gation may suffer from overfitting, especially if the network is much larger than 
what is actually necessary to represent the structure of the underlying learning 
problem. Many modifications have been proposed to alleviate this. A very simple 
one, called early stopping, works like reduced-error pruning in rule learners: A 
holdout set is used to decide when to stop performing further iterations of the 
backpropagation algorithm. The error on the holdout set is measured and the algo-
rithm is terminated once the error begins to increase because that indicates overfit-
ting to the training data. Another method, called weight decay, adds to the error 
function a penalty term that consists of the squared sum of all weights in the network, 
as in ridge regression. This attempts to limit the influence of irrelevant connections 
on the network’s predictions by penalizing large weights that do not contribute a 
correspondingly large reduction in the error.

Although standard gradient descent is the simplest technique for learning the 
weights in a multilayer perceptron, it is by no means the most efficient one. In 
practice, it tends to be rather slow. A trick that often improves performance is to 
include a momentum term when updating weights: Add to the new weight change a 
small proportion of the update value from the previous iteration. This smoothes the 
search process by making changes in direction less abrupt. More sophisticated 
methods make use of information obtained from the second derivative of the error 
function as well; they can converge much more quickly. However, even those algo-
rithms can be very slow compared with other methods of classification learning.

A serious disadvantage of multilayer perceptrons that contain hidden units is that 
they are essentially opaque. There are several techniques that attempt to extract rules 
from trained neural networks. However, it is unclear whether they offer any advan-
tages over standard rule learners that induce rule sets directly from data, especially 
considering that this can generally be done much more quickly than learning a 
multilayer perceptron in the first place.
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Although multilayer perceptrons are the most prominent type of neural network, 
many others have been proposed. Multilayer perceptrons belong to a class of net-
works called feed-forward networks because they do not contain any cycles and the 
network’s output depends only on the current input instance. Recurrent neural net-
works do have cycles. Computations derived from earlier input are fed back into the 
network, which gives them a kind of memory.

Radial Basis Function Networks
Another popular type of feed-forward network is the radial basis function (RBF) 
network. It has two layers, not counting the input layer, and differs from a multilayer 
perceptron in the way that the hidden units perform computations. Each hidden unit 
essentially represents a particular point in input space, and its output, or activation, 
for a given instance depends on the distance between its point and the instance, 
which is just another point. Intuitively, the closer these two points, the stronger the 
activation. This is achieved by using a nonlinear transformation function to convert 
the distance into a similarity measure. A bell-shaped Gaussian activation function, 
of which the width may be different for each hidden unit, is commonly used for this 
purpose. The hidden units are called RBFs because the points in instance space for 
which a given hidden unit produces the same activation form a hypersphere or 
hyperellipsoid. (In a multilayer perceptron, this is a hyperplane.)

The output layer of an RBF network is the same as that of a multilayer perceptron: 
It takes a linear combination of the outputs of the hidden units and—in classification 
problems—pipes it through the sigmoid function (or something with a similar shape).

The parameters that such a network learns are (a) the centers and widths of the 
RBFs and (b) the weights used to form the linear combination of the outputs obtained 
from the hidden layer. A significant advantage over multilayer perceptrons is that 
the first set of parameters can be determined independently of the second set and 
still produce accurate classifiers.

One way to determine the first set of parameters is to use clustering. The simple 
k-means clustering algorithm described in Section 4.8 can be applied, clustering 
each class independently to obtain k-basis functions for each class. Intuitively, the 
resulting RBFs represent prototype instances. The second set of parameters is then 
learned by keeping the first parameters fixed. This involves learning a simple linear 
classifier using one of the techniques we have discussed (e.g., linear or logistic 
regression). If there are far fewer hidden units than training instances, this can be 
done very quickly.

A disadvantage of RBF networks is that they give every attribute the same weight 
because all are treated equally in the distance computation, unless attribute weight 
parameters are included in the overall optimization process. Thus, they cannot deal 
effectively with irrelevant attributes, in contrast to multilayer perceptrons. Support 
vector machines share the same problem. In fact, support vector machines with 
Gaussian kernels (i.e., “RBF kernels”) are a particular type of RBF network, in 
which one basis function is centered on every training instance, all basis functions 
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have the same width, and the outputs are combined linearly by computing the 
maximum-margin hyperplane. This has the effect that only some of the RBFs have 
a nonzero weight—the ones that represent the support vectors.

Stochastic Gradient Descent
We have introduced gradient descent and stochastic backpropagation as optimization 
methods for learning the weights in a neural network. Gradient descent is, in fact, 
a general-purpose optimization technique that can be applied whenever the objective 
function is differentiable. Actually, it turns out that it can even be applied in cases 
where the objective function is not completely differentiable through use of a device 
called subgradients.

One application is the use of gradient descent to learn linear models such as 
linear support vector machines or logistic regression. Learning such models using 
gradient descent is easier than optimizing nonlinear neural networks because the 
objective function has a global minimum rather than many local minima, which is 
usually the case for nonlinear networks. For linear problems, a stochastic gradient 
descent procedure can be designed that is computationally simple and converges 
very rapidly, allowing models such as linear support vector machines and logistic 
regression to be learned from large datasets. Moreover, stochastic gradient descent 
allows models to be learned incrementally, in an online setting.

For support vector machines, the error function—the thing that is to be 
minimized—is called the hinge loss. Illustrated in Figure 6.15, this is so named 
because it comprises a downwards sloping linear segment joined to a horizontal part 
at z = 1—more formally, E(z) = max{0, 1 – z}. For comparison, the figure also shows 
the 0 – 1 loss, which is discontinuous, and the squared loss, which is both continuous 

FIGURE 6.15 

Hinge, squared, and 0 – 1 loss functions. 
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The hinge loss is continuous, unlike the 0 – 1 loss, but is not differentiable at z = 1, 
unlike the squared loss, which is differentiable everywhere. This lack of differentiability 
presents a problem if gradient descent is used to update the model’s weights after a 
training example has been processed, because the loss function’s derivative is needed for 
this. That is where subgradients come in. The basic idea is that even though the gradient 
cannot be computed, the minimum will still be found if something resembling a gradient 
can be substituted. In the case of the hinge loss, the gradient is taken to be 0 at the 
point of nondifferentiability. In fact, since the hinge loss is 0 for z ≥ 1, we can focus on 
that part of the function that is differentiable (z < 1) and proceed as usual.

Ignoring the weight decay necessary to find the smallest weight vector, the weight 
update for a linear support vector machine using the hinge loss is Δwi = ηai y, where η is the 
learning rate. For stochastic gradient descent, all that is needed to compute z for each 
training instance is to take the dot product between the current weight vector and the 
instance, multiply the result by the instance’s class value, and check to see if the resulting 
value is less than 1. If so, the weights are updated accordingly. As with perceptrons, a bias 
term can be included by extending the weight vector by one element and including an 
additional attribute with each training instance that always has the value 1.

and differentiable. These functions are plotted as a function of the margin z = y f(x), 
where the class y is either –1 or +1 and f(x) is the output of the linear model. Mis-
classification occurs when z < 0, so all loss functions incur their most serious penal-
ties in the negative region. In the linearly separable case, the hinge loss is 0 for a 
function that successfully separates the data. The maximum-margin hyperplane is 
given by the smallest weight vector that achieves a zero hinge loss.

Discussion
Support vector machines originated from research in statistical learning theory 
(Vapnik, 1999), and a good starting point for exploration is a tutorial by Burges 
(1998). A general description, including generalization to the case in which the 
data is not linearly separable, has been published by Cortes and Vapnik (1995). 
We have introduced the standard version of support vector regression; Schölkopf 
et al. (1999) present a different version that has one parameter instead of two. 
Smola and Schölkopf (2004) provide an extensive tutorial on support vector 
regression.

Ridge regression was introduced in statistics by Hoerl and Kennard (1970) and 
can now be found in standard statistics texts. Hastie et al. (2009) give a good 
description of kernel ridge regression. Kernel ridge regression is equivalent to a 
technique called Gaussian process regression in terms of point estimates produced, 
but a discussion of Gaussian processes is beyond the scope of this book. The com-
plexity of the most efficient general matrix inversion algorithm is in fact O(n2.807) 
rather than O(n3).

The (voted) kernel perceptron is due to Freund and Schapire (1999). Cristianini 
and Shawe-Taylor (2000) provide a nice introduction to support vector machines 
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and other kernel-based methods, including the optimization theory underlying the 
support vector learning algorithms. We have barely skimmed the surface of these 
learning schemes, mainly because advanced mathematics lies just beneath. The idea 
of using kernels to solve nonlinear problems has been applied to many algorithms, 
for example, principal components analysis (described in Section 7.3). A kernel is 
essentially a similarity function with certain mathematical properties, and it is pos-
sible to define kernel functions over all sorts of structures—for example, sets, strings, 
trees, and probability distributions. Shawe-Taylor and Cristianini (2004) and 
Schölkopf and Smola (2002) cover kernel-based learning in detail.

There is extensive literature on neural networks, and Bishop (1995) provides 
an excellent introduction to both multilayer perceptrons and RBF networks. Interest 
in neural networks appears to have declined since the arrival of support vector 
machines, perhaps because the latter generally require fewer parameters to be 
tuned to achieve the same (or greater) accuracy. However, multilayer perceptrons 
have the advantage that they can learn to ignore irrelevant attributes, and RBF 
networks trained using k-means can be viewed as a quick-and-dirty method for 
finding a nonlinear classifier. Recent studies have shown that multilayer perceptrons 
achieve performance competitive with more modern learning techniques on many 
practical datasets.

Recently there has been renewed interest in gradient methods for learning clas-
sifiers. In particular, stochastic gradient methods have been explored because they 
are applicable to large data sets and online learning scenarios. Kivinen et al. (2002), 
Zhang (2004), and Shalev-Shwartz et al. (2007) explore such methods when applied 
to learning support vector machines. Kivinen et al. and Shalev-Shwartz et al. provide 
heuristics for setting the learning rate for gradient descent based on the current itera-
tion, which only require the user to provide a value for a single parameter that 
determines the closeness of fit to the training data (a so-called regularization param-
eter). In the vanilla approach, regularization is performed by limiting the number of 
updates that can be performed.

6.5  INSTANCE-BASED LEARNING
In Section 4.7 we saw how the nearest-neighbor rule can be used to implement a 
basic form of instance-based learning. There are several practical problems with this 
simple scheme. First, it tends to be slow for large training sets because the entire 
set must be searched for each test instance—unless sophisticated data structures such 
as kD-trees or ball trees are used. Second, it performs badly with noisy data because 
the class of a test instance is determined by its single nearest neighbor without any 
“averaging” to help eliminate noise. Third, it performs badly when different attri-
butes affect the outcome to different extents—in the extreme case, when some 
attributes are completely irrelevant—because all attributes contribute equally to the 
distance formula. Fourth, it does not perform explicit generalization, although we 
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intimated in Section 3.5 (and illustrated in Figure 3.10) that some instance-based 
learning systems do indeed perform explicit generalization.

Reducing the Number of Exemplars
The plain nearest-neighbor rule stores a lot of redundant exemplars. Yet it is 
almost always completely unnecessary to save all the examples seen so far. A 
simple variant is to classify each example with respect to the examples already 
seen and to save only ones that are misclassified. We use the term exemplars to 
refer to the already-seen instances that are used for classification. Discarding 
correctly classified instances reduces the number of exemplars and proves to be 
an effective way to prune the exemplar database. Ideally, only a single exemplar 
is stored for each important region of the instance space. However, early in the 
learning process examples may be discarded that later turn out to be important, 
possibly leading to some decrease in predictive accuracy. As the number of stored 
instances increases, the accuracy of the model improves, and so the system makes 
fewer mistakes.

Unfortunately, the strategy of only storing misclassified instances does not work 
well in the face of noise. Noisy examples are very likely to be misclassified, and so 
the set of stored exemplars tends to accumulate those that are least useful. This effect 
is easily observed experimentally. Thus, this strategy is only a stepping-stone on the 
way toward more effective instance-based learners.

Pruning Noisy Exemplars
Noisy exemplars inevitably lower the performance of any nearest-neighbor scheme 
that does not suppress them, because they have the effect of repeatedly misclassify-
ing new instances. There are two ways of dealing with this. One is to locate, instead 
of the single nearest neighbor, the k-nearest neighbors for some predetermined con-
stant k, and assign the majority class to the unknown instance. The only problem 
here is determining a suitable value of k. Plain nearest-neighbor learning corresponds 
to k = 1. The more noise, the greater the optimal value of k. One way to proceed is 
to perform cross-validation tests with several different values and choose the best. 
Although this is expensive in computation time, it often yields excellent predictive 
performance.

A second solution is to monitor the performance of each exemplar that is stored 
and discard ones that do not perform well. This can be done by keeping a record of 
the number of correct and incorrect classification decisions that each exemplar 
makes. Two predetermined thresholds are set on the success ratio. When an exem-
plar’s performance drops below the lower one, it is deleted from the exemplar set. 
If its performance exceeds the upper threshold, it is used for predicting the class of 
new instances. If its performance lies between the two, it is not used for prediction 
but, whenever it is the closest exemplar to the new instance (and thus would have 
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been used for prediction if its performance record had been good enough), its success 
statistics are updated as though it had been used to classify that new instance.

To accomplish this, we use the confidence limits on the success probability of a 
Bernoulli process that we derived in Section 5.2. Recall that we took a certain 
number of successes S out of a total number of trials N as evidence on which to base 
confidence limits on the true underlying success rate p. Given a certain confidence 
level of, say, 5%, we can calculate upper and lower bounds and be 95% sure that p 
lies between them.

To apply this to the problem of deciding when to accept a particular exemplar, 
suppose that it has been used n times to classify other instances and that s of these 
have been successes. That allows us to estimate bounds, at a particular confidence 
level, on the true success rate of this exemplar. Now suppose that the exemplar’s 
class has occurred c times out of a total number N of training instances. This allows 
us to estimate bounds on the default success rate—that is, the probability of suc-
cessfully classifying an instance of this class without any information about other 
instances. We insist that the lower confidence bound on an exemplar’s success rate 
exceeds the upper confidence bound on the default success rate. We use the same 
method to devise a criterion for rejecting a poorly performing exemplar, requiring 
that the upper confidence bound on its success rate lies below the lower confidence 
bound on the default success rate.

With suitable choices of thresholds, this scheme works well. In a particular 
implementation, called IB3 for Instance-Based Learner version 3, a confidence level 
of 5% is used to determine acceptance whereas a level of 12.5% is used for rejec-
tion. The lower percentage figure produces a wider confidence interval, which makes 
for a more stringent criterion because it is harder for the lower bound of one interval 
to lie above the upper bound of the other. The criterion for acceptance is more 
stringent than for rejection, making it more difficult for an instance to be accepted. 
The reason for a less stringent rejection criterion is that there is little to be lost by 
dropping instances with only moderately poor classification accuracies: They will 
probably be replaced by similar instances later. Using these thresholds has been 
found to improve the performance of instance-based learning and, at the same time, 
dramatically reduce the number of exemplars—particularly noisy exemplars—that 
are stored.

Weighting Attributes
The Euclidean distance function, modified to scale all attribute values to between 0 
and 1, works well in domains in which the attributes are equally relevant to the 
outcome. Such domains, however, are the exception rather than the rule. In most 
domains some attributes are irrelevant and some relevant ones are less important 
than others. The next improvement in instance-based learning is to learn the rele-
vance of each attribute incrementally by dynamically updating feature weights.

In some schemes, the weights are class specific in that an attribute may be more 
important to one class than to another. To cater for this, a description is produced 



for each class that distinguishes its members from members of all other classes. This 
leads to the problem that an unknown test instance may be assigned to several dif-
ferent classes, or no classes at all—a problem that is all too familiar from our 
description of rule induction. Heuristic solutions are applied to resolve these 
situations.

The distance metric incorporates the feature weights w1, w2, …, wm on each 
dimension:
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In the case of class-specific feature weights, there will be a separate set of weights 
for each class.

All attribute weights are updated after each training instance is classified, and 
the most similar exemplar (or the most similar exemplar of each class) is used as 
the basis for updating. Call the training instance x and the most similar exemplar 
y. For each attribute i, the difference xi − yi is a measure of the contribution of 
that attribute to the decision. If this difference is small then the attribute contributes 
positively, whereas if it is large it may contribute negatively. The basic idea is to 
update the ith weight on the basis of the size of this difference and whether the 
classification was indeed correct. If the classification is correct the associated weight 
is increased, and if it is incorrect it is decreased, the amount of increase or decrease 
being governed by the size of the difference: large if the difference is small and 
vice versa. The weight change is generally followed by a renormalization step. A 
simpler strategy, which may be equally effective, is to leave the weights alone if 
the decision is correct, and if it is incorrect to increase the weights for those attri-
butes that differ most greatly, accentuating the difference. Details of these weight 
adaptation algorithms are described by Aha (1992).

A good test of whether an attribute weighting scheme works is to add irrelevant 
attributes to all examples in a dataset. Ideally, the introduction of irrelevant attributes 
should not affect either the quality of predictions or the number of exemplars stored.

Generalizing Exemplars
Generalized exemplars are rectangular regions of instance space, called hyperrect-
angles because they are high-dimensional. When classifying new instances it is 
necessary to modify the distance function as described below to allow the distance 
to a hyperrectangle to be computed. When a new exemplar is classified correctly, it 
is generalized by simply merging it with the nearest exemplar of the same class. The 
nearest exemplar may be either a single instance or a hyperrectangle. In the former 
case, a new hyperrectangle is created that covers the old and the new instance. In 
the latter, the hyperrectangle is enlarged to encompass the new instance. Finally, if 
the prediction is incorrect and it was a hyperrectangle that was responsible for the 
incorrect prediction, the hyperrectangle’s boundaries are altered so that it shrinks 
away from the new instance.
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It is necessary to decide at the outset whether overgeneralization caused by 
nesting or overlapping hyperrectangles is to be permitted or not. If it is to be avoided, 
a check is made before generalizing a new example to see whether any regions of 
feature space conflict with the proposed new hyperrectangle. If they do, the gener-
alization is aborted and the example is stored verbatim. Note that overlapping hyper-
rectangles are precisely analogous to situations in which the same example is 
covered by two or more rules in a rule set.

In some schemes, generalized exemplars can be nested in that they may be 
completely contained within one another, in the same way that in some representa-
tions rules may have exceptions. To do this, whenever an example is incorrectly 
classified, a fallback heuristic is tried using the second nearest neighbor if it pro-
duces a correct prediction in a further attempt to perform generalization. This 
second-chance mechanism promotes nesting of hyperrectangles. If an example falls 
within a rectangle of the wrong class that already contains an exemplar of the 
same class, the two are generalized into a new “exception” hyperrectangle nested 
within the original one. For nested generalized exemplars, the learning process 
frequently begins with a small number of seed instances to prevent all examples 
of the same class from being generalized into a single rectangle that covers most 
of the problem space.

Distance Functions for Generalized Exemplars
With generalized exemplars it is necessary to generalize the distance function to 
compute the distance from an instance to a generalized exemplar, as well as to 
another instance. The distance from an instance to a hyperrectangle is defined to 
be zero if the point lies within the hyperrectangle. The simplest way to generalize 
the distance function to compute the distance from an exterior point to a hyper-
rectangle is to choose the closest instance within it and to measure the distance to 
that. However, this reduces the benefit of generalization because it reintroduces 
dependence on a particular single example. More precisely, whereas new instances 
that happen to lie within a hyperrectangle continue to benefit from generalizations, 
ones that lie outside do not. It might be better to use the distance from the nearest 
part of the hyperrectangle instead.

Figure 6.16 shows the implicit boundaries that are formed between two rectan-
gular classes if the distance metric is adjusted to measure distance to the nearest 
point of a rectangle. Even in two dimensions the boundary contains a total of nine 
regions (they are numbered for easy identification); the situation will be more 
complex for higher-dimensional hyperrectangles.

Proceeding from the lower left, the first region, in which the boundary is linear, 
lies outside the extent of both rectangles—to the left of both borders of the larger 
one and below both borders of the smaller one. The second is within the extent of 
one rectangle—to the right of the leftmost border of the larger rectangle—but outside 
that of the other—below both borders of the smaller one. In this region the boundary 
is parabolic because the locus of a point that is the same distance from a given line 



FIGURE 6.16 

A boundary between two rectangular 
classes. 
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9 as from a given point is a parabola. The 
third region is where the boundary meets the 
lower border of the larger rectangle when 
projected upward and the left border of the 
smaller one when projected to the right. The 
boundary is linear in this region because it 
is equidistant from these two borders. The 
fourth is where the boundary lies to the right 
of the larger rectangle but below the bottom 
of that rectangle. In this case the boundary 
is parabolic because it is the locus of points 
equidistant from the lower right corner of 
the larger rectangle and the left side of the 
smaller one. The fifth region lies between 
the two rectangles: Here the boundary is ver-
tical. The pattern is repeated in the upper 
right part of the diagram: first parabolic, 
then linear, then parabolic (although this 
particular parabola is almost indistinguish-
able from a straight line), and finally linear 
as the boundary escapes from the scope of 
both rectangles.

This simple situation certainly defines 
a complex boundary! Of course, it is not 

necessary to represent the boundary explicitly; it is generated implicitly by the 
nearest-neighbor calculation. Nevertheless, the solution is still not a very good 
one. Whereas taking the distance from the nearest instance within a hyperrect-
angle is overly dependent on the position of that particular instance, taking the 
distance to the nearest point of the hyperrectangle is overly dependent on that 
corner of the rectangle—the nearest example might be far from the corner.

A final problem concerns measuring the distance to hyperrectangles that overlap 
or are nested. This complicates the situation because an instance may fall within 
more than one hyperrectangle. A suitable heuristic for use in this case is to choose 
the class of the most specific hyperrectangle containing the instance—that is, the 
one covering the smallest area of instance space.

Whether or not overlap or nesting is permitted, the distance function should be 
modified to take account of both the observed prediction accuracy of exemplars and 
the relative importance of different features, as described in the sections above on 
pruning noisy exemplars and attribute weighting.

Generalized Distance Functions
There are many different ways of defining a distance function, and it is hard to find 
rational grounds for any particular choice. An elegant solution is to consider one 
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instance being transformed into another through a sequence of predefined elemen-
tary operations and to calculate the probability of such a sequence occurring if 
operations are chosen randomly. Robustness is improved if all possible transforma-
tion paths are considered, weighted by their probabilities, and the scheme generalizes 
naturally to the problem of calculating the distance between an instance and a set 
of other instances by considering transformations to all instances in the set. Through 
such a technique it is possible to consider each instance as exerting a “sphere of 
influence,” but a sphere with soft boundaries rather than the hard-edged cutoff 
implied by the k-nearest-neighbor rule, in which any particular example is either 
“in” or “out” of the decision.

With such a measure, given a test instance that has a class that is unknown, its 
distance to the set of all training instances in each class in turn is calculated and  
the closest class is chosen. It turns out that nominal and numeric attributes can be 
treated in a uniform manner within this transformation-based approach by defining 
different transformation sets, and it is even possible to take account of unusual 
attribute types—such as degrees of arc or days of the week, which are measured on 
a circular scale.

Discussion
Nearest-neighbor methods gained popularity in machine learning through the work 
of Aha (1992), who showed that, when combined with noisy exemplar pruning and 
attribute weighting, instance-based learning performs well in comparison with other 
methods. It is worth noting that although we have described it solely in the context 
of classification rather than numeric prediction problems, it applies to these equally 
well: Predictions can be obtained by combining the predicted values of the k-nearest 
neighbors and weighting them by distance.

Viewed in instance space, the standard rule- and tree-based representations are 
only capable of representing class boundaries that are parallel to the axes defined 
by the attributes. This is not a handicap for nominal attributes, but it is for numeric 
ones. Non-axis-parallel class boundaries can only be approximated by covering the 
region above or below the boundary with several axis-parallel rectangles, the number 
of rectangles determining the degree of approximation. In contrast, the instance-
based method can easily represent arbitrary linear boundaries. Even with just one 
example of each of two classes, the boundary implied by the nearest-neighbor rule 
is a straight line of arbitrary orientation, namely the perpendicular bisector of the 
line joining the examples.

Plain instance-based learning does not produce explicit knowledge representa-
tions except by selecting representative exemplars. However, when combined with 
exemplar generalization, a set of rules can be obtained that may be compared with 
those produced by other machine learning schemes. The rules tend to be more con-
servative because the distance metric, modified to incorporate generalized exem-
plars, can be used to process examples that do not fall within the rules. This reduces 
the pressure to produce rules that cover the whole example space or even all of the 
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training examples. On the other hand, the incremental nature of most instance-based 
learning schemes means that rules are formed eagerly, after only part of the training 
set has been seen; this inevitably reduces their quality.

We have not given precise algorithms for variants of instance-based learning 
that involve generalization, because it is not clear what the best way to do gener-
alization is. Salzberg (1991) suggested that generalization with nested exemplars 
can achieve a high degree of classification of accuracy on a variety of different 
problems, a conclusion disputed by Wettschereck and Dietterich (1995), who argued 
that these results were fortuitous and did not hold in other domains. Martin (1995) 
explored the idea that it is not generalization but the overgeneralization that occurs 
when hyperrectangles nest or overlap that is responsible for poor performance, and 
demonstrated that if nesting and overlapping are avoided, excellent results are 
achieved in a large number of domains. The generalized distance function based 
on transformations is described by Cleary and Trigg (1995).

Exemplar generalization is a rare example of a learning strategy in which the 
search proceeds from specific to general rather than from general to specific as in 
the case of tree or rule induction. There is no particular reason why specific-to-
general searching should necessarily be handicapped by forcing the examples to be 
considered in a strictly incremental fashion, and batch-oriented methods exist that 
generate rules using a basic instance-based approach. Moreover, it seems that the 
idea of producing conservative generalizations and coping with instances that are 
not covered by choosing the “closest” generalization may be generally useful for 
tree and rule inducers.

6.6  NUMERIC PREDICTION WITH LOCAL LINEAR MODELS
Trees that are used for numeric prediction are just like ordinary decision trees, except 
that at each leaf they store either a class value that represents the average value of 
instances that reach the leaf, in which case the tree is called a regression tree, or a 
linear regression model that predicts the class value of instances that reach the leaf, 
in which case it is called a model tree. In what follows we will talk about model 
trees because regression trees are really a special case.

Regression and model trees are constructed by first using a decision tree induc-
tion algorithm to build an initial tree. However, whereas most decision tree algo-
rithms choose the splitting attribute to maximize the information gain, it is appropriate 
for numeric prediction to instead minimize the intrasubset variation in the class 
values down each branch. Once the basic tree has been formed, consideration is 
given to pruning the tree back from each leaf, just as with ordinary decision trees. 
The only difference between regression tree and model tree induction is that, for the 
latter, each node is replaced by a regression plane instead of a constant value. The 
attributes that serve to define that plane are generally those that participate in deci-
sions in the subtree that will be pruned—that is, in nodes beneath the current one 
and perhaps those that occur on the path to the root node.
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Following an extensive description of model trees, we briefly explain how to 
generate rules from model trees, and then describe another approach to numeric 
prediction based on generating local linear models: locally weighted linear regres-
sion. Whereas model trees derive from the basic divide-and-conquer decision tree 
methodology, locally weighted regression is inspired by the instance-based methods 
for classification that we described in the previous section. Like instance-based 
learning, it performs all “learning” at prediction time. Although locally weighted 
regression resembles model trees in that it uses linear regression to fit models 
locally to particular areas of instance space, it does so in quite a different way.

Model Trees
When a model tree is used to predict the value for a test instance, the tree is followed 
down to a leaf in the normal way, using the instance’s attribute values to make 
routing decisions at each node. The leaf will contain a linear model based on some 
of the attribute values, and this is evaluated for the test instance to yield a raw pre-
dicted value.

Instead of using this raw value directly, however, it turns out to be beneficial to 
use a smoothing process to reduce the sharp discontinuities that will inevitably occur 
between adjacent linear models at the leaves of the pruned tree. This is a particular 
problem for models constructed from a small number of training instances. Smooth-
ing can be accomplished by producing linear models for each internal node, as well 
as for the leaves, at the time the tree is built. Then, once the leaf model has been 
used to obtain the raw predicted value for a test instance, that value is filtered along 
the path back to the root, smoothing it at each node by combining it with the value 
predicted by the linear model for that node.

An appropriate smoothing calculation is

′ =
+
+

p
np kq

n k

where p′ is the prediction passed up to the next higher node, p is the prediction 
passed to this node from below, q is the value predicted by the model at this node, 
n is the number of training instances that reach the node below, and k is a smoothing 
constant. Experiments show that smoothing substantially increases the accuracy of 
predictions.

However, discontinuities remain and the resulting function is not smooth. In fact, 
exactly the same smoothing process can be accomplished by incorporating the inte-
rior models into each leaf model after the tree has been built. Then, during the 
classification process, only the leaf models are used. The disadvantage is that the 
leaf models tend to be larger and more difficult to comprehend because many coef-
ficients that were previously zero become nonzero when the interior nodes’ models 
are incorporated.
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Building the Tree
The splitting criterion is used to determine which attribute is the best to split that 
portion T of the training data that reaches a particular node. It is based on treating 
the standard deviation of the class values in T as a measure of the error at that node, 
and calculating the expected reduction in error as a result of testing each attribute 
at that node. The attribute that maximizes the expected error reduction is chosen for 
splitting at the node.

The expected error reduction, which we call SDR for standard deviation 
reduction, is calculated by

SDR = − ×∑sd T
T

T
sd Ti

i
i( )

| |

| |
( )

where T1, T2, … are the sets that result from splitting the node according to the 
chosen attribute, and sd(T ) is the standard deviation of the class values.

The splitting process terminates when the class values of the instances that reach 
a node vary just slightly—that is, when their standard deviation is only a small frac-
tion (say less than 5%) of the standard deviation of the original instance set. Splitting 
also terminates when just a few instances remain (say four or fewer). Experiments 
show that the results obtained are not very sensitive to the exact choice of these 
parameters.

Pruning the Tree
As noted earlier, a linear model is needed for each interior node of the tree, not just 
at the leaves, for use in the smoothing process. Before pruning, a model is calculated 
for each node of the unpruned tree. The model takes the form

w w a w a w ak k0 1 1 2 2+ + + +…

where a1, a2, …, ak are attribute values. The weights w1, w2, …, wk are calculated 
using standard regression. However, only a subset of the attributes are generally used 
here—for example, those that are tested in the subtree below this node and perhaps 
those occurring along the path to the root node. Note that we have tacitly assumed 
that attributes are numeric; we describe the handling of nominal attributes in the 
next section.

The pruning procedure makes use of an estimate, at each node, of the expected 
error for test data. First, the absolute difference between the predicted value and the 
actual class value is averaged over each of the training instances that reach that node. 
Because the tree has been built expressly for this dataset, this average will underes-
timate the expected error for unseen cases. To compensate, it is multiplied by the 
factor (n + ν)/(n – ν), where n is the number of training instances that reach the node 
and ν is the number of parameters in the linear model that gives the class value at 
that node.
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The expected error for test data at a node is calculated as described previously, 
using the linear model for prediction. Because of the compensation factor (n + ν)/
(n – ν), it may be that the linear model can be further simplified by dropping terms 
to minimize the estimated error. Dropping a term decreases the multiplication factor, 
which may be enough to offset the inevitable increase in average error over the 
training instances. Terms are dropped one by one, greedily, as long as the error 
estimate decreases.

Finally, once a linear model is in place for each interior node, the tree is pruned 
back from the leaves as long as the expected estimated error decreases. The expected 
error for the linear model at that node is compared with the expected error from the 
subtree below. To calculate the latter, the error from each branch is combined into 
a single, overall value for the node by weighting the branch by the proportion of the 
training instances that go down it and combining the error estimates linearly using 
those weights. Alternatively, one can calculate the training error of the subtree and 
multiply it by the above modification factor based on an ad hoc estimate of the 
number of parameters in the tree—perhaps adding one for each split point.

Nominal Attributes
Before constructing a model tree, all nominal attributes are transformed into binary 
variables that are then treated as numeric. For each nominal attribute, the average 
class value corresponding to each possible value in the set is calculated from the 
training instances, and the values are sorted according to these averages. Then, if 
the nominal attribute has k possible values, it is replaced by k – 1 synthetic binary 
attributes, the ith being 0 if the value is one of the first i in the ordering and 1 other
wise. Thus, all splits are binary: They involve either a numeric attribute or a synthetic 
binary attribute that is treated as numeric.

It is possible to prove analytically that the best split at a node for a nominal 
variable with k values is one of the k – 1 positions obtained by ordering the average 
class values for each value of the attribute. This sorting operation should really be 
repeated at each node; however, there is an inevitable increase in noise due to small 
numbers of instances at lower nodes in the tree (and in some cases nodes may not 
represent all values for some attributes), and not much is lost by performing the 
sorting just once before starting to build a model tree.

Missing Values
To take account of missing values, a modification is made to the SDR formula. The 
final formula, including the missing value compensation, is

SDR
T

= × − ×

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




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where m is the number of instances without missing values for that attribute, and T 
is the set of instances that reach this node. TL, TR are sets that result from splitting 
on this attribute because all tests on attributes are now binary.
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When processing both training and test instances, once an attribute is selected 
for splitting it is necessary to divide the instances into subsets according to their 
value for this attribute. An obvious problem arises when the value is missing. An 
interesting technique called surrogate splitting has been developed to handle this 
situation. It involves finding another attribute to split on in place of the original one 
and using it instead. The attribute is chosen as the one most highly correlated with 
the original attribute. However, this technique is both complex to implement and 
time consuming to execute.

A simpler heuristic is to use the class value as the surrogate attribute, in the belief 
that, a priori, this is the attribute most likely to be correlated with the one being used 
for splitting. Of course, this is only possible when processing the training set because 
for test examples the class is not known. A simple solution for test examples is 
simply to replace the unknown attribute value by the average value of that attribute 
for the training examples that reach the node, which has the effect, for a binary 
attribute, of choosing the most populous subnode. This simple approach seems to 
work well in practice.

Let’s consider in more detail how to use the class value as a surrogate attribute 
during the training process. We first deal with all instances for which the value of the 
splitting attribute is known. We determine a threshold for splitting in the usual way, 
by sorting the instances according to the splitting attribute’s value and, for each pos-
sible split point, calculating the SDR according to the preceding formula, choosing 
the split point that yields the greatest reduction in error. Only the instances for which 
the value of the splitting attribute is known are used to determine the split point.

Next we divide these instances into the two sets L and R according to the test. We 
determine whether the instances in L or R have the greater average class value, and we 
calculate the average of these two averages. Then an instance for which this attribute 
value is unknown is placed into L or R according to whether its class value exceeds 
this overall average or not. If it does, it goes into whichever of L and R has the greater 
average class value; otherwise, it goes into the one with the smaller average class 
value. When the splitting stops, all the missing values will be replaced by the average 
values of the corresponding attributes of the training instances reaching the leaves.

Pseudocode for Model Tree Induction
Figure 6.17 gives pseudocode for the model tree algorithm we have described. The 
two main parts are creating a tree by successively splitting nodes, performed by split, 
and pruning it from the leaves upward, performed by prune. The node data structure 
contains a type flag indicating whether it is an internal node or a leaf, pointers to the 
left and right child, the set of instances that reach that node, the attribute that is used 
for splitting at that node, and a structure representing the linear model for the node.

The sd function called at the beginning of the main program and again at the 
beginning of split calculates the standard deviation of the class values of a set of 
instances. This is followed by the procedure for obtaining synthetic binary attributes 
that was described previously. Standard procedures for creating new nodes and print-
ing the final tree are not shown. In split, sizeof returns the number of elements in a 
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FIGURE 6.17 

Pseudocode for model tree induction. 

MakeModelTree (instances) 
{ 
  SD = sd(instances) 
  for each k-valued nominal attribute 
    convert into k-1 synthetic binary attributes 
  root = newNode 
  root.instances = instances 
  split(root) 
  prune(root) 
  printTree(root) 
} 
split(node) 
{ 
  if sizeof(node.instances) < 4 or sd(node.instances) < 0.05*SD 
    node.type = LEAF 
  else 
    node.type = INTERIOR 
    for each attribute 
      for all possible split positions of the attribute 
        calculate the attribute's SDR 
    node.attribute = attribute with maximum SDR 
    split(node.left) 
    split(node.right) 
} 
prune(node) 
{ 
  if node = INTERIOR then 
    prune(node.leftChild) 
    prune(node.rightChild) 
    node.model = linearRegression(node) 
    if subtreeError(node) > error(node) then 
      node.type = LEAF 
} 
subtreeError(node) 
{ 
  l = node.left; r = node.right 
  if node = INTERIOR then 
    return (sizeof(l.instances)*subtreeError(l) 
          + sizeof(r.instances)*subtreeError(r))/sizeof(node.

  else return error(node) 
} 

instances) 

set. Missing attribute values are dealt with as described earlier. The SDR is calculated 
according to the equation at the beginning of the previous section. Although not 
shown in the code, it is set to infinity if splitting on the attribute would create a leaf 
with less than two instances. In prune, the linearRegression routine recursively 
descends the subtree collecting attributes, performs a linear regression on the instances 
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at that node as a function of those attributes, and then greedily drops terms if doing so 
improves the error estimate, as described earlier. Finally, the error function returns

n

n n
instances+

−
× ∑ν

ν
deviation from predicted class value

where n is the number of instances at the node and ν is the number of parameters 
in the node’s linear model.

Figure 6.18 gives an example of a model tree formed by this algorithm for a 
problem with two numeric and two nominal attributes. What is to be predicted is the 
rise time of a simulated servo system involving a servo amplifier, motor, lead screw, 
and sliding carriage. The nominal attributes play important roles. Four synthetic 
binary attributes have been created for each of the five-valued nominal attributes 
motor and screw and are shown in Table 6.2 in terms of the two sets of values to which 
they correspond. The ordering of these values—D, E, C, B, A for motor and coinciden-
tally D, E, C, B, A for screw also—is determined from the training data: the rise time 
averaged over all examples for which motor = D is less than that averaged over exam-
ples for which motor = E, which is less than when motor = C, and so on. It is apparent 
from the magnitude of the coefficients in Table 6.2 that motor = D versus E, C, B, A and 
screw = D, E, C, B versus A play leading roles in the LM2, LM3, and LM4 models 
(among others). Both motor and screw also play a minor role in several of the models.

FIGURE 6.18 

Model tree for a dataset with nominal attributes. 
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Rules from Model Trees
Model trees are essentially decision trees with linear models at the leaves. Like 
decision trees, they may suffer from the replicated subtree problem explained in 
Section 3.4, and sometimes the structure can be expressed much more concisely 
using a set of rules instead of a tree. Can we generate rules for numeric predic-
tion? Recall the rule learner described in Section 6.2 that uses separate-and-conquer 
in conjunction with partial decision trees to extract decision rules from trees. The 
same strategy can be applied to model trees to generate decision lists for numeric 
prediction.

First build a partial model tree from all the data. Pick one of the leaves and make 
it into a rule. Remove the data covered by that leaf, then repeat the process with the 
remaining data. The question is, how do we build the partial model tree—that is, a 
tree with unexpanded nodes? This boils down to the question of how to pick which 
node to expand next. The algorithm of Figure 6.5 (Section 6.2) picks the node of 
which the entropy for the class attribute is smallest. For model trees, the predictions 
of which are numeric, simply use the standard deviation instead. This is based on 
the same rationale: The lower the standard deviation, the shallower the subtree and 
the shorter the rule. The rest of the algorithm stays the same, with the model tree 
learner’s split selection method and pruning strategy replacing the decision tree 
learner’s. Because the model tree’s leaves are linear models, the corresponding rules 
will have linear models on the right side.

There is one caveat when using model trees in this fashion to generate rule sets. 
It turns out that using smoothed model trees does not reduce the error in the final 
rule set’s predictions. This may be because smoothing works best for contiguous 
data, but the separate-and-conquer scheme removes data covered by previous rules, 
leaving holes in the distribution. Smoothing, if it is done at all, must be performed 
after the rule set has been generated.

Locally Weighted Linear Regression
An alternative approach to numeric prediction is the method of locally weighted 
linear regression. With model trees, the tree structure divides the instance space into 
regions, and a linear model is found for each of them. In effect, the training data 
determines how the instance space is partitioned. Locally weighted regression, on 
the other hand, generates local models at prediction time by giving higher weight 
to instances in the neighborhood of the particular test instance. More specifically, it 
weights the training instances according to their distance to the test instance and 
performs a linear regression on the weighted data. Training instances close to the 
test instance receive a high weight; those far away, a low one. In other words, a 
linear model is tailor-made for the particular test instance at hand and used to predict 
the instance’s class value.

To use locally weighted regression, you need to decide on a distance-based 
weighting scheme for the training instances. A common choice is to weight the 
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instances according to the inverse of their Euclidean distance from the test instance. 
Another possibility is to use the Euclidean distance in conjunction with a Gaussian 
kernel function. However, there is no clear evidence that the choice of weighting 
function is critical. More important is the selection of a “smoothing parameter” that 
is used to scale the distance function—the distance is multiplied by the inverse of 
this parameter. If it is set to a small value, only instances very close to the test 
instance will receive significant weight; if it is large, more distant instances will 
also have a significant impact on the model.

One way of choosing the smoothing parameter is to set it to the distance of the kth-
nearest training instance so that its value becomes smaller as the volume of training 
data increases. If the weighting function is linear, say 1 – distance, the weight is 0 for 
all instances further than the kth-nearest one. Then the weighting function has bounded 
support and only the (k – 1)th-nearest neighbors need to be considered for building the 
linear model. The best choice of k depends on the amount of noise in the data. The more 
noise there is, the more neighbors should be included in the linear model. Generally, 
an appropriate smoothing parameter is found using cross-validation.

Like model trees, locally weighted linear regression is able to approximate non-
linear functions. One of its main advantages is that it is ideally suited for incremental 
learning: All training is done at prediction time, so new instances can be added to 
the training data at any time. However, like other instance-based methods, it is slow 
at deriving a prediction for a test instance. First, the training instances must be 
scanned to compute their weights; then a weighted linear regression is performed 
on these instances. Also, like other instance-based methods, locally weighted regres-
sion provides little information about the global structure of the training dataset. 
Note that if the smoothing parameter is based on the kth-nearest neighbor and the 
weighting function gives zero weight to more distant instances, the kD-trees (page 
132) and ball trees described in Section 4.7 can be used to accelerate the process of 
finding the relevant neighbors.

Locally weighted learning is not restricted to linear regression: It can be applied 
with any learning technique that can handle weighted instances. In particular, you 
can use it for classification. Most algorithms can be easily adapted to deal with 
weights. The trick is to realize that (integer) weights can be simulated by creating 
several copies of the same instance. Whenever the learning algorithm uses an 
instance when computing a model, just pretend that it is accompanied by the appro-
priate number of identical shadow instances. This also works if the weight is not an 
integer. For example, in the Naïve Bayes algorithm described in Section 4.2, multi-
ply the counts derived from an instance by the instance’s weight, and—Voilà!—you 
have a version of Naïve Bayes that can be used for locally weighted learning.

It turns out that locally weighted Naïve Bayes works quite well in practice, 
outperforming both Naïve Bayes itself and the k-nearest-neighbor technique. It also 
compares favorably with more sophisticated ways of enhancing Naïve Bayes by 
relaxing its intrinsic independence assumption. Locally weighted learning only 
assumes independence within a neighborhood, not globally in the whole instance 
space as standard Naïve Bayes does.
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In principle, locally weighted learning can also be applied to decision trees 
and other models that are more complex than linear regression and Naïve Bayes. 
However, it is less beneficial here because it is primarily a way of allowing simple 
models to become more flexible by allowing them to approximate arbitrary targets. 
If the underlying learning algorithm can already do that, there is little point in 
applying locally weighted learning. Nevertheless, it may improve other simple 
models—for example, linear support vector machines and logistic regression.

Discussion
Regression trees were introduced in the CART system of Breiman et al. (1984). 
CART, for classification and regression trees, incorporated a decision tree inducer 
for discrete classes like that of C4.5, as well as a scheme for inducing regression 
trees. Many of the techniques described in this section, such as the method of han-
dling nominal attributes and the surrogate device for dealing with missing values, 
were included in CART. However, model trees did not appear until much more 
recently, being first described by Quinlan (1992). Using model trees for generating 
rule sets (although not partial trees) has been explored by Hall et al. (1999).

A comprehensive description (and implementation) of model tree induction is 
given by Wang and Witten (1997). Neural nets are also commonly used for predict-
ing numeric quantities, although they suffer from the disadvantage that the structures 
they produce are opaque and cannot be used to help understand the nature of the 
solution. There are techniques for producing understandable insights from the struc-
ture of neural networks, but the arbitrary nature of the internal representation means 
that there may be dramatic variations between networks of identical architecture 
trained on the same data. By dividing the function being induced into linear patches, 
model trees provide a representation that is reproducible and at least somewhat 
comprehensible.

There are many variations of locally weighted learning. For example, statisticians 
have considered using locally quadratic models instead of linear ones and have 
applied locally weighted logistic regression to classification problems. Also, many 
different potential weighting and distance functions can be found in the literature. 
Atkeson et al. (1997) have written an excellent survey on locally weighted learning, 
primarily in the context of regression problems. Frank et al. (2003) evaluated the 
use of locally weighted learning in conjunction with Naïve Bayes.

6.7  BAYESIAN NETWORKS
The Naïve Bayes classifier of Section 4.2 and the logistic regression models of 
Section 4.6 both produce probability estimates rather than hard classifications. For 
each class value, they estimate the probability that a given instance belongs to that 
class. Most other types of classifiers can be coerced into yielding this kind of infor-
mation if necessary. For example, probabilities can be obtained from a decision tree 
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by computing the relative frequency of each class in a leaf and from a decision list 
by examining the instances that a particular rule covers.

Probability estimates are often more useful than plain predictions. They allow 
predictions to be ranked and their expected cost to be minimized (see Section 5.7). 
In fact, there is a strong argument for treating classification learning as the task of 
learning class probability estimates from data. What is being estimated is the con-
ditional probability distribution of the values of the class attribute given the values 
of the other attributes. Ideally, the classification model represents this conditional 
distribution in a concise and easily comprehensible form.

Viewed in this way, Naïve Bayes classifiers, logistic regression models, decision 
trees, and so on, are just alternative ways of representing a conditional probability 
distribution. Of course, they differ in representational power. Naïve Bayes classifiers 
and logistic regression models can only represent simple distributions, whereas deci-
sion trees can represent—or at least approximate—arbitrary distributions. However, 
decision trees have their drawbacks: They fragment the training set into smaller and 
smaller pieces, which inevitably yields less reliable probability estimates, and they 
suffer from the replicated subtree problem described in Section 3.4. Rule sets go 
some way toward addressing these shortcomings, but the design of a good rule 
learner is guided by heuristics with scant theoretical justification.

Does this mean that we have to accept our fate and live with these shortcomings? 
No! There is a statistically based alternative: a theoretically well-founded way of 
representing probability distributions concisely and comprehensibly in a graphical 
manner; the structures are called Bayesian networks. They are drawn as a network 
of nodes, one for each attribute, connected by directed edges in such a way that there 
are no cycles—a directed acyclic graph.

In our explanation of how to interpret Bayesian networks and how to learn them 
from data, we will make some simplifying assumptions. We assume that all attributes 
are nominal and that there are no missing values. Some advanced learning algorithms 
can create new attributes in addition to the ones present in the data—so-called 
hidden attributes with values that cannot be observed. These can support better 
models if they represent salient features of the underlying problem, and Bayesian 
networks provide a good way of using them at prediction time. However, they make 
both learning and prediction far more complex and time consuming, so we will not 
consider them here.

Making Predictions
Figure 6.19 shows a simple Bayesian network for the weather data. It has a node 
for each of the four attributes outlook, temperature, humidity, and windy and one 
for the class attribute play. An edge leads from the play node to each of the other 
nodes. However, in Bayesian networks the structure of the graph is only half the 
story. Figure 6.19 shows a table inside each node. The information in the tables 
defines a probability distribution that is used to predict the class probabilities for 
any given instance.
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FIGURE 6.19 

A simple Bayesian network for the weather data. 
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Before looking at how to compute this probability distribution, consider the 
information in the tables. The lower four tables (for outlook, temperature, humidity, 
and windy) have two parts separated by a vertical line. On the left are the values of 
play, and on the right are the corresponding probabilities for each value of the attri-
bute represented by the node. In general, the left side contains a column for every 
edge pointing to the node, in this case just the play attribute. That is why the table 
associated with play itself does not have a left side: It has no parents. Each row of 
probabilities corresponds to one combination of values of the parent attributes, and 
the entries in the row show the probability of each value of the node’s attribute given 
this combination. In effect, each row defines a probability distribution over the 
values of the node’s attribute. The entries in a row always sum to 1.
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Figure 6.20 shows a more complex network for the same problem, where three 
nodes (windy, temperature, and humidity) have two parents. Again, there is one 
column on the left for each parent and as many columns on the right as the attribute 
has values. Consider the first row of the table associated with the temperature node. 
The left side gives a value for each parent attribute, play and outlook; the right gives 
a probability for each value of temperature. For example, the first number (0.143) 
is the probability of temperature taking on the value hot, given that play and outlook 
have values yes and sunny, respectively.

How are the tables used to predict the probability of each class value for a given 
instance? This turns out to be very easy because we are assuming that there are no 
missing values. The instance specifies a value for each attribute. For each node in 
the network, look up the probability of the node’s attribute value based on the row 
determined by its parents’ attribute values. Then just multiply all these probabilities 
together.

For example, consider an instance with values outlook = rainy, temperature = 
cool, humidity = high, and windy = true. To calculate the probability for play = no, 
observe that the network in Figure 6.20 gives probability 0.367 from node play, 
0.385 from outlook, 0.429 from temperature, 0.250 from humidity, and 0.167 from 
windy. The product is 0.0025. The same calculation for play = yes yields 0.0077. 
However, these are clearly not the final answers: The final probabilities must sum 
to 1, whereas 0.0025 and 0.0077 don’t. They are actually the joint probabilities 
Pr[play = no, E] and Pr[play = yes, E], where E denotes all the evidence given by 
the instance’s attribute values. Joint probabilities measure the likelihood of observ-
ing an instance that exhibits the attribute values in E as well as the respective class 
value. They only sum to 1 if they exhaust the space of all possible attribute–value 
combinations, including the class attribute. This is certainly not the case in our 
example.

The solution is quite simple (we already encountered it in Section 4.2). To obtain 
the conditional probabilities Pr[play = no | E] and Pr[play = yes | E], normalize the 
joint probabilities by dividing them by their sum. This gives probability 0.245 for 
play = no and 0.755 for play = yes.

Just one mystery remains: Why multiply all those probabilities together? It turns 
out that the validity of the multiplication step hinges on a single assumption—
namely that, given values for each of a node’s parents, knowing the values for any 
other set of nondescendants does not change the probability associated with each of 
the node’s possible values. In other words, other sets of nondescendants do not 
provide any information about the likelihood of the node’s values over and above 
the information provided by the parents. This can be written as

Pr[ | ] Pr[ |node parents plus any other nondescendants node par= eents]

which must hold for all values of the nodes and attributes involved. In statistics this 
property is called conditional independence. Multiplication is valid provided that 
each node is conditionally independent of its grandparents, great-grandparents, and 
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FIGURE 6.20 

Another Bayesian network for the weather data. 
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indeed any other set of nondescendants, given its parents. The multiplication step 
follows as a direct result of the chain rule in probability theory, which states that the 
joint probability of m attributes ai can be decomposed into this product:

Pr[ , , , ] Pr[ , , ]a a a a a an i i
i

m

1 2 1 1
1

… …= −
=

∏

The decomposition holds for any order of the attributes. Because our Bayesian 
network is an acyclic graph, its nodes can be ordered to give all ancestors of a 
node ai indices smaller than i. Then, because of the conditional independence 
assumption,

Pr[ , , , ] Pr[ , , ] Pr[ ]a a a a a a a am i i
i

m

i i
i

m

1 2 1 1
1 1

… …= =−
= =

∏ ∏ ’s parents

which is exactly the multiplication rule that we applied earlier.
The two Bayesian networks in Figures 6.19 and 6.20 are fundamentally different. 

The first (Figure 6.19) makes stronger independence assumptions because for each 
of its nodes the set of parents is a subset of the corresponding set of parents in the 
second (Figure 6.20). In fact, Figure 6.19 is almost identical to the simple Naïve 
Bayes classifier of Section 4.2. (The probabilities are slightly different but only 
because each count has been initialized to 0.5 to avoid the zero-frequency problem.) 
The network in Figure 6.20 has more rows in the conditional probability tables and 
hence more parameters; it may be a more accurate representation of the underlying 
domain.

It is tempting to assume that the directed edges in a Bayesian network represent 
causal effects. But be careful! In our case, a particular value of play may enhance 
the prospects of a particular value of outlook, but it certainly doesn’t cause it—it 
is more likely to be the other way around. Different Bayesian networks can be 
constructed for the same problem, representing exactly the same probability distri-
bution. This is done by altering the way in which the joint probability distribution 
is factorized to exploit conditional independencies. The network that has directed 
edges model causal effects is often the simplest one with the fewest parameters. 
Thus, human experts who construct Bayesian networks for a particular domain 
often benefit by representing causal effects by directed edges. However, when 
machine learning techniques are applied to induce models from data whose causal 
structure is unknown, all they can do is construct a network based on the correla-
tions that are observed in the data. Inferring causality from correlation is always 
a dangerous business.

Learning Bayesian Networks
The main way to construct a learning algorithm for Bayesian networks is to define 
two components: a function for evaluating a given network based on the data and a 
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method for searching through the space of possible networks. The quality of a given 
network is measured by the probability of the data given the network. We calculate 
the probability that the network accords to each instance and multiply these prob-
abilities together over all instances. In practice, this quickly yields numbers too small 
to be represented properly (called arithmetic underflow), so we use the sum of the 
logarithms of the probabilities rather than their product. The resulting quantity is the 
log-likelihood of the network given the data.

Assume that the structure of the network—the set of edges—is given. It’s easy 
to estimate the numbers in the conditional probability tables: Just compute the rela-
tive frequencies of the associated combinations of attribute values in the training 
data. To avoid the zero-frequency problem each count is initialized with a constant 
as described in Section 4.2. For example, to find the probability that humidity = 
normal given that play = yes and temperature = cool (the last number of the third 
row of the humidity node’s table in Figure 6.20), observe from Table 1.2 (page 10) 
that there are three instances with this combination of attribute values in the weather 
data and no instances with humidity = high and the same values for play and 
temperature. Initializing the counts for the two values of humidity to 0.5 yields 
the probability (3 + 0.5)/(3 + 0 + 1) = 0.875 for humidity = normal.

The nodes in the network are predetermined, one for each attribute (including 
the class). Learning the network structure amounts to searching through the space 
of possible sets of edges, estimating the conditional probability tables for each set, 
and computing the log-likelihood of the resulting network based on the data as a 
measure of the network’s quality. Bayesian network learning algorithms differ 
mainly in the way in which they search through the space of network structures. 
Some algorithms are introduced below.

There is one caveat. If the log-likelihood is maximized based on the training 
data, it will always be better to add more edges: The resulting network will simply 
overfit. Various methods can be employed to combat this problem. One possibility 
is to use cross-validation to estimate the goodness of fit. A second is to add a penalty 
for the complexity of the network based on the number of parameters—that is, the 
total number of independent estimates in all the probability tables. For each table, 
the number of independent probabilities is the total number of entries minus the 
number of entries in the last column, which can be determined from the other 
columns because all rows must sum to 1. Let K be the number of parameters, LL 
the log-likelihood, and N the number of instances in the data. Two popular measures 
for evaluating the quality of a network are the Akaike Information Criterion (AIC):

AIC score = − +LL K

and the following MDL metric based on the MDL principle:

MDL score = − +LL
K

N
2

log

In both cases the log-likelihood is negated, so the aim is to minimize these scores.
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A third possibility is to assign a prior distribution over network structures and 
find the most likely network by combining its prior probability with the probability 
accorded to the network by the data. This is the “Bayesian” approach to network 
scoring. Depending on the prior distribution used, it can take various forms. However, 
true Bayesians would average over all possible network structures rather than sin-
gling out one particular network for prediction. Unfortunately, this generally requires 
a great deal of computation. A simplified approach is to average over all network 
structures that are substructures of a given network. It turns out that this can be 
implemented very efficiently by changing the method for calculating the conditional 
probability tables so that the resulting probability estimates implicitly contain infor-
mation from all subnetworks. The details of this approach are rather complex and 
will not be described here.

The task of searching for a good network structure can be greatly simplified if 
the right metric is used for scoring. Recall that the probability of a single instance 
based on a network is the product of all the individual probabilities from the various 
conditional probability tables. The overall probability of the dataset is the product 
of these products for all instances. Because terms in a product are interchangable, 
the product can be rewritten to group together all factors relating to the same table. 
The same holds for the log-likelihood, using sums instead of products. This means 
that the likelihood can be optimized separately for each node of the network. This 
can be done by adding, or removing, edges from other nodes to the node that is 
being optimized—the only constraint is that cycles must not be introduced. The same 
trick also works if a local scoring metric such as AIC or MDL is used instead of 
plain log-likelihood, because the penalty term splits into several components, one 
for each node, and each node can be optimized independently.

Specific Algorithms
Now we move on to actual algorithms for learning Bayesian networks. One simple 
and very fast learning algorithm, called K2, starts with a given ordering of the attri-
butes (i.e., nodes). Then it processes each node in turn and greedily considers adding 
edges from previously processed nodes to the current one. In each step it adds the 
edge that maximizes the network’s score. When there is no further improvement, 
attention turns to the next node. As an additional mechanism for overfitting avoid-
ance, the number of parents for each node can be restricted to a predefined maximum. 
Because only edges from previously processed nodes are considered and there is a 
fixed ordering, this procedure cannot introduce cycles. However, the result depends 
on the initial ordering, so it makes sense to run the algorithm several times with 
different random orderings.

The Naïve Bayes classifier is a network with an edge leading from the class 
attribute to each of the other attributes. When building networks for classification, 
it sometimes helps to use this network as a starting point for the search. This can be 
done in K2 by forcing the class variable to be the first one in the ordering and ini-
tializing the set of edges appropriately.



	 6.7  Bayesian Networks� 269

Another potentially helpful trick is to ensure that every attribute in the data is in 
the Markov blanket of the node that represents the class attribute. A node’s Markov 
blanket includes all its parents, children, and children’s parents. It can be shown that 
a node is conditionally independent of all other nodes given values for the nodes in 
its Markov blanket. Thus, if a node is absent from the class attribute’s Markov 
blanket, its value is completely irrelevant to the classification. Conversely, if K2 
finds a network that does not include a relevant attribute in the class node’s Markov 
blanket, it might help to add an edge that rectifies this shortcoming. A simple way 
of doing this is to add an edge from the attribute’s node to the class node or from 
the class node to the attribute’s node, depending on which option avoids a cycle.

A more sophisticated but slower version of K2 is not to order the nodes but to 
greedily consider adding or deleting edges between arbitrary pairs of nodes (all the 
while ensuring acyclicity, of course). A further step is to consider inverting the direc-
tion of existing edges as well. As with any greedy algorithm, the resulting network 
only represents a local maximum of the scoring function: It is always advisable to 
run such algorithms several times with different random initial configurations. More 
sophisticated optimization strategies such as simulated annealing, tabu search, or 
genetic algorithms can also be used.

Another good learning algorithm for Bayesian network classifiers is called tree-
augmented Naïve Bayes (TAN). As the name implies, it takes the Naïve Bayes 
classifier and adds edges to it. The class attribute is the single parent of each node 
of a Naïve Bayes network. TAN considers adding a second parent to each node. If 
the class node and all corresponding edges are excluded from consideration, and 
assuming that there is exactly one node to which a second parent is not added, the 
resulting classifier has a tree structure rooted at the parentless node—this is where 
the name comes from. For this restricted type of network there is an efficient algo-
rithm for finding the set of edges that maximizes the network’s likelihood based on 
computing the network’s maximum weighted spanning tree. This algorithm is linear 
in the number of instances and quadratic in the number of attributes.

The type of network learned by the TAN algorithm is called a one-dependence 
estimator. An even simpler type of network is the superparent one-dependence 
estimator. Here, exactly one other node, apart from the class node, is elevated 
to parent status and becomes the parent of every other nonclass node. It turns 
out that a simple ensemble of these one-dependence estimators yields very accu-
rate classifiers: In each of these estimators, a different attribute becomes the extra 
parent node. Then, at prediction time, class probability estimates from the dif-
ferent one-dependence estimators are simply averaged. This scheme is known as 
AODE, for averaged one-dependence estimator. Normally, only estimators with 
certain supports in the data are used in the ensemble, but more sophisticated 
selection schemes are possible. Because no structure learning is involved for 
each superparent one-dependence estimator, AODE is a very efficient classifier.

All the scoring metrics that we have described so far are likelihood-based in the 
sense that they are designed to maximize the joint probability Pr[a1, a2, …, an] for 
each instance. However, in classification, what we really want to maximize is the 
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conditional probability of the class given the values of the other attributes—in other 
words, the conditional likelihood. Unfortunately, there is no closed-form solution 
for the maximum conditional-likelihood probability estimates that are needed for 
the tables in a Bayesian network. On the other hand, computing the conditional 
likelihood for a given network and dataset is straightforward—after all, this is what 
logistic regression does. Thus, it has been proposed to use standard maximum-
likelihood probability estimates in the network, but to use the conditional likelihood 
to evaluate a particular network structure.

Another way of using Bayesian networks for classification is to build a separate 
network for each class value, based on the data pertaining to that class, and combine 
their predictions using Bayes’ rule. The set of networks is called a Bayesian multinet. 
To obtain a prediction for a particular class value, take the corresponding network’s 
probability and multiply it by the class’s prior probability. Do this for each class and 
normalize the result as we did previously. In this case we would not use the condi-
tional likelihood to learn the network for each class value.

All the network learning algorithms we have introduced are score-based. A dif-
ferent strategy, which we will not explain here, is to piece a network together by 
testing individual conditional independence assertions based on subsets of the attri-
butes. This is known as structure learning by conditional independence tests.

Data Structures for Fast Learning
Learning Bayesian networks involves a lot of counting. For each network structure 
considered in the search, the data must be scanned afresh to obtain the counts needed 
to fill out the conditional probability tables. Instead, could they be stored in a data 
structure that eliminated the need for scanning the data over and over again? An 
obvious way is to precompute the counts and store the nonzero ones in a table—say, 
the hash table mentioned in Section 4.5. Even so, any nontrivial dataset will have a 
huge number of nonzero counts.

Again, consider the weather data from Table 1.2. There are five attributes, two 
with three values and three with two values. This gives 4 × 4 × 3 × 3 × 3 = 432 
possible counts. Each component of the product corresponds to an attribute, and its 
contribution to the product is one more than the number of its values because the 
attribute may be missing from the count. All these counts can be calculated by treat-
ing them as item sets, as explained in Section 4.5, and setting the minimum coverage 
to 1. But even without storing counts that are 0, this simple scheme runs into memory 
problems very quickly. The FP-growth data structure described in Section 6.3 was 
designed for efficient representation of data in the case of item set mining. In the 
following, we describe a structure that has been used for Bayesian networks.

It turns out that the counts can be stored effectively in a structure called an all-
dimensions (AD) tree, which is analogous to the kD-trees used for the nearest-
neighbor search described in Section 4.7. For simplicity, we illustrate this using a 
reduced version of the weather data that only has the attributes humidity, windy, and 
play. Figure 6.21(a) summarizes the data. The number of possible counts is 3 × 3 × 
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FIGURE 6.21 

The weather data: (a) reduced version and (b) corresponding AD-tree. 

(b)

any value
14 instances

humidity = normal
7 instances

windy = true
6 instances

play = no
5 instances

windy = true
3 instances

play = no
1 instance

play = no
3 instances

play = no
1 instance

(a)

Humidity Windy Play Count 

high  true  yes  1 
high  true  no  2 
high  false  yes  2 
high  false  no  2 
normal  true  yes  2 
normal  true  no  1 
normal  false  yes  4  
normal  false  no  0  

3 = 27, although only eight of them are shown. For example, the count for play = 
no is 5 (count them!).

Figure 6.21(b) shows an AD-tree for this data. Each node says how many 
instances exhibit the attribute values that are tested along the path from the root to 
that node. For example, the leftmost leaf says that there is one instance with values 
humidity = normal, windy = true, and play = no, and the rightmost leaf says that 
there are five instances with play = no.

It would be trivial to construct a tree that enumerates all 27 counts explicitly. 
However, that would gain nothing over a plain table and is obviously not what the 
tree in Figure 6.21(b) does because it contains only 8 counts. There is, for example, 
no branch that tests humidity = high. How was the tree constructed, and how can all 
counts be obtained from it?

Assume that each attribute in the data has been assigned an index. In the reduced 
version of the weather data we give humidity index 1, windy index 2, and play index 
3. An AD-tree is generated by expanding each node corresponding to an attribute  
i with the values of all attributes that have indices j > i, with two important 



272	 CHAPTER 6  Implementations: Real Machine Learning Schemes 

restrictions: The most populous expansion for each attribute is omitted (breaking ties 
arbitrarily) as are expansions with counts that are zero. The root node is given index 
0, so for this node all attributes are expanded, subject to the same restrictions.

For example, Figure 6.21(b) contains no expansion for windy = false from the 
root node because with eight instances it is the most populous expansion: The value 
false occurs more often in the data than the value true. Similarly, from the node 
labeled humidity = normal there is no expansion for windy = false because false is 
the most common value for windy among all instances with humidity = normal. In 
fact, in our example the second restriction—namely that expansions with zero counts 
are omitted—never kicks in because the first restriction precludes any path that starts 
with the tests humidity = normal and windy = false, which is the only way to reach 
the solitary 0 in Figure 6.21(a).

Each node of the tree represents the occurrence of a particular combination of 
attribute values. It is straightforward to retrieve the count for a combination that 
occurs in the tree. However, the tree does not explicitly represent many nonzero 
counts because the most populous expansion for each attribute is omitted. For 
example, the combination humidity = high and play = yes occurs three times in the 
data but has no node in the tree. Nevertheless, it turns out that any count can be 
calculated from those that the tree stores explicitly.

Here’s a simple example. Figure 6.21(b) contains no node for humidity = normal, 
windy = true, and play = yes. However, it shows three instances with humidity = 
normal and windy = true, and one of them has a value for play that is different from 
yes. It follows that there must be two instances for play = yes. Now for a trickier 
case: How many times does humidity = high, windy = true, and play = no occur? 
At first glance it seems impossible to tell because there is no branch for humidity = 
high. However, we can deduce the number by calculating the count for windy = true 
and play = no (3) and subtracting the count for humidity = normal, windy = true, 
and play = no (1). This gives 2, the correct value.

This idea works for any subset of attributes and any combination of attribute 
values, but it may have to be applied recursively. For example, to obtain the count 
for humidity = high, windy = false, and play = no, we need the count for windy = 
false and play = no and the count for humidity = normal, windy = false, and play = 
no. We obtain the former by subtracting the count for windy = true and play = no 
(3) from the count for play = no (5), giving 2, and we obtain the latter by subtracting 
the count for humidity = normal, windy = true, and play = no (1) from the count for 
humidity = normal and play = no (1), giving 0. Thus, there must be 2 – 0 = 2 instances 
with humidity = high, windy = false, and play = no, which is correct.

AD-trees only pay off if the data contains many thousands of instances. It is 
pretty obvious that they do not help on the weather data. The fact that they yield no 
benefit on small datasets means that, in practice, it makes little sense to expand the 
tree all the way down to the leaf nodes. Usually, a cutoff parameter k is employed, 
and nodes covering fewer than k instances hold a list of pointers to these instances 
rather than a list of pointers to other nodes. This makes the trees smaller and more 
efficient to use.
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Discussion
The K2 algorithm for learning Bayesian networks was introduced by Cooper and 
Herskovits (1992). Bayesian scoring metrics are covered by Heckerman et al. (1995). 
The TAN algorithm was introduced by Friedman et al. (1997), who also describe 
multinets. Grossman and Domingos (2004) show how to use the conditional like
lihood for scoring networks. Guo and Greiner (2004) present an extensive compari-
son of scoring metrics for Bayesian network classifiers. Bouckaert (1995) describes 
averaging over subnetworks. Averaged one-dependence estimators are described by 
Webb et al. (2005). AD-trees were introduced and analyzed by Moore and Lee 
(1998)—the same Andrew Moore whose work on kD-trees and ball trees was men-
tioned in Section 4.7. In a more recent paper, Komarek and Moore (2000) introduce 
AD-trees for incremental learning that are also more efficient for datasets with many 
attributes.

We have only skimmed the surface of the subject of learning Bayesian networks. 
We left open questions of missing values, numeric attributes, and hidden attributes. 
We did not describe how to use Bayesian networks for regression tasks. Bayesian 
networks are a special case of a wider class of statistical models called graphical 
models, which include networks with undirected edges called Markov networks. 
Graphical models are attracting great attention in the machine learning community 
today.

6.8  CLUSTERING
In Section 4.8 we examined the k-means clustering algorithm in which k initial points 
are chosen to represent initial cluster centers, all data points are assigned to the 
nearest one, the mean value of the points in each cluster is computed to form its 
new cluster center, and iteration continues until there are no changes in the clusters. 
This procedure only works when the number of clusters is known in advance, and 
this section begins by describing what you can do if it is not.

Next we take a look at techniques for creating a hierarchical clustering 
structure by “agglomeration”—that is, starting with individual instances and suc-
cessively joining them up into clusters. Then we look at a method that works 
incrementally; that is, process each new instance as it appears. This method was 
developed in the late 1980s and embodied in a pair of systems called Cobweb 
(for nominal attributes) and Classit (for numeric attributes). Both come up with 
a hierarchical grouping of instances and use a measure of cluster “quality” called 
category utility. Finally, we examine a statistical clustering method based on a 
mixture model of different probability distributions, one for each cluster. It does 
not partition instances into disjoint clusters as k-means does but instead assigns 
instances to classes probabilistically, not deterministically. We explain the basic 
technique and sketch the working of a comprehensive clustering scheme called 
AutoClass.
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Choosing the Number of Clusters
Suppose you are using k-means but do not know the number of clusters in advance. 
One solution is to try out different possibilities and see which is best. A simple 
strategy is to start from a given minimum, perhaps k = 1, and work up to a small 
fixed maximum. Note that on the training data the “best” clustering according to the 
total squared distance criterion will always be to choose as many clusters as there 
are data points! To penalize solutions with many clusters you will have to apply 
something like the MDL criterion of Section 5.9.

Another possibility is to begin by finding a few clusters and determining whether 
it is worth splitting them. You could choose k = 2, perform k-means clustering until 
it terminates, and then consider splitting each cluster. Computation time will be 
reduced considerably if the initial two-way clustering is considered irrevocable and 
splitting is investigated for each component independently. One way to split a cluster 
is to make a new seed one standard deviation away from the cluster’s center in the 
direction of its greatest variation, and to make a second seed the same distance in 
the opposite direction. (Alternatively, if this is too slow, choose a distance propor-
tional to the cluster’s bounding box and a random direction.) Then apply k-means 
to the points in the cluster with these two new seeds.

Having tentatively split a cluster, is it worthwhile retaining the split or is the 
original cluster equally plausible by itself? It’s no good looking at the total squared 
distance of all points to their cluster center—this is bound to be smaller for two 
subclusters. A penalty should be incurred for inventing an extra cluster, and this is 
a job for the MDL criterion. That principle can be applied to see whether the 
information required to specify the two new cluster centers, along with the informa-
tion required to specify each point with respect to them, exceeds the information 
required to specify the original center and all the points with respect to it. If so, 
the new clustering is unproductive and should be abandoned. If the split is retained, 
try splitting each new cluster further. Continue the process until no worthwhile 
splits remain.

Additional implementation efficiency can be achieved by combining this iterative 
clustering process with the kD-tree or ball tree data structure advocated in Section 
4.8. Then the data points are reached by working down the tree from the root. When 
considering splitting a cluster, there is no need to consider the whole tree; just look 
at those parts of it that are needed to cover the cluster. For example, when deciding 
whether to split the lower left cluster in Figure 4.16(a) (below the thick line), it is 
only necessary to consider nodes A and B of the tree in Figure 4.16(b) because node 
C is irrelevant to that cluster.

Hierarchical Clustering
Forming an initial pair of clusters and then recursively considering whether it is 
worth splitting each one further produces a hierarchy that can be represented as a 
binary tree called a dendrogram. In fact, we illustrated a dendrogram in Figure 
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3.11(d) (there some of the branches were three-way). The same information could 
be represented as a Venn diagram of sets and subsets: The constraint that the struc-
ture is hierarchical corresponds to the fact that, although subsets can include one 
another, they cannot intersect. In some cases there exists a measure of the degree of 
dissimilarity between the clusters in each set; then the height of each node in the 
dendrogram can be made proportional to the dissimilarity between its children. This 
provides an easily interpretable diagram of a hierarchical clustering.

An alternative to the top-down method for forming a hierarchical structure of 
clusters is to use a bottom-up approach, which is called agglomerative clustering. 
This idea was proposed many years ago and has recently enjoyed a resurgence in 
popularity. The basic algorithm is simple. All you need is a measure of distance (or 
a similarity measure) between any two clusters. (If you have a similarity measure 
instead, it is easy to convert that into a distance.) You begin by regarding each 
instance as a cluster in its own right; then find the two closest clusters, merge them, 
and keep on doing this until only one cluster is left. The record of mergings forms 
a hierarchical clustering structure—a binary dendrogram.

There are numerous possibilities for the distance measure. One is the minimum 
distance between the clusters—the distance between their two closest members. This 
yields what is called the single-linkage clustering algorithm. Since this measure 
takes into account only the two closest members of a pair of clusters, the procedure 
is sensitive to outliers: The addition of just a single new instance can radically alter 
the entire clustering structure. Also, if we define the diameter of a cluster to be the 
greatest distance between its members, single-linkage clustering can produce clus-
ters with very large diameters. Another measure is the maximum distance between 
the clusters, instead of the minimum. Two clusters are considered close only if all 
instances in their union are relatively similar—sometimes called the complete-
linkage method. This measure, which is also sensitive to outliers, seeks compact 
clusters with small diameters. However, some instances may end up much closer to 
other clusters than they are to the rest of their own cluster.

There are other measures that represent a compromise between the extremes of 
minimum and maximum distance between cluster members. One is to represent 
clusters by the centroid of their members, as the k-means algorithm does, and use 
the distance between centroids—the centroid-linkage method. This works well when 
the instances are positioned in multidimensional Euclidean space and the notion of 
centroid is clear, but not when all we have is a pairwise similarity measure between 
instances, because centroids are not instances and the similarity between them may 
be impossible to define.

Another measure, which avoids this problem, is to calculate the average distance 
between each pair of members of the two clusters—the average-linkage method. 
Although this seems like a lot of work, you would have to calculate all pairwise 
distances in order to find the maximum or minimum anyway, and averaging them 
isn’t much additional burden. Both these measures have a technical deficiency: Their 
results depend on the numerical scale on which distances are measured. The minimum 
and maximum distance measures produce a result that depends only on the ordering 
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between the distances involved. In contrast, the result of both centroid-based and 
average-distance clustering can be altered by a monotonic transformation of all 
distances, even though it preserves their relative ordering.

Another method, called group-average clustering, uses the average distance 
between all members of the merged cluster. This differs from the “average” method 
just described because it includes in the average pairs from the same original cluster. 
Finally, Ward’s clustering method calculates the increase in the sum of squares of 
the distances of the instances from the centroid before and after fusing two clusters. 
The idea is to minimize the increase in this squared distance at each clustering step.

All these measures will produce the same hierarchical clustering result if the 
clusters are compact and well separated. However, in other cases they can yield quite 
different structures.

Example of Hierarchical Clustering
Figure 6.22 shows the result of agglomerative hierarchical clustering. (These visu-
alizations have been generated using the FigTree program.1) In this case the dataset 
contained 50 examples of different kinds of creatures, from dolphin to mongoose, 
from giraffe to lobster. There was 1 numeric attribute (number of legs, ranging from 
0 to 6, but scaled to the range [0, 1]) and 15 Boolean attributes such as has feathers, 
lays eggs, and venomous, which are treated as binary attributes with values 0 and 1 
in the distance calculation.

Two kinds of display are shown: a standard dendrogram and a polar plot. Figures 
6.22(a) and (b) show the output from an agglomerative clusterer plotted in two dif-
ferent ways, and Figures 6.22(c) and (d) show the result of a different agglomerative 
clusterer plotted in the same two ways. The difference is that the pair in Figures 
6.22(a) and (b) was produced using the complete-linkage measure and the pair in 
Figures 6.22(c) and (d) was produced using the single-linkage measure. You can see 
that the complete-linkage method tends to produce compact clusters while the single-
linkage method produces clusters with large diameters at fairly low levels of the tree.

In all four visualizations the height of each node in the dendrogram is propor-
tional to the dissimilarity between its children, measured as the Euclidean distance 
between instances. A numeric scale is provided beneath Figures 6.22(a) and (c). The 
total dissimilarity from root to leaf is far greater for the complete-linkage method 
in Figures 6.22(a) and (b) than for the single-linkage method in Figures 6.22(c) and 
(d) since the former involves the maximum distance and the latter the minimum 
distance between instances in each cluster. In the first case the total dissimilarity is 
a little less than 3.75, which is almost the maximum possible distance between 
instances—the distance between two instances that differ in 14 of the 15 attributes 
is 14 ≈ 3.74. In the second it is a little greater than 2 (that is, 4), which is what a 
difference in four Boolean attributes would produce.

1See http://tree.bio.ed.ac.uk/software/figtree/ for more information.
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FIGURE 6.22 

Hierarchical clustering displays. Continued
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For the complete-linkage method (Figure 6.22(a)), many elements join together 
at a dissimilarity of 1, which corresponds to a difference in a single Boolean attri-
bute. Only one pair has a smaller dissimilarity: crab and crayfish, which differ only 
in the number of legs (4/6 and 6/6, respectively, after scaling). Other popular dis-
similarities are 2 , 3, 4 , and so on, corresponding to differences in two, three, 
and four Boolean attributes. For the single-linkage method (Figure 6.22(c)) that  
uses the minimum distance between clusters, even more elements join together at a 
dissimilarity of 1.

Which of the two display methods—the standard dendogram and the polar 
plot—is more useful is a matter of taste. Although more unfamiliar at first, the polar 
plot spreads the visualization more evenly over the space available.

Incremental Clustering
Whereas the k-means algorithm iterates over the whole dataset until convergence 
is reached and the hierarchical method examines all the clusters present so far at 
each stage of merging, the clustering methods we examine next work incrementally, 
instance by instance. At any stage the clustering forms a tree with instances at the 
leaves and a root node that represents the entire dataset. In the beginning the tree 
consists of the root alone. Instances are added one by one, and the tree is updated 
appropriately at each stage. Updating may be merely a case of finding the right 
place to put a leaf representing the new instance, or it may involve a radical restruc-
turing of the part of the tree that is affected by the new instance. The key to deciding 
how and where to update is a quantity called category utility that measures the 
overall quality of a partition of instances into clusters. We defer detailed consider-
ation of how this is defined until the next section and look first at how the clustering 
algorithm works.

The procedure is best illustrated by an example. We will use the familiar weather 
data again, but without the play attribute. To track progress, the 14 instances are 
labeled a, b, c, …, n (as in Table 4.6), and for interest we include the classes yes 
or no in the label—although it should be emphasized that for this artificial dataset 
there is little reason to suppose that the two classes of instance should fall into sepa-
rate categories. Figure 6.23 shows the situation at salient points throughout the 
clustering procedure.

At the beginning, when new instances are absorbed into the structure, they each 
form their own subcluster under the overall top-level cluster. Each new instance is 
processed by tentatively placing it in each of the existing leaves and evaluating the 
category utility of the resulting set of the top-level node’s children to see if the leaf 
is a good “host” for the new instance. For each of the first five instances, there is 
no such host: It is better, in terms of category utility, to form a new leaf for each 
instance. With the sixth it finally becomes beneficial to form a cluster, joining the 
new instance f with the old one—the host—e. If you look back at Table 4.6 you will 
see that the fifth and sixth instances are indeed very similar, differing only in the 
windy attribute (and play, which is being ignored here). The next example, g, is 
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FIGURE 6.23 

Clustering the weather data. 

a: no a: no b: no c: yes d: yes e: yes a: no b: no c: yes d: yes
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k: yes n: no

c: yes m: yes

l: yes

e: yes i: yes

f: no g: yes j: yes
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e: yes f: no g: yes

b: no c: yes

a: no d: yes h: no e: yes f: no g: yes
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(f)

(e)

(b)

(c)

placed in the same cluster (it differs from f only in outlook). This involves another 
call to the clustering procedure. First, g is evaluated to see which of the five children 
of the root makes the best host; it turns out to be the rightmost, the one that is already 
a cluster. Then the clustering algorithm is invoked with this as the root, and its two 
children are evaluated to see which would make the better host. In this case it proves 
best, according to the category utility measure, to add the new instance as a  
subcluster in its own right.

If we were to continue in this vein, there would be no possibility of any radical 
restructuring of the tree, and the final clustering would be excessively dependent on 
the ordering of examples. To avoid this, there is provision for restructuring, and you 
can see it come into play when instance h is added in the next step shown in Figure 
6.23(e). In this case two existing nodes are merged into a single cluster: Nodes a and 
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d are merged before the new instance h is added. One way of accomplishing this 
would be to consider all pairs of nodes for merging and evaluate the category utility 
of each pair. However, that would be computationally expensive, and would involve 
a lot of repeated work if it were undertaken whenever a new instance was added.

Instead, whenever the nodes at a particular level are scanned for a suitable host, 
both the best-matching node—the one that produces the greatest category utility for 
the split at that level—and the runner-up are noted. The best one will form the host 
for the new instance (unless that new instance is better off in a cluster of its own). 
However, before setting to work on putting the new instance in with the host, con-
sideration is given to merging the host and the runner-up. In this case, a is the 
preferred host and d is the runner-up. When a merge of a and d is evaluated, it turns 
out that it would improve the category utility measure. Consequently, these two 
nodes are merged, yielding a version of the fifth hierarchy before h is added. Then 
consideration is given to the placement of h in the new, merged node; it turns out 
to be best to make it a subcluster in its own right, as shown.

An operation converse to merging is also implemented, called splitting. When-
ever the best host is identified, and merging has not proved beneficial, consideration 
is given to splitting the host node. Splitting has exactly the opposite effect of 
merging, taking a node and replacing it with its children. For example, splitting the 
rightmost node in Figure 6.23(d) would raise the e, f, and g leaves up a level, making 
them siblings of a, b, c, and d. Merging and splitting provide an incremental way 
of restructuring the tree to compensate for incorrect choices caused by infelicitous 
ordering of examples.

The final hierarchy for all 14 examples is shown in Figure 6.23(f). There are 
three major clusters, each of which subdivides further into its own subclusters. If 
the play/don’t play distinction really represented an inherent feature of the data, a 
single cluster would be expected for each outcome. No such clean structure is 
observed, although a (very) generous eye might discern a slight tendency at lower 
levels for yes instances to group together, and likewise for no instances.

Exactly the same scheme works for numeric attributes. Category utility is defined 
for these as well, based on an estimate of the mean and standard deviation of the 
value of that attribute. Details are deferred to the next subsection. However, there 
is just one problem that we must attend to here: When estimating the standard devia-
tion of an attribute for a particular node, the result will be zero if the node contains 
only one instance, as it does more often than not. Unfortunately, zero variances 
produce infinite values in the category utility formula. A simple heuristic solution is 
to impose a minimum variance on each attribute. It can be argued that because no 
measurement is completely precise, it is reasonable to impose such a minimum: It 
represents the measurement error in a single sample. This parameter is called acuity.

Figure 6.24(a) shows a hierarchical clustering produced by the incremental algo-
rithm for part of the iris dataset (30 instances, 10 from each class). At the top level 
there are two clusters (i.e., subclusters of the single node representing the whole 
dataset). The first contains both Iris virginicas and Iris versicolors, and the second 
contains only Iris setosas. The Iris setosas themselves split into two subclusters, one 
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FIGURE 6.24, cont’d

with four cultivars and the other with six. The other top-level cluster splits into three 
subclusters, each with a fairly complex structure. Both the first and second contain 
only Iris versicolors, with one exception, a stray Iris virginica, in each case; the 
third contains only Iris virginicas. This represents a fairly satisfactory clustering of 
the iris data: It shows that the three genera are not artificial at all but reflect genuine 
differences in the data. This is, however, a slightly overoptimistic conclusion  
because quite a bit of experimentation with the acuity parameter was necessary to 
obtain such a nice division.

The clusterings produced by this scheme contain one leaf for every instance. This 
produces an overwhelmingly large hierarchy for datasets of any reasonable size, 
corresponding, in a sense, to overfitting the particular dataset. Consequently, a 
second numerical parameter called cutoff is used to suppress growth. Some instances 
are deemed to be sufficiently similar to others not to warrant formation of their own 
child node, and this parameter governs the similarity threshold. Cutoff is specified 
in terms of category utility: When the increase in category utility from adding a new 
node is sufficiently small, that node is cut off.

Figure 6.24(b) shows the same iris data, clustered with cutoff in effect. Many 
leaf nodes contain several instances: These are children of the parent node that have 
been cut off. The division into the three types of iris is a little easier to see from this 
hierarchy because some of the detail is suppressed. Again, however, some experi-
mentation with the cutoff parameter was necessary to get this result, and in fact a 
sharper cutoff leads to much less satisfactory clusters.
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Category Utility
Now we look at how the category utility, which measures the overall quality of a partition 
of instances into clusters, is calculated. In Section 5.9 we learned how the MDL measure 
could, in principle, be used to evaluate the quality of clustering. Category utility is not 
MDL-based but rather resembles a kind of quadratic loss function defined on conditional 
probabilities.

The definition of category utility is rather formidable:

CU C C C
C a v C a v

kk

i ij i ijji( , , , )
Pr[ ] (Pr[ | ] Pr[ ] )

1 2

2 2

…
� ��=

= − =∑∑∑

where C1, C2, …, Ck are the k clusters; the outer summation is over these clusters; the 
next inner one sums over the attributes; ai is the ith attribute, and it takes on values vi1, 
vi2, …, which are dealt with by the sum over j. Note that the probabilities themselves are 
obtained by summing over all instances; thus, there is a further implied level of 
summation.

This expression makes a great deal of sense if you take the time to examine it. The 
point of having a cluster is that it will give some advantage in predicting the values of 
attributes of instances in that cluster—that is, Pr[ai = vij | C] is a better estimate of the 
probability that attribute ai has value vij, for an instance in cluster C, than Pr[ai = vij] 
because it takes account of the cluster the instance is in. If that information doesn’t help, 
the clusters aren’t doing much good! So what the measure calculates, inside the multiple 
summation, is the amount by which that information does help in terms of the differences 
between squares of probabilities. This is not quite the standard squared-difference metric 
because that sums the squares of the differences (which produces a symmetric result)  
and the present measure sums the difference of the squares (which, appropriately, does 
not produce a symmetric result). The differences between squares of probabilities are 
summed over all attributes, and all their possible values, in the inner double summation. 
Then it is summed over all clusters, weighted by their probabilities, in the outer 
summation.

The overall division by k is a little hard to justify because the squared differences have 
already been summed over the categories. It essentially provides a “per cluster” figure for 
the category utility that discourages overfitting. Otherwise, because the probabilities are 
derived by summing over the appropriate instances, the very best category utility would be 
obtained by placing each instance in its own cluster. Then Pr[ai = vij | C] would be 1 for 
the value that attribute ai actually has for the single instance in category C and 0 for all 
other values; the numerator of the category utility formula will end up as

m a vi ijji
− =∑∑ Pr[ ]2

where m is the total number of attributes. This is the greatest value that the numerator 
can have; thus, if it were not for the additional division by k in the category utility 
formula, there would never be any incentive to form clusters containing more than one 
member. This extra factor is best viewed as a rudimentary overfitting-avoidance heuristic.

Similar clusterings are obtained if the full iris dataset of 150 instances is used. 
However, the results depend on the ordering of examples: Figure 6.24 was obtained 
by alternating the three varieties of iris in the input file. If all Iris setosas are pre-
sented first, followed by all Iris versicolors and then all Iris virginicas, the resulting 
clusters are quite unsatisfactory.
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This category utility formula applies only to nominal attributes. However, it can be 
easily extended to numeric attributes by assuming that their distribution is normal with a 
given (observed) mean µ and standard deviation σ. The probability density function for an 
attribute a is

f a
a

( ) exp
( )= − −



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1

2 2

2

2πσ
µ

σ

The analog of summing the squares of attribute–value probabilities is

Pr[ ] ( )a v f a dai ijj i i
i

= ⇔ =∑ ∫2 2 1

2 πσ

where σi is the standard deviation of the attribute ai. Thus, for a numeric attribute we 
estimate the standard deviation from the data, both within the cluster (σil) and for the 
data over all clusters (σi), and use these in the category utility formula:
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Now the problem mentioned that occurs when the standard deviation estimate is zero 
becomes apparent: A zero standard deviation produces an infinite value of the category 
utility formula. Imposing a prespecified minimum variance on each attribute, the acuity, is 
a rough-and-ready solution to the problem.

Probability-Based Clustering
Some of the shortcomings of the heuristic clustering method have already become 
apparent: the arbitrary division by k in the category utility formula that is necessary 
to prevent overfitting, the need to supply an artificial minimum value for the standard 
deviation of clusters, and the ad hoc cutoff value to prevent every single instance 
from becoming a cluster in its own right. On top of this is the uncertainty inherent 
in incremental algorithms. To what extent is the result dependent on the order of 
examples? Are the local restructuring operations of merging and splitting really 
enough to reverse the effect of bad initial decisions caused by unlucky ordering? 
Does the final result represent even a local maximum of category utility? Add to 
this the problem that one never knows how far the final configuration is to a global 
maximum—and, of course, the standard trick of repeating the clustering procedure 
several times and choosing the best will destroy the incremental nature of the 
algorithm. Finally, doesn’t the hierarchical nature of the result really beg the ques-
tion of which are the best clusters? There are so many clusters in Figure 6.24 that 
it is difficult to separate the wheat from the chaff.

A more principled statistical approach to the clustering problem can overcome 
some of these shortcomings. From a probabilistic perspective, the goal of clustering 
is to find the most likely set of clusters available given the data (and, inevitably, 
prior expectations). Because no finite amount of evidence is enough to make a 
completely firm decision on the matter, instances—even training instances—should 
not be placed categorically in one cluster or the other: Instead, they have a certain 
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probability of belonging to each cluster. This helps to eliminate the brittleness that 
is often associated with schemes that make hard and fast judgments.

The foundation for statistical clustering is a statistical model called finite mix-
tures. A mixture is a set of k probability distributions, representing k clusters, that 
govern the attribute values for members of that cluster. In other words, each dis-
tribution gives the probability that a particular instance would have a certain set of 
attribute values if it were known to be a member of that cluster. Each cluster has 
a different distribution. Any particular instance “really” belongs to one and only 
one of the clusters, but it is not known which one. Finally, the clusters are not 
equally likely: There is some probability distribution that reflects their relative 
populations.

The simplest finite-mixture situation is when there is only one numeric attribute, 
which has a Gaussian or normal distribution for each cluster—but with different 
means and variances. The clustering problem is to take a set of instances—in this 
case each instance is just a number—and a prespecified number of clusters, and 
work out each cluster’s mean and variance and the population distribution between 
the clusters. The mixture model combines several normal distributions, and its 
probability density function looks like a mountain range with a peak for each 
component.

Figure 6.25 shows a simple example. There are two clusters, A and B, and each 
has a normal distribution with means and standard deviations µA and σA for cluster 
A and µB and σB for cluster B. Samples are taken from these distributions, using 
cluster A with probability pA and cluster B with probability pB (where pA + pB = 1), 
resulting in a dataset like that shown. Now, imagine being given the dataset without 
the classes—just the numbers—and being asked to determine the five parameters 
that characterize the model: µA, σA, µB, σB, and pA (the parameter pB can be calculated 
directly from pA). That is the finite-mixture problem.

FIGURE 6.25 

A two-class mixture model. 
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If you knew which of the two distributions each instance came from, finding the five 
parameters would be easy—just estimate the mean and standard deviation for the cluster 
A samples and the cluster B samples separately, using the formulas

µ = + + +x x x
n

n1 2 …

and

σ µ µ µ2 1
2

2
2 2

1
= − + − + + −

−
( ) ( ) ( )x x x

n
n…

(The use of n – 1 rather than n as the denominator in the second formula is a technicality 
of sampling: It makes little difference in practice if n is used instead.) Here, x1, x2, …, xn 
are the samples from the distribution A or B. To estimate the fifth parameter pA, just take 
the proportion of the instances that are in the A cluster.

If you knew the five parameters, finding the probabilities that a given instance comes 
from each distribution would be easy. Given an instance x, the probability that it belongs 
to cluster A is

Pr[ |
Pr[ | ] ( ; , )

A ]
A Pr[A]
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A A Ax

x
x
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where f (x; µA, σA) is the normal distribution function for cluster A—that is,
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The denominator Pr[x] will disappear: We calculate the numerators for both Pr[A | x] 
and Pr[B | x] and normalize them by dividing by their sum. This whole procedure is just 
the same as the way numeric attributes are treated in the Naïve Bayes learning scheme of 
Section 4.2. And the caveat explained there applies here too: Strictly speaking, f (x; µA, σA) 
is not the probability Pr[x | A] because the probability of x being any particular real 
number is zero, but the normalization process makes the final result correct. Note that the 
final outcome is not a particular cluster but rather the probabilities with which x belongs to 
cluster A and cluster B.

The EM Algorithm
The problem is that we know neither of these things: not the distribution that 
each training instance came from nor the five mixture model parameters. So we 
adopt the procedure used for the k-means clustering algorithm and iterate. Start 
with initial guesses for the five parameters, use them to calculate the cluster 
probabilities for each instance, use these probabilities to reestimate the param-
eters, and repeat. (If you prefer, you can start with guesses for the classes of 
the instances instead.) This is called the EM algorithm, for expectation maxi-
mization. The first step—calculation of the cluster probabilities, which are the 
“expected” class values—is “expectation”; the second, calculation of the distribu-
tion parameters, is “maximization” of the likelihood of the distributions given 
the data available.
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A slight adjustment must be made to the parameter estimation equations to account for 
the fact that it is only cluster probabilities, not the clusters themselves, that are known for 
each instance. These probabilities just act like weights. If wi is the probability that 
instance i belongs to cluster A, the mean and standard deviation for cluster A are

µA = + + +
+ + +

w x w x w x
w w w

n n

n

1 1 2 2

1 2

…
…

and

σ µ µ µ
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where now the xi are all the instances, not just those belonging to cluster A. (This differs 
in a small detail from the estimate for the standard deviation given later: If all weights are 
equal, the denominator is n rather than n – 1. Technically speaking, this is a “maximum-
likelihood” estimator for the variance whereas the previous formula is for an “unbiased” 
estimator. The difference is not important in practice.)

Now consider how to terminate the iteration. The k-means algorithm stops when the 
classes of the instances don’t change from one iteration to the next—a “fixed point” has 
been reached. In the EM algorithm things are not quite so easy: The algorithm converges 
toward a fixed point but never actually gets there. We can see how close it is getting by 
calculating the overall likelihood that the data came from this dataset, given the values for 
the five parameters. This overall likelihood is obtained by multiplying the probabilities of 
the individual instances i:

p x p xi i
i

A BA BPr[ | ] Pr[ | ]+( )∏
where the probabilities given the clusters A and B are determined from the normal 
distribution function f(x; µ, σ). This overall likelihood is a measure of the “goodness” of 
the clustering and increases at each iteration of the EM algorithm.

Again, there is a technical difficulty with equating the probability of a particular value 
of x with f (x; µ, σ), and in this case the effect does not disappear because no probability 
normalization operation is applied. The upshot is that the likelihood expression is not a 
probability and does not necessarily lie between 0 and 1; nevertheless, its magnitude still 
reflects the quality of the clustering. In practical implementations its logarithm is 
calculated instead: This is done by summing the logarithms of the individual components, 
avoiding multiplications. But the overall conclusion still holds: You should iterate until the 
increase in log-likelihood becomes negligible. For example, a practical implementation 
might iterate until the difference between successive values of log-likelihood is less than 
10–10 for 10 successive iterations. Typically, the log-likelihood will increase very sharply 
over the first few iterations and then converge rather quickly to a point that is virtually 
stationary.

Although the EM algorithm is guaranteed to converge to a maximum, this is a local 
maximum and may not necessarily be the same as the global maximum. For a better 
chance of obtaining the global maximum, the whole procedure should be repeated several 
times, with different initial guesses for the parameter values. The overall log-likelihood 
figure can be used to compare the different final configurations obtained: Just choose the 
largest of the local maxima.
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Extending the Mixture Model
Now that we have seen the Gaussian mixture model for two distributions, let’s 
consider how to extend it to more realistic situations. The basic method is just the 
same, but because the mathematical notation becomes formidable we will not 
develop it in full detail.

Changing the algorithm from two-class problems to multiclass problems is 
completely straightforward as long as the number k of normal distributions is given 
in advance. The model can easily be extended from a single numeric attribute per 
instance to multiple attributes as long as independence between attributes is 
assumed. The probabilities for each attribute are multiplied together to obtain the 
joint probability for the instance, just as in the Naïve Bayes method.

When the dataset is known in advance to contain correlated attributes, the inde-
pendence assumption no longer holds. Instead, two attributes can be modeled jointly 
by a bivariate normal distribution, in which each has its own mean value but the 
two standard deviations are replaced by a “covariance matrix” with four numeric 
parameters. There are standard statistical techniques for estimating the class prob-
abilities of instances and for estimating the means and covariance matrix given the 
instances and their class probabilities. Several correlated attributes can be handled 
using a multivariate distribution. The number of parameters increases with the square 
of the number of jointly varying attributes. With n independent attributes, there are 
2n parameters, a mean and a standard deviation for each. With n covariant attributes, 
there are n + n(n + 1)/2 parameters, a mean for each, and an n × n covariance matrix 
that is symmetric and therefore involves n(n + 1)/2 different quantities. This escala-
tion in the number of parameters has serious consequences for overfitting, as we 
will explain later.

To cater for nominal attributes, the normal distribution must be abandoned. 
Instead, a nominal attribute with v possible values is characterized by v numbers 
representing the probability of each one. A different set of numbers is needed for 
every class; kv parameters in all. The situation is very similar to the Naïve Bayes 
method. The two steps of expectation and maximization correspond exactly to opera-
tions we have studied before. Expectation—estimating the cluster to which each 
instance belongs given the distribution parameters—is just like determining the class 
of an unknown instance. Maximization—estimating the parameters from the classi-
fied instances—is just like determining the attribute–value probabilities from the 
training instances, with the small difference that in the EM algorithm instances are 
assigned to classes probabilistically rather than categorically. In Section 4.2 we 
encountered the problem that probability estimates can turn out to be zero, and the 
same problem occurs here too. Fortunately, the solution is just as simple—use the 
Laplace estimator.

Naïve Bayes assumes that attributes are independent—that is the reason why 
it is called “naïve.” A pair of correlated nominal attributes with v1 and v2 possible 
values, respectively, can be replaced by a single covariant attribute with v1v2 pos-
sible values. Again, the number of parameters escalates as the number of dependent 
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attributes increases, and this has implications for probability estimates and 
overfitting.

The presence of both numeric and nominal attributes in the data to be clustered 
presents no particular problem. Covariant numeric and nominal attributes are more 
difficult to handle, and we will not describe them here.

Missing values can be accommodated in various different ways. In principle, 
they should be treated as unknown and the EM process adapted to estimate them as 
well as the cluster means and variances. A simple way is to replace them by means 
or modes in a preprocessing step.

With all these enhancements, probabilistic clustering becomes quite sophisti-
cated. The EM algorithm is used throughout to do the basic work. The user must 
specify the number of clusters to be sought, the type of each attribute (numeric or 
nominal), which attributes are to be modeled as covarying, and what to do about 
missing values. Moreover, different distributions can be used. Although the normal 
distribution is usually a good choice for numeric attributes, it is not suitable for 
attributes (such as weight) that have a predetermined minimum (0 in the case of 
weight) but no upper bound; in this case a “log-normal” distribution is more appro-
priate. Numeric attributes that are bounded above and below can be modeled by a 
“log-odds” distribution. Attributes that are integer counts rather than real values are 
best modeled by the “Poisson” distribution. A comprehensive system might allow 
these distributions to be specified individually for each attribute. In each case, the 
distribution involves numeric parameters—probabilities of all possible values for 
discrete attributes and mean and standard deviation for continuous ones.

In this section we have been talking about clustering. But you may be thinking 
that these enhancements could be applied just as well to the Naïve Bayes algorithm 
too—and you’d be right. A comprehensive probabilistic modeler could accom-
modate both clustering and classification learning, nominal and numeric attributes 
with a variety of distributions, various possibilities of covariation, and different 
ways of dealing with missing values. The user would specify, as part of the domain 
knowledge, which distributions to use for which attributes.

Bayesian Clustering
However, there is a snag: overfitting. You might say that if we are not sure which 
attributes are dependent on each other, why not be on the safe side and specify that 
all the attributes are covariant? The answer is that the more parameters there are, 
the greater the chance that the resulting structure is overfitted to the training data—
and covariance increases the number of parameters dramatically. The problem of 
overfitting occurs throughout machine learning, and probabilistic clustering is no 
exception. There are two ways that it can occur: through specifying too large a 
number of clusters and through specifying distributions with too many parameters.

The extreme case of too many clusters occurs when there is one for every data 
point: Clearly, that will be overfitted to the training data. In fact, in the mixture 
model, problems will occur whenever any of the normal distributions becomes so 
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narrow that the cluster is centered on just one data point. Consequently, implementa-
tions generally insist that clusters contain at least two different data values.

Whenever there are a large number of parameters, the problem of overfitting 
arises. If you were unsure of which attributes were covariant, you might try out 
different possibilities and choose the one that maximized the overall probability of 
the data given the clustering that was found. Unfortunately, the more parameters 
there are, the larger the overall data probability will tend to be—not necessarily 
because of better clustering but because of overfitting. The more parameters there 
are to play with, the easier it is to find a clustering that seems good.

It would be nice if somehow you could penalize the model for introducing new 
parameters. One principled way of doing this is to adopt a Bayesian approach in 
which every parameter has a prior probability distribution. Then, whenever a new 
parameter is introduced, its prior probability must be incorporated into the overall 
likelihood figure. Because this will involve multiplying the overall likelihood by a 
number less than 1—the prior probability—it will automatically penalize the addi-
tion of new parameters. To improve the overall likelihood, the new parameters will 
have to yield a benefit that outweighs the penalty.

In a sense, the Laplace estimator that was introduced in Section 4.2, and whose 
use we advocated earlier to counter the problem of zero probability estimates for 
nominal values, is just such a device. Whenever observed probabilities are small, 
the Laplace estimator exacts a penalty because it makes probabilities that are zero, 
or close to zero, greater, and this will decrease the overall likelihood of the data. 
Making two nominal attributes covariant will exacerbate the problem of small 
probabilities. Instead of v1 + v2 parameters, where v1 and v2 are the number of pos-
sible values, there are now v1v2, greatly increasing the chance of a large number of 
small estimated probabilities. In fact, the Laplace estimator is tantamount to using 
a particular prior distribution for the introduction of new parameters.

The same technique can be used to penalize the introduction of large numbers 
of clusters, just by using a prespecified prior distribution that decays sharply as the 
number of clusters increases. AutoClass is a comprehensive Bayesian clustering 
scheme that uses the finite-mixture model with prior distributions on all the param-
eters. It allows both numeric and nominal attributes and uses the EM algorithm to 
estimate the parameters of the probability distributions to best fit the data. Because 
there is no guarantee that the EM algorithm converges to the global optimum, the 
procedure is repeated for several different sets of initial values. But that is not all. 
AutoClass considers different numbers of clusters and can consider different amounts 
of covariance and different underlying probability distribution types for the numeric 
attributes. This involves an additional, outer level of search. For example, it initially 
evaluates the log-likelihood for 2, 3, 5, 7, 10, 15, and 25 clusters: After that, it fits 
a log-normal distribution to the resulting data and randomly selects from it more 
values to try. As you might imagine, the overall algorithm is extremely computation 
intensive. In fact, the actual implementation starts with a prespecified time bound 
and continues to iterate as long as time allows. Give it longer and the results may 
be better!
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Rather than showing just the most likely clustering to the user, it may be best 
to present all of them, weighted by probability. Recently, fully Bayesian techniques 
for hierarchical clustering have been developed that produce as output a probability 
distribution over possible hierarchical structures representing a dataset. Figure 6.26 
is a visualization, known as a DensiTree, that shows the set of all trees for a par-
ticular dataset in a triangular shape. The tree is best described in terms of its 
“clades,” a biological term from the Greek klados meaning branch, for a group 
of the same species that includes all ancestors. Here, there are five clearly distin-
guishable clades. The first and fourth correspond to a single leaf, while the fifth 
has two leaves that are so distinct they might be considered clades in their own 
right. The second and third clades each have five leaves, and there is large uncer-
tainty in their topology. Such visualizations make it easy for people to grasp the 
possible hierarchical clusterings of their data, at least in terms of the big picture.

Discussion
The clustering methods that have been described produce different kinds of output. 
All are capable of taking new data in the form of a test set and classifying it accord-
ing to clusters that were discovered by analyzing a training set. However, the 
hierarchical and incremental clustering methods are the only ones that generate an 
explicit knowledge structure that describes the clustering in a way that can be 
visualized and reasoned about. The other algorithms produce clusters that could be 
visualized in instance space if the dimensionality were not too high.

FIGURE 6.26 

DensiTree showing possible hierarchical clusterings of a given dataset. 
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If a clustering method were used to label the instances of the training set with 
cluster numbers, that labeled set could then be used to train a rule or decision tree 
learner. The resulting rules or tree would form an explicit description of the classes. 
A probabilistic clustering scheme could be used for the same purpose, except that 
each instance would have multiple weighted labels and the rule or decision tree 
learner would have to be able to cope with weighted instances—as many can.

Another application of clustering is to fill in any values of the attributes that may 
be missing. For example, it is possible to make a statistical estimate of the value of 
unknown attributes of a particular instance, based on the class distribution for the 
instance itself and the values of the unknown attributes for other examples.

All the clustering methods we have examined make, at some level, a basic 
assumption of independence among the attributes. AutoClass does allow the user 
to specify in advance that two or more attributes are dependent and should be 
modeled with a joint probability distribution. (There are restrictions, however: 
Nominal attributes may vary jointly, as may numeric attributes, but not both together. 
Moreover, missing values for jointly varying attributes are not catered for.) It may 
be advantageous to preprocess a dataset to make the attributes more independent, 
using statistical techniques such as the principal components transform described 
in Section 7.3. Note that joint variation that is specific to particular classes will 
not be removed by such techniques; they only remove overall joint variation that 
runs across all classes.

Our description of how to modify k-means to find a good value of k by repeat-
edly splitting clusters and seeing whether the split is worthwhile follows the X-means 
algorithm of Moore and Pelleg (2000). However, instead of the MDL principle, 
they use a probabilistic scheme called the Bayes Information Criterion (Kass and 
Wasserman, 1995). Efficient agglomerative methods for hierarchical clustering were 
developed by Day and Edelsbrünner (1984), and the ideas are described in recent 
books (Duda et al., 2001; Hastie et al., 2009). The incremental clustering procedure, 
based on the merging and splitting operations, was introduced in systems called 
Cobweb for nominal attributes (Fisher, 1987) and Classit for numeric attributes 
(Gennari et al., 1990). Both are based on a measure of category utility that had 
been defined previously (Gluck and Corter, 1985). The AutoClass program is 
described by Cheeseman and Stutz (1995). Two implementations have been pro-
duced: the original research implementation, written in LISP, and a follow-up public 
implementation in C that is 10 or 20 times faster but somewhat more restricted—for 
example, only the normal-distribution model is implemented for numeric attributes. 
DensiTrees were developed by Bouckaert (2010).

A hierarchical clustering method called BIRCH (balanced iterative reducing and 
clustering using hierarchies) has been developed specifically for large multidimen-
sional datasets, where it is necessary for efficient operation to minimize input–output 
costs (Zhang et al., 1996). It incrementally and dynamically clusters multidimen-
sional metric data points, seeking the best clustering within given memory and time 
constraints. It typically finds a good clustering with a single scan of the data, which 
can then be improved by further scans.
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6.9  SEMISUPERVISED LEARNING
When introducing the machine learning process in Chapter 2 (page 40), we drew a 
sharp distinction between supervised and unsupervised learning—classification and 
clustering. In this chapter we have studied a lot of techniques for both. Recently, 
researchers have begun to explore territory between the two, sometimes called 
semisupervised learning, in which the goal is classification but the input contains 
both unlabeled and labeled data. You can’t do classification without labeled data, of 
course, because only the labels tell what the classes are. But it is sometimes attrac-
tive to augment a small amount of labeled data with a large pool of unlabeled data. 
It turns out that the unlabeled data can help you learn the classes. How can this be?

First, why would you want it? Many situations present huge volumes of raw data, 
but assigning classes is expensive because it requires human insight. Text mining 
provides some classic examples. Suppose you want to classify web pages into pre-
defined groups. In an academic setting you might be interested in faculty pages, 
graduate student pages, course information pages, research group pages, and depart-
ment pages. You can easily download thousands, or millions, of relevant pages from 
university web sites. But labeling the training data is a laborious manual process. 
Or suppose your job is to use machine learning to spot names in text, differentiating 
between personal names, company names, and place names. You can easily down-
load megabytes, or gigabytes, of text, but making this into training data by picking 
out the names and categorizing them can only be done manually. Cataloging news 
articles, sorting electronic mail, learning users’ reading interests—the applications 
are legion. Leaving text aside, suppose you want to learn to recognize certain famous 
people in television broadcast news. You can easily record hundreds or thousands 
of hours of newscasts, but again labeling is manual. In any of these scenarios it 
would be enormously attractive to be able to leverage a large pool of unlabeled data 
to obtain excellent performance from just a few labeled examples, particularly if 
you were the graduate student who had to do the labeling!

Clustering for Classification
How can unlabeled data be used to improve classification? Here’s a simple idea. 
Use Naïve Bayes to learn classes from a small labeled dataset and then extend it 
to a large unlabeled dataset using the EM iterative clustering algorithm from the 
previous section. The procedure is this. First, train a classifier using the labeled 
data. Second, apply it to the unlabeled data to label it with class probabilities (the 
“expectation” step). Third, train a new classifier using the labels for all the data (the 
“maximization” step). Fourth, iterate until convergence. You could think of this as 
iterative clustering, where starting points and cluster labels are gleaned from the 
labeled data. The EM procedure guarantees finding model parameters that have 
equal or greater likelihood at each iteration. The key question, which can only be 
answered empirically, is whether these higher likelihood parameter estimates will 
improve classification accuracy.
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Intuitively, this might work well. Consider document classification. Certain 
phrases are indicative of the classes. Some of them occur in labeled documents, 
whereas others occur only in unlabeled ones. There are, however, probably some 
documents that contain both, and the EM procedure uses these to generalize 
the learned model to use phrases that do not appear in the labeled dataset. For 
example, both supervisor and Ph.D. topic might indicate a graduate student’s 
home page. Suppose only the former phrase occurs in the labeled documents. 
EM iteratively generalizes the model to correctly classify documents that contain 
just the latter.

This might work with any classifier and any iterative clustering algorithm. 
But it is basically a bootstrapping procedure, and you must take care to ensure 
that the feedback loop is a positive one. Using probabilities rather than hard 
decisions seems beneficial because it allows the procedure to converge slowly 
instead of jumping to conclusions that may be wrong. Naïve Bayes, together 
with the basic probabilistic EM procedure, is a particularly apt choice because 
the two share the same fundamental assumption: independence between attributes 
or, more precisely, conditional independence between attributes given the class.

Of course, the independence assumption is universally violated. Even our little 
example used the two-word phrase Ph.D. topic, whereas actual implementations 
would likely use individual words as attributes—and the example would have been 
far less compelling if we had substituted either of the single terms Ph.D. or topic. 
The phrase Ph.D. students is probably more indicative of faculty rather than graduate 
student home pages; the phrase research topic is probably less discriminating. It is 
the very fact that Ph.D. and topic are not conditionally independent given the class 
that makes the example work: It is their combination that characterizes graduate 
student pages.

Nevertheless, coupling Naïve Bayes and EM in this manner works well in the 
domain of document classification. In a particular classification task it attained the 
performance of a traditional learner using fewer than one-third of the labeled training 
instances, as well as five times as many unlabeled ones. This is a good tradeoff when 
labeled instances are expensive but unlabeled ones are virtually free. With a small 
number of labeled documents, classification accuracy can be improved dramatically 
by incorporating many unlabeled ones.

Two refinements to the procedure have been shown to improve performance. 
The first is motivated by experimental evidence showing that when there are many 
labeled documents the incorporation of unlabeled data may reduce rather than 
increase accuracy. Hand-labeled data is (or should be) inherently less noisy than 
automatically labeled data. The solution is to introduce a weighting parameter that 
reduces the contribution of the unlabeled data. This can be incorporated into the 
maximization step of EM by maximizing the weighted likelihood of the labeled 
and unlabeled instances. When the parameter is close to 0, unlabeled documents 
have little influence on the shape of EM’s hill-climbing surface; when it is close 
to 1, the algorithm reverts to the original version in which the surface is equally 
affected by both kinds of document.
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The second refinement is to allow each class to have several clusters. As 
explained in the previous section, the EM clustering algorithm assumes that the 
data is generated randomly from a mixture of different probability distributions, 
one per cluster. Until now, a one-to-one correspondence between mixture com-
ponents and classes has been assumed. In many circumstances, including docu-
ment classification, this is unrealistic because most documents address multiple 
topics. With several clusters per class, each labeled document is initially assigned 
randomly to each of its components in a probabilistic fashion. The maximization 
step of the EM algorithm remains as before, but the expectation step is modi-
fied not only to probabilistically label each example with the classes but to 
probabilistically assign it to the components within the class. The number of 
clusters per class is a parameter that depends on the domain and can be set by 
cross-validation.

Co-training
Another situation in which unlabeled data can improve classification performance 
is when there are two different and independent perspectives on the classification 
task. The classic example again involves documents, this time web documents, 
where the two perspectives are the content of a web page and the links to it 
from other pages. These two perspectives are well known to be both useful and 
different: Successful web search engines capitalize on them both using secret 
recipes. The text that labels a link to another web page gives a revealing clue 
as to what that page is about—perhaps even more revealing than the page’s 
own content, particularly if the link is an independent one. Intuitively, a link 
labeled my advisor is strong evidence that the target page is a faculty member’s 
home page.

The idea, called co-training, is this. Given a few labeled examples, first learn a 
different model for each perspective—in this case a content-based and a hyperlink-
based model. Then use each one separately to label the unlabeled examples. For 
each model, select the example that it most confidently labels as positive and the 
one it most confidently labels as negative, and add these to the pool of labeled 
examples. Better yet, maintain the ratio of positive and negative examples in the 
labeled pool by choosing more of one kind than the other. In either case, repeat the 
whole procedure, training both models on the augmented pool of labeled examples, 
until the unlabeled pool is exhausted.

There is some experimental evidence, using Naïve Bayes throughout as the 
learner, that this bootstrapping procedure outperforms one that employs all the fea-
tures from both perspectives to learn a single model from the labeled data. It relies 
on having two different views of an instance that are redundant but not completely 
correlated. Various domains have been proposed, from spotting celebrities in tele-
vised newscasts using video and audio separately to mobile robots with vision, sonar, 
and range sensors. The independence of the views reduces the likelihood of both 
hypotheses agreeing on an erroneous label.
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EM and Co-training
On datasets with two feature sets that are truly independent, experiments have shown 
that co-training gives better results than using EM as described previously. Even 
better performance, however, can be achieved by combining the two into a modified 
version of co-training called co-EM. Co-training trains two classifiers representing 
different perspectives, A and B, and uses both to add new examples to the training 
pool by choosing whichever unlabeled examples they classify most positively or 
negatively. The new examples are few in number and deterministically labeled. 
Co-EM, on the other hand, trains classifier A on the labeled data and uses it to 
probabilistically label all the unlabeled data. Next it trains classifier B on both the 
labeled data and the unlabeled data with classifier A’s tentative labels, and then it 
probabilistically relabels all the data for use by classifier A. The process iterates until 
the classifiers converge. This procedure seems to perform consistently better than 
co-training because it does not commit to the class labels that are generated by  
classifiers A and B but rather reestimates their probabilities at each iteration.

The range of applicability of co-EM, like co-training, is still limited by the 
requirement for multiple independent perspectives. But there is some experimental 
evidence to suggest that even when there is no natural split of features into indepen-
dent perspectives, benefits can be achieved by manufacturing such a split and using 
co-training—or, better yet, co-EM—on the split data. This seems to work even when 
the split is made randomly; performance could surely be improved by engineering the 
split so that the feature sets are maximally independent. Why does this work? 
Researchers have hypothesized that these algorithms succeed in part because the split 
makes them more robust to the assumptions that their underlying classifiers make.

There is no particular reason to restrict the base classifier to Naïve Bayes. Support 
vector machines probably represent the most successful technology for text catego-
rization today. However, for the EM iteration to work it is necessary that the classifier 
labels the data probabilistically; it must also be able to use probabilistically weighted 
examples for training. Support vector machines can easily be adapted to do both. 
We explained how to adapt learning algorithms to deal with weighted instances in 
Section 6.6, under Locally Weighted Linear Regression (page 258). One way of 
obtaining probability estimates from support vector machines is to fit a one-
dimensional logistic model to the output, effectively performing logistic regression 
as described in Section 4.6 on the output. Excellent results have been reported for 
text classification using co-EM with the support vector machine (SVM) classifier. It 
outperforms other variants of SVM and seems quite robust to varying proportions 
of labeled and unlabeled data.

Discussion
Nigam et al. (2000) thoroughly explored the idea of clustering for classification, 
showing how the EM clustering algorithm can use unlabeled data to improve 
an initial classifier built by Naïve Bayes. The idea of co-training is older: Blum 
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and Mitchell (1998) pioneered it and developed a theoretical model for the use 
of labeled and unlabeled data from different independent perspectives. Nigam 
and Ghani (2000) analyzed the effectiveness and applicability of co-training, 
relating it to the traditional use of standard expectation maximization to fill in 
missing values; they also introduced the co-EM algorithm. Up to this point, 
co-training and co-EM have been applied mainly to small two-class problems. 
Ghani (2002) used error-correcting output codes to address multiclass situations 
with many classes. Brefeld and Scheffer (2004) extended co-EM to use a support 
vector machine rather than Naïve Bayes.

6.10  MULTI-INSTANCE LEARNING
All the techniques described in this chapter so far are for the standard machine 
learning scenario where each example consists of a single instance. Before moving 
on to methods for transforming the input data in Chapter 7, we revisit the more 
complex setting of multi-instance learning, in which each example consists of a bag 
of instances instead. We describe approaches that are more advanced than the simple 
techniques discussed in Section 4.9. First, we consider how to convert multi-instance 
learning to single-instance learning by transforming the data. Then we discuss how 
to upgrade single-instance learning algorithms to the multi-instance case. Finally, 
we take a look at some methods that have no direct equivalent in single-instance 
learning.

Converting to Single-Instance Learning
Section 4.9 (page 142) presented some ways of applying standard single-instance 
learning algorithms to multi-instance data by aggregating the input or the output. 
Despite their simplicity, these techniques often work surprisingly well in practice. 
Nevertheless, there are clearly situations in which they will fail. Consider the method 
of aggregating the input by computing the minimum and maximum values of 
numeric attributes present in the bag and treating the result as a single instance. This 
will yield a huge loss of information because attributes are condensed to summary 
statistics individually and independently. Can a bag be converted to a single instance 
without discarding quite so much information?

The answer is yes, although the number of attributes that are present in the 
so-called “condensed” representation may increase substantially. The basic idea is 
to partition the instance space into regions and create one attribute per region in the 
single-instance representation. In the simplest case, attributes can be Boolean: If a 
bag has at least one instance in the region corresponding to a particular attribute the 
value of the attribute is set to true; otherwise, it is set to false. However, to preserve 
more information the condensed representation could instead contain numeric attri-
butes, the values of which are counts that indicate how many instances of the bag 
lie in the corresponding region.
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Regardless of the exact types of attributes that are generated, the main problem 
is to come up with a partitioning of the input space. A simple approach is to partition 
it into hypercubes of equal size. Unfortunately, this only works when the space has 
very few dimensions (i.e., attributes): The number of cubes required to achieve a 
given granularity grows exponentially with the dimension of the space. One way to 
make this approach more practical is to use unsupervised learning. Simply take all 
the instances from all the bags in the training data, discard their class labels, and 
form a big single-instance dataset; then process it with a clustering technique such 
as k-means. This will create regions corresponding to the different clusters (k regions, 
in the case of k-means). Then, for each bag, create one attribute per region in the 
condensed representation and use it as described previously.

Clustering is a rather heavy-handed way to infer a set of regions from the training 
data because it ignores information about class membership. An alternative approach 
that often yields better results is to partition the instance space using decision tree 
learning. Each leaf of a tree corresponds to one region of instance space. But how 
can a decision tree be learned when the class labels apply to entire bags of instances 
rather than to individual instances? The approach described under Aggregating the 
Output in Section 4.9 can be used: Take the bag’s class label and attach it to each 
of its instances. This yields a single-instance dataset, ready for decision tree learning. 
Many of the class labels will be incorrect—the whole point of multi-instance learn-
ing is that it is not clear how bag-level labels relate to instance-level ones. However, 
these class labels are only being used to obtain a partition of instance space. The 
next step is to transform the multi-instance dataset into a single-instance one that 
represents how instances from each bag are distributed throughout the space. Then 
another single-instance learning method is applied—perhaps, again, decision tree 
learning—that determines the importance of individual attributes in the condensed 
representation which correspond to regions in the original space.

Using decision trees and clustering yields “hard” partition boundaries, where an 
instance either does or does not belong to a region. Such partitions can also be 
obtained using a distance function, combined with some reference points, by assign-
ing instances to their closest reference point. This implicitly divides the space into 
regions, each corresponding to one reference point. (In fact, this is exactly what 
happens in k-means clustering: The cluster centers are the reference points.) But 
there is no fundamental reason to restrict attention to hard boundaries: We can make 
the region membership function “soft” by using distance—transformed into a simi-
larity score—to compute attribute values in the condensed representation of a bag. 
All that is needed is some way of aggregating the similarity scores between each 
bag and reference point into a single value—for example, by taking the maximum 
similarity between each instance in that bag and the reference point.

In the simplest case, each instance in the training data can be used as a refer-
ence point. That creates a large number of attributes in the condensed representation, 
but it preserves much of the information from a bag of instances in its correspond-
ing single-instance representation. This method has been successfully applied to 
multi-instance problems.
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Regardless of how the approach is implemented, the basic idea is to convert a 
bag of instances into a single one by describing the distribution of instances from 
this bag in instance space. Alternatively, ordinary learning methods can be applied 
to multi-instance data by aggregating the output rather than the input. Section 4.9 
described a simple way: Join instances of bags in the training data into a single 
dataset by attaching bag-level class labels to them, perhaps weighting instances to 
give each bag the same total weight. A single-instance classification model can 
then be built. At classification time, predictions for individual instances are 
combined—for example, by averaging predicted class probabilities.

Although this approach often works well in practice, attaching bag-level class 
labels to instances is simplistic. Generally, the assumption in multi-instance learn-
ing is that only some of the instances—perhaps just one—are responsible for the 
class label of the associated bag. How can the class labels be corrected to yield 
a more accurate representation of the true underlying situation? This is obviously 
a difficult problem; if it were solved, it would make little sense to investigate 
other approaches to multi-instance learning. One method that has been applied is 
iterative: Start by assigning each instance its bag’s class label and learn a single-
instance classification model; then replace the instances’ class labels by the pre-
dicted labels of this single-instance classification model for these instances. Repeat 
the whole procedure until the class labels remain unchanged from one iteration 
to the next.

Some care is needed to obtain sensible results. For example, suppose every 
instance in a bag were to receive a class label that differs from the bag’s label. Such 
a situation should be prevented by forcing the bag’s label on at least one instance—
for example, the one with the largest predicted probability for this class.

This iterative approach has been investigated for the original multi-instance 
scenario with two class values, where a bag is positive if and only if one of its 
instances is positive. In that case it makes sense to assume that all instances from 
negative bags are truly negative and modify only the class labels of instances from 
positive bags. At prediction time, bags are classified as positive if one of their 
instances is classified as positive.

Upgrading Learning Algorithms
Tackling multi-instance learning by modifying the input or output so that single-
instance schemes can be applied is appealing because there is a large battery of such 
techniques that can then be used directly, without any modification. However, it may 
not be the most efficient approach. An alternative is to adapt the internals of a single-
instance algorithm to the multi-instance setting. This can be done in a particularly 
elegant fashion if the algorithm in question only considers the data through applica-
tion of a distance (or similarity) function, as with nearest-neighbor classifiers or 
support vector machines. These can be adapted by providing a distance (or similar-
ity) function for multi-instance data that computes a score between two bags of 
instances.



In the case of kernel-based methods such as support vector machines, the similar-
ity must be a proper kernel function that satisfies certain mathematical properties. 
One that has been used for multi-instance data is the so-called set kernel. Given a 
kernel function for pairs of instances that support vector machines can apply to 
single-instance data—for example, one of the kernel functions considered in Section  
6.4—the set kernel sums it over all pairs of instances from the two bags being com-
pared. This idea is generic and can be applied with any single-instance kernel 
function.

Nearest-neighbor learning has been adapted to multi-instance data by applying 
variants of the Hausdorff distance, which is defined for sets of points. Given two 
bags and a distance function between pairs of instances—for example, the Euclidean 
distance—the Hausdorff distance between the bags is the largest distance from any 
instance in one bag to its closest instance in the other bag. It can be made more 
robust to outliers by using the nth-largest distance rather than the maximum.

For learning algorithms that are not based on similarity scores, more work is 
required to upgrade them to multi-instance data. There are multi-instance algo-
rithms for rule learning and for decision tree learning, but we will not describe 
them here. Adapting algorithms to the multi-instance case is more straightforward 
if the algorithm concerned is essentially a numerical optimization strategy that is 
applied to the parameters of some function by minimizing a loss function on the 
training data. Logistic regression (Section 4.6) and multilayer perceptrons (Section 
6.4) fall into this category; both have been adapted to multi-instance learning by 
augmenting them with a function that aggregates instance-level predictions. The 
so-called “soft maximum” is a differentiable function that is suitable for this 
purpose: It aggregates instance-level predictions by taking their (soft) maximum 
as the bag-level prediction.

Dedicated Multi-Instance Methods
Some multi-instance learning schemes are not based directly on single-instance 
algorithms. Here is an early technique that was specifically developed for the drug 
activity prediction problem mentioned in Section 2.2 (page 49), in which instances 
are conformations of a molecule and a molecule (i.e., a bag) is considered positive 
if and only if it has at least one active conformation. The basic idea is to learn a 
single hyperrectangle that contains at least one instance from each positive bag in 
the training data and no instances from any negative bags. Such a rectangle encloses 
an area of instance space where all positive bags overlap, but it contains no negative 
instances—an area that is common to all active molecules but not represented in any 
inactive ones. The particular drug activity data originally considered was high-
dimensional, with 166 attributes describing each instance. In such a case it is com-
putationally difficult to find a suitable hyperrectangle. Consequently, a heuristic 
approach was developed that is tuned to this particular problem.

Other geometric shapes can be used instead of hyperrectangles. Indeed, the same 
basic idea has been applied using hyperspheres (balls). Training instances are treated 
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as potential ball centers. For each one, a radius is found that yields the smallest 
number of errors for the bags in the training data. The original multi-instance 
assumption is used to make predictions: A bag is classified as positive if and only 
if it has at least one instance inside the ball. A single ball is generally not powerful 
enough to yield good classification performance. However, this method is not 
intended as a standalone algorithm. Rather, it is advocated as a “weak” learner  
to be used in conjunction with boosting algorithms (see Section 8.4) to obtain a 
powerful ensemble classifier—an ensemble of balls.

The dedicated multi-instance methods discussed so far have hard decision bound-
aries: An instance either falls inside or outside a ball or hyperrectangle. Other multi-
instance algorithms use soft concept descriptions couched in terms of probability 
theory. The so-called diverse-density method is a classic example, again designed 
with the original multi-instance assumption in mind. Its basic and most commonly 
used form learns a single reference point in instance space. The probability that an 
instance is positive is computed from its distance to this point: It is 1 if the instance 
coincides with the reference point and decreases with increasing distance from this 
point, usually based on a bell-shaped function.

The probability that a bag is positive is obtained by combining the individual 
probabilities of the instances it contains, generally using the “noisy-OR” function. 
This is a probabilistic version of the logical OR. If all instance-level probabilities 
are 0, the noisy-OR value—and thus the bag-level probability—is 0; if at least one 
instance-level probability is 1, the value is 1; otherwise, the value falls somewhere 
in between.

The diverse density is defined as the probability of the class labels of the bags 
in the training data, computed based on this probabilistic model. It is maximized 
when the reference point is located in an area where positive bags overlap and no 
negative bags are present, just as for the two geometric methods discussed previ-
ously. A numerical optimization routine such as gradient ascent can be used to find 
the reference point that maximizes the diverse-density measure. In addition to the 
location of the reference point, implementations of diverse density also optimize the 
scale of the distance function in each dimension because generally not all attributes 
are equally important. This can improve predictive performance significantly.

Discussion
Condensing the input data by aggregating information into simple summary statistics 
is a well-known technique in multirelational learning, used in the RELAGGS system 
by Krogel and Wrobel (2002); multi-instance learning can be viewed as a special 
case of this more general setting (de Raedt, 2008). The idea of replacing simple 
summary statistics by region-based attributes, derived from partitioning the instance 
space, was explored by Weidmann et al. (2003) and Zhou and Zhang (2007). Using 
reference points to condense bags was investigated by Chen et al. (2006) and evalu-
ated in a broader context by Foulds and Frank (2008). Andrews et al. (2003) pro-
posed manipulating the class labels of individual instances using an iterative learning 
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process for learning support vector machine classifiers based on the original multi-
instance assumption.

Nearest-neighbor learning based on variants of the Hausdorff distance was inves-
tigated by Wang and Zucker (2000). Gärtner et al. (2002) experimented with the set 
kernel to learn support vector machine classifiers for multi-instance data. Multi-
instance algorithms for rule and decision tree learning, which are not covered here, 
have been described by Chevaleyre and Zucker (2001) and Blockeel et al. (2005). 
Logistic regression has been adapted for multi-instance learning by Xu and Frank 
(2004) and Ray and Craven (2005); multilayer perceptrons have been adapted by 
Ramon and de Raedt (2000).

Hyperrectangles and spheres were considered as concept descriptions for multi-
instance learning by Dietterich et al. (1997) and Auer and Ortner (2004), respec-
tively. The diverse-density method is the subject of Maron’s (1998) Ph.D. thesis, 
and is also described in Maron and Lozano-Peréz (1997).

The multi-instance literature makes many different assumptions regarding the 
type of concept to be learned, defining, for example, how the bag-level and instance-
level class labels are connected, starting with the original assumption that a bag is 
labeled positive if and only if one of its instances is positive. A review of assump-
tions in multi-instance learning can be found in Foulds and Frank (2010).

6.11  WEKA IMPLEMENTATIONS
For classifiers, see Section 11.4 and Table 11.5. For clustering methods, see Section 
11.6 and Table 11.7.

•	 Decision trees:
•	 J48 (implementation of C4.5)
•	 SimpleCart (minimum cost-complexity pruning à la CART)
•	 REPTree (reduced-error pruning)

•	 Classification rules:
•	 JRip (RIPPER rule learner)
•	 Part (rules from partial decision trees)
•	 Ridor (ripple-down rule learner)

•	 Association rules (see Section 11.7 and Table 11.8):
•	 FPGrowth (frequent-pattern trees)
•	 GeneralizedSequentialPatterns (find large item trees in sequential data)

•	 Linear models and extensions:
•	 SMO and variants for learning support vector machines
•	 LibSVM (uses third-party libsvm library)
•	 MultilayerPerceptron
•	 RBFNetwork (radial-basis function network)
•	 SPegasos (SVM using stochastic gradient descent)
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•	 Instance-based learning:
•	 IBk (k-nearest neighbour classifier)
•	 KStar (generalized distance functions)
•	 NNge (rectangular generalizations)

•	 Numeric prediction:
•	 M5P (model trees)
	 M5Rules (rules from model trees)
•	 LWL (locally weighted learning)

•	 Bayesian networks:
•	 BayesNet
•	 AODE, WAODE (averaged one-dependence estimator)

•	 Clustering:
•	 XMeans
•	 Cobweb (includes Classit)
•	 EM

•	 Multi-instance learning:
•	 MISVM (iterative method for learning SVM by relabeling instances)
•	 MISMO (SVM with multi-instance kernel)
•	 CitationKNN (nearest-neighbor method with Hausdorff distance)
•	 MILR (logistic regression for multi-instance data)
•	 MIOptimalBall (learning balls for multi-instance classification)
•	 MIDD (the diverse-density method using the noisy-OR function)
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CHAPTER 

7 

Data Transformations

In Chapter 6 we examined a vast array of machine learning methods: decision trees, 
classification and association rules, linear models, instance-based schemes, numeric 
prediction techniques, Bayesian networks, clustering algorithms, and semisupervised 
and multi-instance learning. All are sound, robust techniques that are eminently 
applicable to practical data mining problems.

But successful data mining involves far more than selecting a learning algorithm 
and running it over your data. For one thing, many learning schemes have various 
parameters, and suitable values must be chosen for these. In most cases, results can 
be improved markedly by a suitable choice of parameter values, and the appropriate 
choice depends on the data at hand. For example, decision trees can be pruned or 
unpruned, and in the former case a pruning parameter may have to be chosen. In 
the k-nearest-neighbor method of instance-based learning, a value for k will have to 
be chosen. More generally, the learning scheme itself will have to be chosen from 
the range of schemes that are available. In all cases, the right choices depend on the 
data itself.

It is tempting to try out several learning schemes and several parameter values 
on your data, and see which works best. But be careful! The best choice is not nec-
essarily the one that performs best on the training data. We have repeatedly cautioned 
about the problem of overfitting, where a learned model is too closely tied to the 
particular training data from which it was built. It is incorrect to assume that per-
formance on the training data faithfully represents the level of performance that can 
be expected on the fresh data to which the learned model will be applied in 
practice.

Fortunately, we have already encountered the solution to this problem in 
Chapter 5. There are two good methods for estimating the expected true perfor-
mance of a learning scheme: the use of a large dataset that is quite separate 
from the training data, in the case of plentiful data, and cross-validation (see 
Section 5.3), if data is scarce. In the latter case, a single tenfold cross-validation 
is typically used in practice, although to obtain a more reliable estimate the 
entire procedure should be repeated 10 times. Once suitable parameters have 
been chosen for the learning scheme, use the whole training set—all the avail-
able training instances—to produce the final learned model that is to be applied 
to fresh data.
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Note that the performance obtained with the chosen parameter value during the 
tuning process is not a reliable estimate of the final model’s performance, because 
the final model potentially overfits the data that was used for tuning. To ascertain 
how well it will perform, you need yet another large dataset that is quite separate 
from any data used during learning and tuning. The same is true for cross-validation: 
You need an “inner” cross-validation for parameter tuning and an “outer” cross-
validation for error estimation. With tenfold cross-validation, this involves running 
the learning scheme 100 times. To summarize: When assessing the performance of 
a learning scheme, any parameter tuning that goes on should be treated as though it 
were an integral part of the training process.

There are other important processes that can materially improve success when 
applying machine learning techniques to practical data mining problems, and these 
are the subject of this chapter. They constitute a kind of data engineering—engineering 
the input data into a form suitable for the learning scheme chosen and engineering 
the output to make it more effective. You can look on them as a bag of tricks that 
you can apply to practical data mining problems to enhance the chance of success. 
Sometimes they work; other times they don’t—and at the present state of the art, 
it’s hard to say in advance whether they will or not. In an area such as this, where 
trial and error is the most reliable guide, it is particularly important to be resourceful 
and have an understanding of what the tricks are.

In this chapter we examine six different ways in which the input can be massaged 
to make it more amenable for learning methods: attribute selection, attribute dis-
cretization, data projections, sampling, data cleansing, and converting multiclass 
problems to two-class ones. Consider the first, attribute selection. In many practical 
situations there are far too many attributes for learning schemes to handle, and some 
of them—perhaps the overwhelming majority—are clearly irrelevant or redundant. 
Consequently, the data must be preprocessed to select a subset of the attributes to 
use in learning. Of course, many learning schemes themselves try to select attributes 
appropriately and ignore irrelevant or redundant ones, but in practice their perfor-
mance can frequently be improved by preselection. For example, experiments show 
that adding useless attributes causes the performance of learning schemes such as 
decision trees and rules, linear regression, instance-based learners, and clustering 
methods to deteriorate.

Discretization of numeric attributes is absolutely essential if the task involves 
numeric attributes but the chosen learning scheme can only handle categorical ones. 
Even schemes that can handle numeric attributes often produce better results, or 
work faster, if the attributes are prediscretized. The converse situation, in which 
categorical attributes must be represented numerically, also occurs (although less 
often), and we describe techniques for this case, too.

Data projection covers a variety of techniques. One transformation, which we 
have encountered before when looking at relational data in Chapter 2 and support 
vector machines in Chapter 6, is to add new, synthetic attributes whose purpose is 
to present existing information in a form that is suitable for the machine learning 
scheme to pick up on. More general techniques that do not depend so intimately 
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on the semantics of the particular data mining problem at hand include principal 
components analysis and random projections. We also cover partial least-squares 
regression as a data projection technique for regression problems.

Sampling the input is an important step in many practical data mining applica-
tions, and is often the only way in which really large-scale problems can be handled. 
Although it is fairly simple, we include a brief section on techniques of sampling, 
including a way of incrementally producing a random sample of a given size when 
the total size of the dataset is not known in advance.

Unclean data plagues data mining. We emphasized in Chapter 2 the necessity 
of getting to know your data: understanding the meaning of all the different attri-
butes, the conventions used in coding them, the significance of missing values 
and duplicate data, measurement noise, typographical errors, and the presence of 
systematic errors—even deliberate ones. Various simple visualizations often help 
with this task. There are also automatic methods of cleansing data, of detecting 
outliers, and of spotting anomalies, which we describe, including a class of tech-
niques referred to as one-class learning in which only a single class of instances 
is available at training time.

Finally, we examine techniques for refining the output of learning schemes that 
estimate class probabilities by recalibrating the estimates that they make. This is 
primarily of importance when accurate probabilities are required, as in cost-sensitive 
classification, though it can also improve classification performance.

7.1  ATTRIBUTE SELECTION
Most machine learning algorithms are designed to learn which are the most appro-
priate attributes to use for making their decisions. For example, decision tree 
methods choose the most promising attribute to split on at each point and should—
in theory—never select irrelevant or unhelpful attributes. Having more features 
should surely—in theory—result in more discriminating power, never less. “What’s 
the difference between theory and practice?” an old question asks. The answer 
goes, “There is no difference between theory and practice—in theory. But in 
practice, there is.” Here there is too: In practice, adding irrelevant or distracting 
attributes to a dataset often confuses machine learning systems.

Experiments with a decision tree learner (C4.5) have shown that adding to stan-
dard datasets a random binary attribute generated by tossing an unbiased coin 
impacts classification performance, causing it to deteriorate (typically by 5 to 10% 
in the situations tested). This happens because at some point in the trees that are 
learned, the irrelevant attribute is invariably chosen to branch on, causing random 
errors when test data is processed. How can this be when decision tree learners are 
cleverly designed to choose the best attribute for splitting at each node? The reason 
is subtle. As you proceed further down the tree, less and less data is available to 
help make the selection decision. At some point, with little data, the random attribute 
will look good just by chance. Because the number of nodes at each level increases 
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exponentially with depth, the chance of the rogue attribute looking good somewhere 
along the frontier multiplies up as the tree deepens. The real problem is that you 
inevitably reach depths at which only a small amount of data is available for attribute 
selection. If the dataset were bigger it wouldn’t necessarily help—you’d probably 
just go deeper.

Divide-and-conquer tree learners and separate-and-conquer rule learners both 
suffer from this effect because they inexorably reduce the amount of data on which 
they base judgments. Instance-based learners are very susceptible to irrelevant attri-
butes because they always work in local neighborhoods, taking just a few training 
instances into account for each decision. Indeed, it has been shown that the number of 
training instances needed to produce a predetermined level of performance for 
instance-based learning increases exponentially with the number of irrelevant attri-
butes present. Naïve Bayes, by contrast, does not fragment the instance space and 
robustly ignores irrelevant attributes. It assumes by design that all attributes are condi-
tionally independent of one another, an assumption that is just right for random “dis-
tracter” attributes. But through this very same assumption, Naïve Bayes pays a heavy 
price in other ways because its operation is damaged by adding redundant attributes.

The fact that irrelevant distracters degrade the performance of state-of-the-art 
decision tree and rule learners is, at first, surprising. Even more surprising is that 
relevant attributes can also be harmful. For example, suppose that in a two-class 
dataset a new attribute was added that had the same value as the class to be predicted 
most of the time (65%) and the opposite value the rest of the time, randomly dis-
tributed among the instances. Experiments with standard datasets have shown that 
this can cause classification accuracy to deteriorate (by 1 to 5% in the situations 
tested). The problem is that the new attribute is (naturally) chosen for splitting high 
up in the tree. This has the effect of fragmenting the set of instances available at the 
nodes below so that other choices are based on sparser data.

Because of the negative effect of irrelevant attributes on most machine learning 
schemes, it is common to precede learning with an attribute selection stage that 
strives to eliminate all but the most relevant attributes. The best way to select rel-
evant attributes is manually, based on a deep understanding of the learning problem 
and what the attributes actually mean. However, automatic methods can also be 
useful. Reducing the dimensionality of the data by deleting unsuitable attributes 
improves the performance of learning algorithms. It also speeds them up, although 
this may be outweighed by the computation involved in attribute selection. More 
important, dimensionality reduction yields a more compact, more easily interpre-
table representation of the target concept, focusing the user’s attention on the most 
relevant variables.

Scheme-Independent Selection
When selecting a good attribute subset, there are two fundamentally different 
approaches. One is to make an independent assessment based on general characteris-
tics of the data; the other is to evaluate the subset using the machine learning algorithm 
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that will ultimately be employed for learning. The first is called the filter method 
because the attribute set is filtered to produce the most promising subset before learn-
ing commences. The second is called the wrapper method because the learning algo-
rithm is wrapped into the selection procedure. Making an independent assessment of 
an attribute subset would be easy if there were a good way of determining when an 
attribute was relevant to choosing the class. However, there is no universally accepted 
measure of relevance, although several different ones have been proposed.

One simple scheme-independent method of attribute selection is to use just enough 
attributes to divide up the instance space in a way that separates all the training 
instances. For example, if just one or two attributes are used, there will generally be 
several instances that have the same combination of attribute values. At the other 
extreme, the full set of attributes will likely distinguish the instances uniquely so that 
no two instances have the same values for all attributes. (This will not necessarily 
be the case, however; datasets sometimes contain instances with the same attribute 
values but different classes.) It makes intuitive sense to select the smallest attribute 
subset that serves to distinguish all instances uniquely. This can easily be found using 
an exhaustive search, although at considerable computational expense. Unfortunately, 
this strong bias toward consistency of the attribute set on the training data is statisti-
cally unwarranted and can lead to overfitting—the algorithm may go to unnecessary 
lengths to repair an inconsistency that was in fact merely caused by noise.

Machine learning algorithms can be used for attribute selection. For instance, you 
might first apply a decision tree algorithm to the full dataset and then select only those 
attributes that are actually used in the tree. While this selection would have no effect 
at all if the second stage merely built another tree, it will have an effect on a different 
learning algorithm. For example, the nearest-neighbor algorithm is notoriously sus-
ceptible to irrelevant attributes, and its performance can be improved by using a deci-
sion tree builder as a filter for attribute selection first. The resulting nearest-neighbor 
scheme can also perform better than the decision tree algorithm used for filtering.

As another example, the simple 1R scheme described in Chapter 4 has been 
used to select the attributes for a decision tree learner by evaluating the effect of 
branching on different attributes (although an error-based method such as 1R may 
not be the optimal choice for ranking attributes, as we will see later when covering 
the related problem of supervised discretization). Often the decision tree performs 
just as well when only the two or three top attributes are used for its construction—
and it is much easier to understand. In this approach, the user determines how 
many attributes to use for building the decision tree.

Another possibility is to use an algorithm that builds a linear model—for 
example, a linear support vector machine—and ranks the attributes based on the 
size of the coefficients. A more sophisticated variant applies the learning algorithm 
repeatedly. It builds a model, ranks the attributes based on the coefficients, removes 
the lowest-ranked one, and repeats the process until all attributes have been 
removed. This method of recursive feature elimination has been found to yield 
better results on certain datasets (e.g., when identifying important genes for cancer 
classification) than simply ranking attributes based on a single model. With both 
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methods it is important to ensure that the attributes are measured on the same 
scale; otherwise, the coefficients are not comparable. Note that these techniques 
just produce a ranking; another method must be used to determine the appropriate 
number of attributes to use.

Attributes can be selected using instance-based learning methods too. You could 
sample instances randomly from the training set and check neighboring records of 
the same and different classes—“near hits” and “near misses.” If a near hit has a 
different value for a certain attribute, that attribute appears to be irrelevant and its 
weight should be decreased. On the other hand, if a near miss has a different value, 
the attribute appears to be relevant and its weight should be increased. Of course, 
this is the standard kind of procedure used for attribute weighting for instance-based 
learning, described in Section 6.5. After repeating this operation many times, selec-
tion takes place: Only attributes with positive weights are chosen. As in the standard 
incremental formulation of instance-based learning, different results will be obtained 
each time the process is repeated, because of the different ordering of examples. 
This can be avoided by using all training instances and taking into account all near 
hits and near misses of each.

A more serious disadvantage is that the method will not detect an attribute that 
is redundant because it is correlated with another attribute. In the extreme case, 
two identical attributes would be treated in the same way, either both selected or 
both rejected. A modification has been suggested that appears to go some way 
toward addressing this issue by taking the current attribute weights into account 
when computing the nearest hits and misses.

Another way of eliminating redundant attributes as well as irrelevant ones is to select a 
subset of attributes that individually correlate well with the class but have little 
intercorrelation. The correlation between two nominal attributes A and B can be measured 
using the symmetric uncertainty:
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where H is the entropy function described in Section 4.3. The entropies are based on the 
probability associated with each attribute value; H(A, B), the joint entropy of A and B, is 
calculated from the joint probabilities of all combinations of values of A and B.

The symmetric uncertainty always lies between 0 and 1. Correlation-based feature 
selection determines the goodness of a set of attributes using
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where C is the class attribute and the indices i and j range over all attributes in the 
set. If all m attributes in the subset correlate perfectly with the class and with one 
another, the numerator becomes m and the denominator m2, which is also m. Thus, 
the measure is 1, which turns out to be the maximum value it can attain (the minimum 
is 0). Clearly, this is not ideal, because we want to avoid redundant attributes. However, 
any subset of this set will also have value 1. When using this criterion to search for a 
good subset of attributes, it makes sense to break ties in favor of the smallest subset.
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Searching the Attribute Space
Most methods for attribute selection involve searching the space of attributes for the 
subset that is most likely to predict the class best. Figure 7.1 illustrates the attribute 
space for the—by now all-too-familiar—weather dataset. The number of possible 
attribute subsets increases exponentially with the number of attributes, making an 
exhaustive search impractical on all but the simplest problems.

Typically, the space is searched greedily in one of two directions: top to bottom 
and bottom to top in the figure. At each stage, a local change is made to the current 
attribute subset by either adding or deleting a single attribute. The downward direc-
tion, where you start with no attributes and add them one at a time, is called forward 
selection. The upward one, where you start with the full set and delete attributes one 
at a time, is backward elimination.

In forward selection, each attribute that is not already in the current subset is 
tentatively added to it, and the resulting set of attributes is evaluated—using, for 
example, cross-validation, as described in the following section. This evaluation 
produces a numeric measure of the expected performance of the subset. The effect 
of adding each attribute in turn is quantified by this measure, the best one is chosen, 

FIGURE 7.1 

Attribute space for the weather dataset. 
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and the procedure continues. However, if no attribute produces an improvement 
when added to the current subset, the search ends. This is a standard greedy search 
procedure and guarantees to find a locally—but not necessarily globally—optimal 
set of attributes.

Backward elimination operates in an entirely analogous fashion. In both cases a 
slight bias is often introduced toward smaller attribute sets. This can be done for 
forward selection by insisting that if the search is to continue, the evaluation measure 
must not only increase, but must increase by at least a small predetermined quantity. 
A similar modification works for backward elimination.

More sophisticated search schemes exist. Forward selection and backward elimi-
nation can be combined into a bidirectional search; again, one can begin either with 
all the attributes or with none of them. Best-first search is a method that does not 
just terminate when the performance starts to drop but keeps a list of all attribute 
subsets evaluated so far, sorted in order of the performance measure, so that it can 
revisit an earlier configuration instead. Given enough time it will explore the entire 
space, unless this is prevented by some kind of stopping criterion. Beam search is 
similar but truncates its list of attribute subsets at each stage so that it only contains 
a fixed number—the beam width—of most promising candidates. Genetic algorithm 
search procedures are loosely based on the principle of natural selection: They 
“evolve” good feature subsets by using random perturbations of a current list of 
candidate subsets and combining them based on performance.

Scheme-Specific Selection
The performance of an attribute subset with scheme-specific selection is measured 
in terms of the learning scheme’s classification performance using just those attri-
butes. Given a subset of attributes, accuracy is estimated using the normal procedure 
of cross-validation described in Section 5.3. Of course, other evaluation methods 
such as performance on a holdout set (Section 5.3) or the bootstrap estimator 
(Section 5.4) could be equally well used.

The entire attribute selection process is rather computation intensive. If each 
evaluation involves a tenfold cross-validation, the learning procedure must be exe-
cuted 10 times. With m attributes, the heuristic forward selection or backward elimi-
nation multiplies evaluation time by a factor proportional to m2 in the worst case. 
For more sophisticated searches, the penalty will be far greater, up to 2m for an 
exhaustive algorithm that examines each of the 2m possible subsets.

Good results have been demonstrated on many datasets. In general terms, back-
ward elimination produces larger attribute sets than forward selection but better 
classification accuracy in some cases. The reason is that the performance measure 
is only an estimate, and a single optimistic estimate will cause both of these search 
procedures to halt prematurely—backward elimination with too many attributes and 
forward selection with not enough. But forward selection is useful if the focus is on 
understanding the decision structures involved, because it often reduces the number 
of attributes with only a small effect on classification accuracy. Experience seems 
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to show that more sophisticated search techniques are not generally justified, 
although they can produce much better results in certain cases.

One way to accelerate the search process is to stop evaluating a subset of attributes as 
soon as it becomes apparent that it is unlikely to lead to higher accuracy than another 
candidate subset. This is a job for a paired statistical significance test, performed between 
the classifier based on this subset and all the other candidate classifiers based on other 
subsets. The performance difference between two classifiers on a particular test instance 
can be −1, 0, or 1 depending on, respectively, whether the first classifier is worse than, 
the same as, or better than the second on that instance. A paired t-test (described in 
Section 5.5) can be applied to these figures over the entire test set, effectively treating 
the results for each instance as an independent estimate of the difference in performance. 
Then the cross-validation for a classifier can be prematurely terminated as soon as it turns 
out to be significantly worse than another, which, of course, may never happen. We might 
want to discard classifiers more aggressively by modifying the t-test to compute the 
probability that one classifier is better than another classifier by at least a small user-
specified threshold. If this probability becomes very small, we can discard the former 
classifier on the basis that it is very unlikely to perform substantially better than the latter.

This methodology is called race search and can be implemented with different 
underlying search strategies. When it is used with forward selection, we race all possible 
single-attribute additions simultaneously and drop those that do not perform well enough. 
In backward elimination, we race all single-attribute deletions. Schemata search is a more 
complicated method specifically designed for racing; it runs an iterative series of races 
that each determine whether or not a particular attribute should be included. The other 
attributes for this race are included or excluded randomly at each point in the evaluation. 
As soon as one race has a clear winner, the next iteration of races begins, using the 
winner as the starting point. Another search strategy is to rank the attributes first using, 
for example, their information gain (assuming they are discrete), and then race the 
ranking. In this case the race includes no attributes, the top-ranked attribute, the top two 
attributes, the top three, and so on.

A simple method for accelerating a scheme-specific search is to preselect a given 
number of attributes by ranking them first using a criterion like the information gain 
and discarding the rest before applying scheme-specific selection. This has been 
found to work surprisingly well on high-dimensional datasets such as gene expres-
sion and text categorization data, where only a couple of hundred of attributes are 
used instead of several thousands. In the case of forward selection, a slightly more 
sophisticated variant is to restrict the number of attributes available for expanding 
the current attribute subset to a fixed-sized subset chosen from the ranked list of 
attributes—creating a sliding window of attribute choices—rather than making all 
(unused) attributes available for consideration in each step of the search process.

Whatever way you do it, scheme-specific attribute selection by no means yields 
a uniform improvement in performance. Because of the complexity of the process, 
which is greatly increased by the feedback effect of including a target machine 
learning algorithm in the attribution selection loop, it is quite hard to predict the 
conditions under which it will turn out to be worthwhile. As in many machine 
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learning situations, trial and error using your own particular source of data is the 
final arbiter.

There is one type of classifier for which scheme-specific attribute selection is an 
essential part of the learning process: the decision table. As mentioned in Section 
3.1, the entire problem of learning decision tables consists of selecting the right 
attributes to be included. Usually this is done by measuring the table’s cross-
validation performance for different subsets of attributes and choosing the best-
performing subset. Fortunately, leave-one-out cross-validation is very cheap for this 
kind of classifier. Obtaining the cross-validation error from a decision table derived 
from the training data is just a matter of manipulating the class counts associated 
with each of the table’s entries, because the table’s structure doesn’t change when 
instances are added or deleted. The attribute space is generally searched by best-first 
search because this strategy is less likely to get stuck in a local maximum than others, 
such as forward selection.

Let’s end our discussion with a success story. Naïve Bayes is a learning 
method for which a simple scheme-specific attribute selection approach has shown 
good results. Although this method deals well with random attributes, it has the 
potential to be misled when there are dependencies among attributes, and particu-
larly when redundant ones are added. However, good results have been reported 
using the forward selection algorithm—which is better able to detect when a 
redundant attribute is about to be added than the backward elimination approach—
in conjunction with a very simple, almost “naïve,” metric that determines the 
quality of an attribute subset to be simply the performance of the learned algo-
rithm on the training set. As was emphasized in Chapter 5, training set perfor-
mance is certainly not a reliable indicator of test set performance. Nevertheless, 
experiments show that this simple modification to Naïve Bayes markedly improves 
its performance on those standard datasets for which it does not do so well as 
tree- or rule-based classifiers, and does not have any negative effect on results 
on datasets on which Naïve Bayes already does well. Selective Naïve Bayes, as 
this learning method is called, is a viable machine learning technique that performs 
reliably and well in practice.

7.2  DISCRETIZING NUMERIC ATTRIBUTES
Some classification and clustering algorithms deal with nominal attributes only and 
cannot handle ones measured on a numeric scale. To use them on general datasets, 
numeric attributes must first be “discretized” into a small number of distinct ranges. 
Even learning algorithms that handle numeric attributes sometimes process them in 
ways that are not altogether satisfactory. Statistical clustering methods often assume 
that numeric attributes have a normal distribution—often not a very plausible 
assumption in practice—and the standard extension of the Naïve Bayes classifier for 
numeric attributes adopts the same assumption. Although most decision tree and 
decision rule learners can handle numeric attributes, some implementations work 
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much more slowly when numeric attributes are present because they repeatedly sort 
the attribute values. For all these reasons the question arises, what is a good way to 
discretize numeric attributes into ranges before any learning takes place?

We have already encountered some methods for discretizing numeric attributes. 
The 1R learning scheme described in Chapter 4 uses a simple but effective tech-
nique: Sort the instances by the attribute’s value and assign the value into ranges 
at the points that the class value changes—except that a certain minimum number 
of instances in the majority class (six) must lie in each of the ranges, which 
means that any given range may include a mixture of class values. This is a 
“global” method of discretization that is applied to all continuous attributes before 
learning starts.

Decision tree learners, on the other hand, deal with numeric attributes on a local 
basis, examining attributes at each node of the tree when it is being constructed to 
see whether they are worth branching on, and only at that point deciding on the best 
place to split continuous attributes. Although the tree-building method we examined 
in Chapter 6 only considers binary splits of continuous attributes, one can imagine 
a full discretization taking place at that point, yielding a multiway split on a numeric 
attribute. The pros and cons of the local versus global approach are clear. Local 
discretization is tailored to the actual context provided by each tree node, and will 
produce different discretizations of the same attribute at different places in the tree 
if that seems appropriate. However, its decisions are based on less data as tree depth 
increases, which compromises their reliability. If trees are developed all the way out 
to single-class leaves before being pruned back, as with the normal technique of 
backward pruning, it is clear that many discretization decisions will be based on 
data that is grossly inadequate.

When using global discretization before applying a learning scheme, there are 
two possible ways of presenting the discretized data to the learner. The most obvious 
is to treat discretized attributes like nominal ones: Each discretization interval is 
represented by one value of the nominal attribute. However, because a discretized 
attribute is derived from a numeric one, its values are ordered, and treating it as 
nominal discards this potentially valuable ordering information. Of course, if a learn-
ing scheme can handle ordered attributes directly, the solution is obvious: Each 
discretized attribute is declared to be of type “ordered.”

If the learning scheme cannot handle ordered attributes, there is still a simple 
way of enabling it to exploit the ordering information: Transform each discretized 
attribute into a set of binary attributes before the learning scheme is applied. If the 
discretized attribute has k values, it is transformed into k − 1 binary attributes. If the 
original attribute’s value is i for a particular instance, the first i − 1 of these new 
attributes are set to false and the remainder are set to true. In other words, 
the (i − 1)th binary attribute represents whether the discretized attribute is less than 
i. If a decision tree learner splits on this attribute, it implicitly utilizes the ordering 
information it encodes. Note that this transformation is independent of the particular 
discretization method being applied: It is simply a way of coding an ordered attribute 
using a set of binary attributes.
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Unsupervised Discretization
There are two basic approaches to the problem of discretization. One is to quantize 
each attribute in the absence of any knowledge of the classes of the instances in the 
training set—so-called unsupervised discretization. The other is to take the classes 
into account when discretizing—supervised discretization. The former is the only 
possibility when dealing with clustering problems where the classes are unknown 
or nonexistent.

The obvious way of discretizing a numeric attribute is to divide its range into a 
predetermined number of equal intervals: a fixed, data-independent yardstick. This 
is frequently done at the time when data is collected. But, like any unsupervised 
discretization method, it runs the risk of destroying distinctions that would have 
turned out to be useful in the learning process by using gradations that are too coarse 
or, that by unfortunate choices of boundary, needlessly lump together many instances 
of different classes.

Equal-width binning often distributes instances very unevenly: Some bins 
contain many instances while others contain none. This can seriously impair the 
ability of the attribute to help build good decision structures. It is often better to 
allow the intervals to be of different sizes, choosing them so that the same number 
of training examples fall into each one. This method, called equal-frequency binning, 
divides the attribute’s range into a predetermined number of bins based on the 
distribution of examples along that axis—sometimes called histogram equalization 
because if you take a histogram of the contents of the resulting bins it will be 
completely flat. If you view the number of bins as a resource, this method makes 
the best use of it.

However, equal-frequency binning is still oblivious to the instances’ classes, and 
this can cause bad boundaries. For example, if all instances in a bin have one class, 
and all instances in the next higher bin have another except for the first, which has 
the original class, surely it makes sense to respect the class divisions and include 
that first instance in the previous bin, sacrificing the equal-frequency property for 
the sake of homogeneity. Supervised discretization—taking classes into account 
during the process—certainly has advantages. Nevertheless, it has been found that 
equal-frequency binning can yield excellent results, at least in conjunction with the 
Naïve Bayes learning scheme, when the number of bins is chosen in a data-dependent 
fashion by setting it to the square root of the number of instances. This method is 
called proportional k-interval discretization.

Entropy-Based Discretization
Because the criterion used for splitting a numeric attribute during the formation of 
a decision tree works well in practice, it seems a good idea to extend it to more 
general discretization by recursively splitting intervals until it is time to stop. In 
Chapter 6 we saw how to sort the instances by the attribute’s value and consider, 
for each possible splitting point, the information gain of the resulting split. To 
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discretize the attribute, once the first split is determined, the splitting process can be 
repeated in the upper and lower parts of the range, and so on, recursively.

To see this working in practice, we revisit the example given in Section 6.1 for 
discretizing the temperature attribute of the weather data, of which the values are as 
follows:

64 65 68 69 70 71 72 75 80 81 83 85
yes no yes yes yes no no

yes
yes
yes

no yes yes no

(Repeated values have been collapsed together.) The information gain for each of 
the 11 possible positions for the breakpoint is calculated in the usual way. For 
example, the information value of the test temperature < 71.5, which splits the range 
into four yes and two no versus five yes and three no, is

info( ) info info[ , ], [ , ] ( ) ([ , ]) ( ) ([ , ]) .4 2 5 3 6 14 4 2 8 14 5 3 0 93= × + × = 99 bits

This represents the amount of information required to specify the individual values 
of yes and no given the split. We seek a discretization that makes the subintervals 
as pure as possible; thus, we choose to split at the point where the information value 
is smallest. (This is the same as splitting where the information gain, defined as the 
difference between the information value without the split and that with the split, is 
largest.) As before, we place numeric thresholds halfway between the values that 
delimit the boundaries of a concept.

The graph labeled A in Figure 7.2 shows the information values at each possible 
cut point at this first stage. The cleanest division—the smallest information value—is 
at a temperature of 84 (0.827 bits), which separates off just the very final value, a 
no instance, from the preceding list. The instance classes are written below the hori-
zontal axis to make interpretation easier. Invoking the algorithm again on the lower 
range of temperatures, from 64 to 83, yields the graph labeled B. This has a minimum 
at 80.5 (0.800 bits), which splits off the next two values, both yes instances. Again 
invoking the algorithm on the lower range, now from 64 to 80, produces the graph 
labeled C (shown dotted to help distinguish it from the others). The minimum is at 
77.5 (0.801 bits), splitting off another no instance. Graph D has a minimum at 73.5 
(0.764 bits), splitting off two yes instances. Graph E (again dashed, purely to make 
it more easily visible), for the temperature range 64 to 72, has a minimum at 70.5 
(0.796 bits), which splits off two no and one yes. Finally, graph F, for the range 64 
to 70, has a minimum at 66.5 (0.4 bits).

The final discretization of the temperature attribute is shown in Figure 7.3. The 
fact that recursion only ever occurs in the first interval of each split is an artifact of 
this example: In general, both the upper and lower intervals will have to be split 
further. Underneath each division is the label of the graph in Figure 7.2 that is 
responsible for it, and below that the actual value of the split point.

It can be shown theoretically that a cut point that minimizes the information 
value will never occur between two instances of the same class. This leads to a useful 
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FIGURE 7.3 

The result of discretizing the temperature attribute. 
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FIGURE 7.2 

Discretizing the temperature attribute using the entropy method. 
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optimization: It is only necessary to consider potential divisions that separate 
instances of different classes. Notice that if class labels were assigned to the intervals 
based on the majority class in the interval, there would be no guarantee that adjacent 
intervals would receive different labels. You might be tempted to consider merging 
intervals with the same majority class (e.g., the first two intervals of Figure 7.3), but 
as we will see later this is not a good thing to do in general.

The only problem left to consider is the stopping criterion. In the temperature 
example most of the intervals that were identified were “pure” in that all their 
instances had the same class, and there is clearly no point in trying to split such an 
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interval. (Exceptions were the final interval, which we tacitly decided not to split, 
and the interval from 70.5 to 73.5.) In general, however, things are not so 
straightforward.

A good way to stop the entropy-based splitting discretization procedure turns out 
to be the MDL principle that we encountered in Chapter 5 (page 183). In accordance 
with that principle, we want to minimize the size of the “theory” plus the size of the 
information necessary to specify all the data given that theory. In this case, if we do 
split, the “theory” is the splitting point, and we are comparing the situation in which 
we split with that in which we do not. In both cases we assume that the instances 
are known but their class labels are not. If we do not split, the classes can be trans-
mitted by encoding each instance’s label. If we do, we first encode the split point 
(in log2[N − 1] bits, where N is the number of instances), then the classes of the 
instances below that point, and then the classes of those above it.

You can imagine that if the split is a good one—say, all the classes below it are 
yes and all those above are no—then there is much to be gained by splitting. If there 
is an equal number of yes and no instances, each instance costs 1 bit without splitting 
but hardly more than 0 bits with splitting—it is not quite 0 because the class values 
associated with the split itself must be encoded, but this penalty is amortized across 
all the instances. In this case, if there are many examples, the penalty of having to 
encode the split point will be far outweighed by the information that is saved by 
splitting.

We emphasized in Section 5.9 that when applying the MDL principle, the devil is in the 
details. In the relatively straightforward case of discretization, the situation is tractable 
although not simple. The amounts of information can be obtained exactly under certain 
reasonable assumptions. We will not go into the details, but the upshot is that the split 
dictated by a particular cut point is worthwhile if the information gain for that split 
exceeds a certain value that depends on the number of instances N, the number of 
classes k, the entropy of the instances E, the entropy of the instances in each subinterval 
E1 and E2, and the number of classes represented in each subinterval k1 and k2:

gain
N
N

kE k E k E
N

k

> − + − − + +log ( ) log ( )2 2 1 1 2 21 3 2

The first component is the information needed to specify the splitting point; the second is 
a correction due to the need to transmit the classes that correspond to the upper and 
lower subintervals.

When applied to the temperature example, this criterion prevents any splitting at all. 
The first split removes just the final example, and, as you can imagine, very little actual 
information is gained by this when transmitting the classes—in fact, the MDL criterion 
will never create an interval containing just one example. Failure to discretize temperature 
effectively disbars it from playing any role in the final decision structure because the same 
discretized value will be given to all instances. In this situation, this is perfectly 
appropriate: Temperature does not occur in good decision trees or rules for the weather 
data. In effect, failure to discretize is tantamount to attribute selection.
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Other Discretization Methods
The entropy-based method with the MDL stopping criterion is one of the best general 
techniques for supervised discretization. However, many other methods have been 
investigated. For example, instead of proceeding top-down by recursively splitting 
intervals until some stopping criterion is satisfied, you could work bottom-up, first 
placing each instance into its own interval and then considering whether to merge 
adjacent intervals. You could apply a statistical criterion to see which would be the 
best two intervals to merge, and merge them if the statistic exceeds a certain preset 
confidence level, repeating the operation until no potential merge passes the test. 
The χ2 test is a suitable one and has been used for this purpose. Instead of specifying 
a preset significance threshold, more complex techniques are available to determine 
an appropriate level automatically.

A rather different approach is to count the number of errors that a discretization 
makes when predicting each training instance’s class, assuming that each interval 
receives the majority class. For example, the 1R method described earlier is error-
based—it focuses on errors rather than the entropy. However, the best possible 
discretization in terms of error count is obtained by using the largest possible number 
of intervals, and this degenerate case should be avoided by restricting the number 
of intervals in advance.

Let’s consider the best way to discretize an attribute into k intervals in a way 
that minimizes the number of errors. The brute-force method of finding this is 
exponential in k and therefore infeasible. However, there are much more efficient 
schemes that are based on the idea of dynamic programming. Dynamic program-
ming applies not just to the error count measure but to any given additive impurity 
function, and it can find the partitioning of N instances into k intervals in a way 
that minimizes the impurity in time proportional to kN2. This gives a way of finding 
the best entropy-based discretization, yielding a potential improvement in the quality 
of the discretization (in practice a negligible one) over the recursive entropy-based 
method described previously. The news for error-based discretization is even better 
because there is an algorithm that can be used to minimize the error count in time 
linear in N.

Entropy-Based versus Error-Based Discretization
Why not use error-based discretization, since the optimal discretization can be found 
very quickly? The answer is that there is a serious drawback to error-based discreti-
zation: It cannot produce adjacent intervals with the same label (such as the first two 
of Figure 7.3). The reason is that merging two such intervals will not affect the error 
count, but it will free up an interval that can be used elsewhere to reduce the error 
count.

Why would anyone want to generate adjacent intervals with the same label? The 
reason is best illustrated with an example. Figure 7.4 shows the instance space for 
a simple two-class problem with two numeric attributes ranging from 0 to 1. Instances 
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belong to one class (the dots) if their first attribute (a1) is less than 0.3, or if the first 
attribute is less than 0.7 and their second attribute (a2) is less than 0.5. Otherwise, 
they belong to the other class (triangles). The data in Figure 7.4 has been artificially 
generated according to this rule.

Now suppose we are trying to discretize both attributes with a view to learning 
the classes from the discretized attributes. The very best discretization splits a1 into 
three intervals (0–0.3, 0.3–0.7, and 0.7–1) and a2 into two intervals (0–0.5 and 
0.5–1). Given these nominal attributes, it will be easy to learn how to tell the classes 
apart with a simple decision tree or rule algorithm. Discretizing a2 is no problem. 
For a1, however, the first and last intervals will have opposite labels (dot and tri-
angle, respectively). The second will have whichever label happens to occur most 
in the region from 0.3 to 0.7 (it is in fact dot for the data in Figure 7.4). Either way, 
this label must inevitably be the same as one of the adjacent labels—of course, this 
is true whatever the class probability happens to be in the middle region. Thus, this 
discretization will not be achieved by any method that minimizes the error counts 
because such a method cannot produce adjacent intervals with the same label.

The point is that what changes as the value of a1 crosses the boundary at 0.3 is 
not the majority class but the class distribution. The majority class remains dot. The 
distribution, however, changes markedly, from 100% before the boundary to just 
over 50% after it. And the distribution changes again as the boundary at 0.7 is 
crossed, from 50 to 0%. Entropy-based discretization methods are sensitive to 

FIGURE 7.4 

Class distribution for a two-class, two-attribute problem. 
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changes in the distribution even though the majority class does not change. Error-
based methods are not sensitive.

Converting Discrete Attributes to Numeric Attributes
There is a converse problem to discretization. Some learning algorithms—notably 
the nearest-neighbor instance-based method and numeric prediction techniques 
involving regression—naturally handle only attributes that are numeric. How can 
they be extended to nominal attributes?

In instance-based learning, as described in Section 4.7 (page 132), discrete 
attributes can be treated as numeric by defining as 0 the “distance” between two 
nominal values that are the same and as 1 the distance between two values that 
are different, regardless of the actual values involved. Rather than modifying the 
distance function, this can be achieved by an attribute transformation: Replace a 
k-valued nominal attribute by k synthetic binary attributes, one for each value 
indicating whether the attribute has that value or not. If the attributes have equal 
weight, this achieves the same effect on the distance function. The distance is 
insensitive to the attribute values because only “same” or “different” information 
is encoded, not the shades of difference that may be associated with the various 
possible values of the attribute. More subtle distinctions can be made if the attri-
butes have weights reflecting their relative importance.

If the values of the attribute can be ordered, more possibilities arise. For a numeric 
prediction problem, the average class value corresponding to each value of a nominal 
attribute can be calculated from the training instances and used to determine an 
ordering—this technique was introduced for model trees in Section 6.6 (page 253). 
(It is hard to come up with an analogous way of ordering attribute values for a clas-
sification problem.) An ordered nominal attribute can be replaced by an integer in 
the obvious way, but this implies not just an ordering but also a metric on the attri-
bute’s values. The implication of a metric can be avoided by creating k − 1 synthetic 
binary attributes for a k-valued nominal attribute, in the manner described on page 
315. This encoding still implies an ordering among different values of the attribute—
adjacent values differ in just one of the synthetic attributes whereas distant ones 
differ in several—but does not imply an equal distance between the attribute values.

7.3  PROJECTIONS
Resourceful data miners have a toolbox full of techniques, such as discretization, 
for transforming data. As we emphasized in Section 2.4, data mining is hardly ever 
a matter of simply taking a dataset and applying a learning algorithm to it. Every 
problem is different. You need to think about the data and what it means, and (cre-
atively) examine it from diverse points of view to arrive at a suitable perspective. 
Transforming it in different ways can help you get started. In mathematics, a projec-
tion is a kind of function or mapping that transforms data in some way.
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You don’t have to make your own toolbox by implementing the projections 
yourself. Comprehensive environments for data mining, such as the one described 
in Part III of this book, contain a wide range of suitable tools for you to use. You 
do not necessarily need a detailed understanding of how they are implemented. What 
you do need to understand is what the tools do and how they can be applied. In Part 
III we list, and briefly describe, all the transformations in the Weka data mining 
workbench.

Data often calls for general mathematical transformations of a set of attributes. 
It might be useful to define new attributes by applying specified mathematical 
functions to existing ones. Two date attributes might be subtracted to give a third 
attribute representing age—an example of a semantic transformation driven by the 
meaning of the original attributes. Other transformations might be suggested by 
known properties of the learning algorithm. If a linear relationship involving two 
attributes, A and B, is suspected, and the algorithm is only capable of axis-parallel 
splits (as most decision tree and rule learners are), the ratio A:B might be defined 
as a new attribute. The transformations are not necessarily mathematical ones, but 
may involve real-world knowledge such as days of the week, civic holidays, or 
chemical atomic numbers. They could be expressed as operations in a spreadsheet 
or as functions that are implemented by arbitrary computer programs. 

Or you can reduce several nominal attributes to one by concatenating their 
values, producing a single k1 × k2-valued attribute from attributes with k1 and k2 
values, respectively. Discretization converts a numeric attribute to nominal, and 
we saw earlier how to convert in the other direction too.

As another kind of transformation, you might apply a clustering procedure to 
the dataset and then define a new attribute with a value for any given instance 
that is the cluster that contains it using an arbitrary labeling for the clusters. 
Alternatively, with probabilistic clustering, you could augment each instance with 
its membership probabilities for each cluster, including as many new attributes 
as there are clusters.

Sometimes it is useful to add noise to data, perhaps to test the robustness of a 
learning algorithm; to take a nominal attribute and change a given percentage of its 
values; to obfuscate data by renaming the relation, attribute names, and nominal and 
string attribute values (because it is often necessary to anonymize sensitive datasets); 
to randomize the order of instances or produce a random sample of the dataset by 
resampling it; to reduce a dataset by removing a given percentage of instances, or 
all instances that have certain values for nominal attributes, or numeric values above 
or below a certain threshold; or to remove outliers by applying a classification 
method to the dataset and deleting misclassified instances.

Different types of input call for their own transformations. If you can input sparse 
data files (see Section 2.4), you may need to be able to convert datasets to nonsparse 
form and vice versa. Textual input and time series input call for their own specialized 
conversions, described in the following sections. But first we look at two general 
techniques for transforming data with numeric attributes into a lower-dimensional 
form that may be more useful for mining.
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Principal Components Analysis
In a dataset with m numeric attributes, you can visualize the data as a cloud of points 
in m-dimensional space—the stars in the sky, a swarm of flies frozen in time, a two-
dimensional scatter plot on paper. The attributes represent the coordinates of the 
space. But the axes you use, the coordinate system itself, is arbitrary. You can place 
horizontal and vertical axes on the paper and represent the points of the scatter plot 
using those coordinates, or you could draw an arbitrary straight line to represent the 
x-axis and one perpendicular to it to represent the y-axis. To record the positions of 
the flies you could use a conventional coordinate system with a north–south axis, 
an east–west axis, and an up–down axis. But other coordinate systems would do 
equally well. Creatures like flies don’t know about north, south, east, and west, 
although, being subject to gravity, they may perceive up–down as something special. 
And as for the stars in the sky, who’s to say what the “right” coordinate system is? 
Over the centuries our ancestors moved from a geocentric perspective to a heliocen-
tric one to a purely relativistic one, each shift of perspective being accompanied by 
turbulent religious–scientific upheavals and painful reexamination of humankind’s 
role in God’s universe.

Back to the dataset. Just as in these examples, there is nothing to stop you from 
transforming all the data points into a different coordinate system. But unlike these 
examples, in data mining there often is a preferred coordinate system, defined not 
by some external convention but by the very data itself. Whatever coordinates you 
use, the cloud of points has a certain variance in each direction, indicating the degree 
of spread around the mean value in that direction. It is a curious fact that if you add 
up the variances along each axis and then transform the points into a different coor-
dinate system and do the same there, you get the same total variance in both cases. 
This is always true provided the coordinate systems are orthogonal—that is, each 
axis is at right angles to the others.

The idea of principal components analysis is to use a special coordinate system 
that depends on the cloud of points as follows: Place the first axis in the direction of 
greatest variance of the points to maximize the variance along that axis. The second 
axis is perpendicular to it. In two dimensions there is no choice—its direction is 
determined by the first axis—but in three dimensions it can lie anywhere in the plane 
perpendicular to the first axis, and in higher dimensions there is even more choice, 
though it is always constrained to be perpendicular to the first axis. Subject to this 
constraint, choose the second axis in the way that maximizes the variance along it. 
And so on, choosing each axis to maximize its share of the remaining variance.

How do you do this? It’s not hard, given an appropriate computer program, and it’s not 
hard to understand, given the appropriate mathematical tools. Technically—for those who 
understand the italicized terms—you calculate the covariance matrix of the mean-centered 
coordinates of the points and diagonalize it to find the eigenvectors. These are the axes of 
the transformed space, sorted in order of eigenvalue—because each eigenvalue gives the 
variance along its axis.
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FIGURE 7.5 

Principal components transform of a dataset: (a) variance of each component and  
(b) variance plot. 
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Figure 7.5 shows the result of transforming a particular dataset with 10 numeric 
attributes, corresponding to points in 10-dimensional space. Imagine the original 
dataset as a cloud of points in 10 dimensions—we can’t draw it! Choose the first axis 
along the direction of greatest variance, the second perpendicular to it along the 
direction of next greatest variance, and so on. The table in the figure gives the vari-
ance along each new coordinate axis in the order in which the axes were chosen. 
Because the sum of the variances is constant regardless of the coordinate system, 
they are expressed as percentages of that total. We call axes components and say that 
each one “accounts for” its share of the variance. Figure 7.5(b) plots the variance 
that each component accounts for against the component’s number. You can use all 
the components as new attributes for data mining, or you might want to choose just 
the first few, the principal components, and discard the rest. In this case, three prin-
cipal components account for 84% of the variance in the dataset; seven account for 
more than 95%.

On numeric datasets it is common to use principal components analysis prior to 
data mining as a form of data cleanup and attribute selection. For example, you 
might want to replace the numeric attributes with the principal component axes or 
with a subset of them that accounts for a given proportion—say, 95%—of the vari-
ance. Note that the scale of the attributes affects the outcome of principal compo-
nents analysis, and it is common practice to standardize all attributes to zero mean 
and unit variance first.
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Another possibility is to apply principal components analysis recursively in a 
decision tree learner. At each stage an ordinary decision tree learner chooses to split 
in a direction that is parallel to one of the axes. However, suppose a principal com-
ponents transform is performed first, and the learner chooses an axis in the trans-
formed space. This equates to a split along an oblique line in the original space. If 
the transform is performed afresh before each split, the result will be a multivariate 
decision tree with splits that are in directions that are not parallel with the axes or 
with one another.

Random Projections
Principal components analysis transforms the data linearly into a lower-dimensional 
space—but it’s expensive. The time taken to find the transformation (which is a 
matrix comprising the eigenvectors of the covariance matrix) is cubic in the number 
of dimensions. This makes it infeasible for datasets with a large number of attri-
butes. A far simpler alternative is to use a random projection of the data into a 
subspace with a predetermined number of dimensions. It’s very easy to find a 
random projection matrix. But will it be any good?

In fact, theory shows that random projections preserve distance relationships 
quite well on average. This means that they could be used in conjunction with kD-
trees or ball trees to do approximate nearest-neighbor search in spaces with a huge 
number of dimensions. First transform the data to reduce the number of attributes; 
then build a tree for the transformed space. In the case of nearest-neighbor classifica-
tion you could make the result more stable, and less dependent on the choice of 
random projection, by building an ensemble classifier that uses multiple random 
matrices.

Not surprisingly, random projections perform worse than projections carefully 
chosen by principal components analysis when used to preprocess data for a range 
of standard classifiers. However, experimental results have shown that the difference 
is not too great—and it tends to decrease as the number of dimensions increases. 
And, of course, random projections are far cheaper computationally.

Partial Least-Squares Regression
As mentioned earlier, principal components analysis is often performed as a pre
processing step before applying a learning algorithm. When the learning algorithm 
is linear regression, the resulting model is known as principal components regres-
sion. Since principal components are themselves linear combinations of the original 
attributes, the output of principal components regression can be reexpressed in terms 
of the original attributes. In fact, if all the components are used—not just the “prin-
cipal” ones—the result is the same as that obtained by applying least-squares regres-
sion to the original input data. Using fewer than the full set of components results 
in a reduced regression.
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Partial least-squares differs from principal components analysis in that it takes 
the class attribute into account, as well as the predictor attributes, when constructing 
a coordinate system. The idea is to calculate derived directions that, as well as having 
high variance, are strongly correlated with the class. This can be advantageous when 
seeking as small a set of transformed attributes as possible to use for supervised 
learning.

There is a simple iterative method for computing the partial least-squares direc-
tions that involves only dot product operations. Starting with input attributes that 
have been standardized to have zero mean and unit variance, the attribute coefficients 
for the first partial least-squares direction are found by taking the dot product 
between each attribute vector and the class vector in turn. To find the second direc-
tion the same approach is used, but the original attribute values are replaced by the 
difference between the attribute’s value and the prediction from a simple univariate 
regression that uses the first direction as the single predictor of that attribute. These 
differences are called residuals. The process continues in the same fashion for each 
remaining direction, with residuals for the attributes from the previous iteration 
forming the input for finding the current partial least-squares direction.

Here is a simple worked example that should help make the procedure clear. For 
the first five instances from the CPU performance data in Table 1.5 (page 15), Table 
7.1(a) shows the values of CHMIN and CHMAX (after standardization to zero mean 
and unit variance) and PRP (not standardized). The task is to find an expression for 
the target attribute PRP in terms of the other two. The attribute coefficients for the 
first partial least-squares direction are found by taking the dot product between the 
class and each attribute in turn. The dot product between the PRP and CHMIN 
columns is −0.4472, and that between PRP and CHMAX is 22.981. Thus, the first 
partial least-squares direction is

PLS CHMIN CHMAX  1 0 4472 22 981= − +. .

Table 7.1(b) shows the values for PLS 1 obtained from this formula.
The next step is to prepare the input data for finding the second partial least-

squares direction. To this end, PLS 1 is regressed onto CHMIN and CHMAX in 

Table 7.1  First Five Instances from the CPU Performance Data

(a) (b) (c)

chmin chmax prp pls 1 chmin chmax prp

1 1.7889 1.7678 198 39.825 0.0436 0.0008 198
2 −0.4472 −0.3536 269 −7.925 −0.0999 −0.0019 269
3 −0.4472 −0.3536 220 −7.925 −0.0999 −0.0019 220
4 −0.4472 −0.3536 172 −7.925 −0.0999 −0.0019 172
5 −0.4472 −0.7071 132 −16.05 0.2562 0.005 132

(a) original values, (b) first partial least-squares direction, and (c) residuals from the first direction.
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turn, resulting in linear equations that predict each of these attributes individually 
from PLS 1. The coefficients are found by taking the dot product between PLS 1 
and the attribute in question, and dividing the result by the dot product between PLS 
1 and itself. The resulting univariate regression equations are

CHMIN  PLS= 0 0438 1.

CHMAX  PLS = 0 0444 1.

Table 7.1(c) shows the CPU data in preparation for finding the second partial 
least-squares direction. The original values of CHMIN and CHMAX have been 
replaced by residuals—that is, the difference between the original value and the 
output of the corresponding univariate regression equation given before (the target 
value PRP remains the same). The entire procedure is repeated using this data as 
input to yield the second partial least-squares direction, which is

PLS CHMIN CHMAX 2 23 6002 0 4593= − + −. .

After this last partial least-squares direction has been found, the attribute residuals 
are all zero. This reflects the fact that, as with principal components analysis, the 
full set of directions account for all of the variance in the original data.

When the partial least-squares directions are used as input to linear regression, 
the resulting model is known as a partial least-squares regression model. As with 
principal components regression, if all the directions are used, the solution is the 
same as that obtained by applying linear regression to the original data.

Text to Attribute Vectors
In Section 2.4 we introduced string attributes that contain pieces of text, and there 
remarked that the value of a string attribute is often an entire document. String 
attributes are basically nominal, with an unspecified number of values. If they are 
treated simply as nominal attributes, models can be built that depend on whether 
the values of two string attributes are equal or not. But that does not capture any 
internal structure of the string or bring out any interesting aspects of the text it 
represents.

You could imagine decomposing the text in a string attribute into paragraphs, 
sentences, or phrases. Generally, however, the word is the most useful unit. The text 
in a string attribute is usually a sequence of words, and it is often best represented in 
terms of the words it contains. For example, you might transform the string attribute 
into a set of numeric attributes, one for each word, that represents how often each 
word appears. The set of words—that is, the set of new attributes—is determined 
from the dataset and is typically quite large. If there are several string attributes with 
properties that should be treated separately, the new attribute names must be distin-
guished, perhaps by a user-determined prefix.

Conversion into words—tokenization—is not as simple an operation as it sounds. 
Tokens may be formed from contiguous alphabetic sequences with nonalphabetic 
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characters discarded. If numbers are present, numeric sequences may be retained 
too. Numbers may involve + or − signs, may contain decimal points, and may have 
exponential notation—in other words, they must be parsed according to a defined 
number syntax. An alphanumeric sequence may be regarded as a single token. 
Perhaps the space character is the token delimiter; perhaps whitespace (including 
the tab and new-line characters) and punctuation are too. Periods can be difficult: 
Sometimes they should be considered part of the word (e.g., with initials, titles, 
abbreviations, and numbers), but sometimes they should not (e.g., if they are  
sentence delimiters). Hyphens and apostrophes are similarly problematic.

All words may be converted to lowercase before being added to the dictionary. 
Words on a fixed, predetermined list of function words, or stopwords—such as the, 
and, and but—could be ignored. Note that stopword lists are language dependent. 
In fact, so are capitalization conventions (German capitalizes all nouns), number 
syntax (Europeans use the comma for a decimal point), punctuation conventions 
(Spanish has an initial question mark), and, of course, character sets. Text is 
complicated!

Low-frequency words such as hapax legomena1 are often discarded. Sometimes 
it is found beneficial to keep the most frequent k words after stopwords have been 
removed—or perhaps the top k words for each class.

Along with all these tokenization options, there is the question of what the 
value of each word attribute should be. The value may be the word count—the 
number of times the word appears in the string—or it may simply indicate the 
word’s presence or absence. Word frequencies could be normalized to give each 
document’s attribute vector the same Euclidean length. Alternatively, the frequen-
cies fij for word i in document j can be transformed in various standard ways. 
One standard logarithmic term-frequency measure is log (1 + fij). A measure that 
is widely used in information retrieval is TF × IDF, or “term frequency times 
inverse document frequency.”

Here, the term frequency is modulated by a factor that depends on how com-
monly the word is used in other documents. The TF × IDF metric is typically 
defined as

fij log
number of documents

number of documents that include wword i

The idea is that a document is basically characterized by the words that appear often 
in it, which accounts for the first factor, except that words used in every document 
or almost every document are useless as discriminators, which accounts for the 
second. TF × IDF is used to refer not just to this particular formula but to a general 
class of measures of the same type. For example, the frequency factor fij may be 
replaced by a logarithmic term such as log (1 + fij).

1A hapax legomena is a word that only occurs once in a given corpus of text.
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Time Series
In time series data, each instance represents a different time step and the attributes 
give values associated with that time, such as in weather forecasting or stock market 
prediction. You sometimes need to be able to replace an attribute’s value in the 
current instance by the corresponding value in some other instance in the past or the 
future. Even more common is to replace an attribute’s value by the difference 
between the current value and the value in some previous instance. For example, 
the difference—often called the Delta—between the current value and the preceding 
one is often more informative than the value itself. The first instance, for which the 
time-shifted value is unknown, may be removed or replaced with a missing value. 
The Delta value is essentially the first derivative scaled by some constant that 
depends on the size of the time step. Successive Delta transformations take higher 
derivatives.

In some time series, instances do not represent regular samples; instead, the time 
of each instance is given by a timestamp attribute. The difference between time-
stamps is the step size for that instance, and if successive differences are taken for 
other attributes they should be divided by the step size to normalize the derivative. 
In other cases, each attribute may represent a different time, rather than each instance, 
so that the time series is from one attribute to the next rather than one instance to 
the next. Then, if differences are needed, they must be taken between one attribute’s 
value and the next attribute’s value for each instance.

7.4  SAMPLING
In many applications involving a large volume of data it is necessary to come up 
with a random sample of much smaller size for processing. A random sample is one 
in which each instance in the original dataset has an equal chance of being included. 
Given a batch of N instances, a sample of any desired size is easily created: Just 
generate uniform random integers between 1 and N and retrieve the corresponding 
instances until the appropriate number has been collected. This is sampling with 
replacement, because the same instance might be selected more than once. (In fact, 
we used sampling with replacement for the bootstrap algorithm in Section 5.4—page 
155.) For sampling without replacement, simply note, when selecting each instance, 
whether it has already been chosen and, if so, discard the second copy. If the sample 
size is much smaller than the full dataset, there is little difference between sampling 
with and without replacement.

Reservoir Sampling
Sampling is such a simple procedure that it merits little discussion or explanation. 
But there is a situation in which producing a random sample of a given size becomes 
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a little more challenging. What if the training instances arrive one by one but the 
total number of them—the value of N—is not known in advance? Or suppose we 
need to be able to run a learning algorithm on a sample of a given size from a con-
tinuous stream of instances at any time, without repeatedly performing an entire 
sampling operation? Or perhaps the number of training instances is so vast that it is 
impractical to store them all before taking a sample?

All these situations call for a way of generating a random sample of an input 
stream without storing up all the instances and waiting for the last one to arrive 
before beginning the sampling procedure. Is it possible to generate a random 
sample of a given size and still guarantee that each instance has an equal chance 
of being selected? The answer is yes. Furthermore, there is a simple algorithm 
to do so.

The idea is to use a “reservoir” of size r, the size of the sample that is to be 
generated. To begin, place successive instances from the input stream in the reservoir 
until it is full. If the stream were to stop there, we would have the trivial case of a 
random sample of size r from an input stream of the same size. But most likely more 
instances will come in. The next one should be included in the sample with probabil-
ity r/(r + 1)—in fact, if the input stream were to stop there, (N = r + 1), any instance 
should be in the sample with this probability. Consequently, with probability  
r/(r + 1) we replace a random instance in the reservoir with this new instance. And 
we carry on in the same vein, replacing a random reservoir element with the next 
instance with probability r/(r + 2) and so on. In general, the ith instance in the input 
stream is placed into the reservoir at a random location with probability r/i. It is easy 
to show by induction that once this instance has been processed the probability of 
any particular instance being in the reservoir is just the same, namely r/i. Thus, at 
any point in the procedure, the reservoir contains a random sample of size r from 
the input stream. You can stop at any time, secure in the knowledge that the reservoir 
contains the desired random sample.

This method samples without replacement. Sampling with replacement is a little 
harder, although for large datasets and small reservoirs there is little difference 
between the two. But if you really want a sample of size r with replacement, you 
could set up r independent reservoirs, each with size 1. Run the algorithm concur-
rently for all of these, and at any time their union is a random sample with 
replacement.

7.5  CLEANSING
A problem that plagues practical data mining is poor quality of the data. Errors in 
large databases are extremely common. Attribute values, and class values too, are 
frequently unreliable and corrupted. Although one way of addressing this problem 
is to painstakingly check through the data, data mining techniques themselves can 
sometimes help to solve the problem.
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Improving Decision Trees
It is a surprising fact that decision trees induced from training data can often be 
simplified, without loss of accuracy, by discarding misclassified instances from the 
training set, relearning, and then repeating until there are no misclassified instances. 
Experiments on standard datasets have shown that this hardly affects the classifica-
tion accuracy of C4.5, a standard decision tree–induction scheme. In some cases it 
improves slightly; in others it deteriorates slightly. The difference is rarely statisti-
cally significant—and even when it is, the advantage can go either way. What the 
technique does affect is decision tree size. The resulting trees are invariably much 
smaller than the original ones, even though they perform about the same.

What is the reason for this? When a decision tree–induction method prunes away 
a subtree, it applies a statistical test that decides whether that subtree is “justified” 
by the data. The decision to prune accepts a small sacrifice in classification accuracy 
on the training set in the belief that this will improve test-set performance. Some 
training instances that were classified correctly by the unpruned tree will now be 
misclassified by the pruned one. In effect, the decision has been taken to ignore these 
training instances.

But that decision has only been applied locally, in the pruned subtree. Its effect 
has not been allowed to percolate further up the tree, perhaps resulting in different 
choices being made of attributes to branch on. Removing the misclassified instances 
from the training set and relearning the decision tree is just taking the pruning deci-
sions to their logical conclusion. If the pruning strategy is a good one, this should 
not harm performance. And it may improve it by allowing better attribute choices 
to be made.

It would no doubt be even better to consult a human expert. Misclassified training 
instances could be presented for verification, and those that were found to be wrong 
could be deleted—or, better still, corrected.

Notice that we are assuming that the instances are not misclassified in any sys-
tematic way. If instances are systematically corrupted in both training and test sets—
for example, one class value might be substituted for another—it is only to be 
expected that training on the erroneous training set would yield better performance 
on the (also erroneous) test set.

Interestingly enough, it has been shown that when artificial noise is added to 
attributes (rather than added to classes), test-set performance is improved if the 
same noise is added in the same way to the training set. In other words, when 
attribute noise is the problem, it is not a good idea to train on a “clean” set if 
performance is to be assessed on a “dirty” one. A learning scheme can learn to 
compensate for attribute noise, in some measure, if given a chance. In essence, 
it can learn which attributes are unreliable and, if they are all unreliable, how 
best to use them together to yield a more reliable result. To remove noise from 
attributes for the training set denies the opportunity to learn how best to combat 
that noise. But with class noise (rather than attribute noise), it is best to train on 
noise-free instances if possible, if accurate classification is the goal.
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Robust Regression
The problems caused by noisy data have been known in linear regression for years. 
Statisticians often check data for outliers and remove them manually. In the case of 
linear regression, outliers can be identified visually, although it is never completely 
clear whether an outlier is an error or just a surprising, but correct, value. Outliers 
dramatically affect the usual least-squares regression because the squared distance 
measure accentuates the influence of points far away from the regression line.

Statistical methods that address the problem of outliers are called robust. One 
way of making regression more robust is to use an absolute-value distance measure 
instead of the usual squared one. This weakens the effect of outliers. Another pos-
sibility is to try to identify outliers automatically and remove them from consider-
ation. For example, one could form a regression line and then remove from 
consideration those 10% of points that lie furthest from the line. A third possibility 
is to minimize the median (rather than the mean) of the squares of the divergences 
from the regression line. It turns out that this estimator is very robust and actually 
copes with outliers in the x-direction as well as outliers in the y-direction, which is 
the normal direction one thinks for outliers.

A dataset that is often used to illustrate robust regression is a graph of interna-
tional telephone calls made from Belgium during the years 1950 through 1973, 
shown in Figure 7.6. This data is taken from the Belgian Statistical Survey published 
by the Ministry of Economy. The plot seems to show an upward trend over the years, 
but there is an anomalous group of points from 1964 to 1969. It turns out that during 
this period, results were mistakenly recorded as the total number of minutes of the 
calls. The years 1963 and 1970 are also partially affected. This error causes a large 
fraction of outliers in the y-direction.

FIGURE 7.6 

Number of international phone calls from Belgium, 1950–1973. 
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Not surprisingly, the usual least-squares regression line is seriously affected by 
this anomalous data. However, the least median of squares line remains remarkably 
unperturbed. This line has a simple and natural interpretation. Geometrically, it cor-
responds to finding the narrowest strip covering half of the observations, where the 
thickness of the strip is measured in the vertical direction—this strip is marked gray 
in Figure 7.6. The least median of squares line lies at the exact center of this band. 
Note that this notion is often easier to explain and visualize than the normal least-
squares definition of regression. Unfortunately, there is a serious disadvantage to 
median-based regression techniques: They incur high computational cost, which 
often makes them infeasible for practical problems.

Detecting Anomalies
A serious problem with any form of automatic detection of apparently incorrect data 
is that the baby may be thrown out with the bathwater. Short of consulting a human 
expert, there is no way of telling whether a particular instance really is an error or 
whether it just does not fit the type of model that is being applied. In statistical 
regression, visualizations help. It will usually be visually apparent, even to the non-
expert, if the wrong kind of curve is being fitted—a straight line is being fitted to 
data that lies on a parabola, for example. The outliers in Figure 7.6 certainly stand 
out to the eye. But most classification problems cannot be so easily visualized: The 
notion of “model type” is more subtle than a regression line. And although it is 
known that good results are obtained on most standard datasets by discarding 
instances that do not fit a decision tree model, this is not necessarily of great comfort 
when dealing with a particular new dataset. The suspicion will remain that perhaps 
the new dataset is simply unsuited to decision tree modeling.

One solution that has been tried is to use several different learning schemes (e.g., 
a decision tree, a nearest-neighbor learner, and a linear discriminant function) to 
filter the data. A conservative approach is to ask that all three schemes fail to classify 
an instance correctly before it is deemed erroneous and removed from the data. In 
some cases, filtering the data in this way and using the filtered data as input to a 
final learning scheme gives better performance than simply using the three learning 
schemes and letting them vote on the outcome. Training all three schemes on the 
filtered data and letting them vote can yield even better results. However, there is a 
danger to voting techniques: Some learning algorithms are better suited to certain 
types of data than others, and the most appropriate scheme may simply get out-
voted! We will examine a more subtle method of combining the output from different 
classifiers, called stacking, in Section 8.7 (page 369). The lesson, as usual, is to get 
to know your data and look at it in many different ways.

One possible danger with filtering approaches is that they might conceivably just 
be sacrificing instances of a particular class (or group of classes) to improve accuracy 
on the remaining classes. Although there are no general ways to guard against this, 
it has not been found to be a common problem in practice.
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Finally, it is worth noting once again that automatic filtering is a poor substitute 
for getting the data right in the first place. And if this is too time-consuming and 
expensive to be practical, human inspection could be limited to those instances that 
are identified by the filter as suspect.

One-Class Learning
In most classification problems, training data is available for all classes that can 
occur at prediction time, and the learning algorithm uses the data for the different 
classes to determine decision boundaries that discriminate between them. However, 
some problems exhibit only a single class of instances at training time, while at 
prediction time new instances with unknown class labels can belong either to this 
target class or to a new class that was not available during training. Then, two  
different predictions are possible: target, meaning that an instance belongs to the 
class experienced during training, and unknown, where the instance does not appear 
to belong to that class. This type of learning problem is known as one-class 
classification.

In many cases, one-class problems can be reformulated into two-class ones 
because there is data from other classes that can be used for training. However, there 
are genuine one-class applications where it is impossible or inappropriate to make 
use of negative data during training. For example, consider password hardening, a 
biometric system that strengthens a computer login process by not only requiring 
the correct password to be typed, but also requiring that it be typed with the correct 
rhythm. This is a one-class problem; a single user must be verified and during train-
ing time only data from that user is available—we cannot ask anyone else to provide 
data without supplying them with the password!

Even in applications where instances from several classes are available at training 
time, it may be best to focus solely on the target class under consideration—if, for 
example, new classes may occur at prediction time that differ from all those avail-
able during training. Continuing with the typing-rhythm scenario, suppose we are 
to recognize typists in a situation where the text is not fixed—the current typist is 
to be verified as who he or she claims to be from his or her rhythmic patterns on a 
block of free text. This task is fundamentally different from distinguishing one user 
from a group of other users because we must be prepared to refuse attackers that 
the system has never seen before.

Outlier Detection
One-class classification is often called outlier (or novelty) detection because the 
learning algorithm is being used to differentiate between data that appears normal 
and abnormal with respect to the distribution of the training data. Earlier in this 
section we talked about making regression more robust against outliers by replacing 
the usual squared distance measure with the absolute-value one, and about trying to 
detect anomalies by using several different learning schemes.
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A generic statistical approach to one-class classification is to identify outliers 
as instances that lie beyond a distance d from a given percentage p of the training 
data. Alternatively, a probability density can be estimated for the target class by 
fitting a statistical distribution, such as a Gaussian, to the training data; any test 
instances with a low probability value can be marked as outliers. The challenge is 
to identify an appropriate distribution for the data at hand. If this cannot be done, 
one can adopt a nonparametric approach such as kernel density estimation (men-
tioned at the end of Section 4.2, page 99). An advantage of the density estimation 
approach is that the threshold can be adjusted at prediction time to obtain a suit-
able rate of outliers.

Multiclass classifiers can be tailored to the one-class situation by fitting a 
boundary around the target data and deeming instances that fall outside it to be 
outliers. The boundary can be generated by adapting the inner workings of exist-
ing multiclass classifiers such as support vector machines. These methods rely 
heavily on a parameter that determines how much of the target data is likely to 
be classified as outliers. If it is chosen too conservatively, data in the target class 
will erroneously be rejected. If it is chosen too liberally, the model will overfit 
and reject too much legitimate data. The rejection rate usually cannot be adjusted 
during testing, because an appropriate parameter value needs to be chosen at 
training time.

Generating Artificial Data
Rather than modify the internal workings of a multiclass classifier to form a one-
class decision boundary directly, another possibility is to generate artificial data for 
the outlier class and apply any off-the-shelf classifier. Not only does this allow any 
classifier to be used, but if the classifier produces class probability estimates the 
rejection rate can be tuned by altering the threshold.

The most straightforward approach is to generate uniformly distributed data 
and learn a classifier that can discriminate this from the target. However, different 
decision boundaries will be obtained for different amounts of artificial data: If too 
much is generated it will overwhelm the target class and the learning algorithm 
will always predict the artificial class. This problem can be avoided if the objec-
tive of learning is viewed as accurate class probability estimation rather than 
minimizing the classification error. For example, bagged decision trees (described 
in Section 8.2 (page 352), which have been shown to yield good class probability 
estimators, can be used.

Once a class probability estimation model has been obtained in this fashion, 
different thresholds on the probability estimates for the target class correspond to 
different decision boundaries surrounding the target class. This means that, as in the 
density estimation approach to one-class classification, the rate of outliers can be 
adjusted at prediction time to yield an outcome appropriate for the application at 
hand.

There is one significant problem. As the number of attributes increases, it quickly 
becomes infeasible to generate enough artificial data to obtain adequate coverage of 
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the instance space, and the probability that a particular artificial instance occurs 
inside or close to the target class diminishes to a point that makes any kind of dis-
crimination impossible.

The solution is to generate artificial data that is as close as possible to the 
target class. In this case, because it is no longer uniformly distributed, the distri-
bution of this artificial data—call this the “reference” distribution—must be taken 
into account when computing the membership scores for the resulting one-class 
model. In other words, the class probability estimates of the two-class classifier 
must be combined with the reference distribution to obtain membership scores 
for the target class.

To elaborate a little further, let T denote the target class for which we have training 
data and seek a one-class model, and A the artificial class, for which we generate data 
using a known reference distribution. What we would like to obtain is Pr[X | T], the 
density function of the target class, for any instance X—of course, we know Pr[X | A], 
the density function of the reference distribution. Assume for the moment that we know 
the true class probability function Pr[T | X]. In practice, we need to estimate this 
function using a class probability estimator learned from the training data. A simple 
application of Bayes’ rule can be used to express Pr[X | T] in terms of Pr[T], Pr[T | X], 
and Pr[X | A]:

Pr[ | ]
( Pr[ ])Pr[ | ]
Pr[ ]( Pr[ | ])

Pr[ | ]X T
T T X

T T X
X A= −

−
1

1

To use this equation in practice, choose Pr[X | A], generate a user-specified amount of 
artificial data from it, label it A, and combine it with instances in the training set for the 
target class, labeled T. The proportion of target instances is an estimate of Pr[T], and a 
standard learning algorithm can be applied to this two-class dataset to obtain a class 
probability estimator Pr[T | X]. Given that the value for Pr[X | A] can be computed for any 
particular instance X, everything is at hand to compute an estimate of the target density 
function Pr[X | T] for any instance X. To perform classification we choose an appropriate 
threshold, adjusted to tune the rejection rate to any desired value.

One question remains, namely, how to choose the reference density Pr[X | A]. We need 
to be able to generate artificial data from it and to compute its value for any instance X. 
Another requirement is that the data it generates should be close to the target class. In 
fact, ideally the reference density is identical to the target density, in which case Pr[T | X] 
becomes a constant function that any learning algorithm should be able to induce—the 
resulting two-class learning problem becomes trivial. This is unrealistic because it would 
require us to know the density of the target class. However, this observation gives a clue 
as to how to proceed: Apply any density estimation technique to the target data and use 
the resulting function to model the artificial class. The better the match between  
Pr[X | A] and Pr[X | T], the easier the resulting two-class class probability estimation 
task becomes.

In practice, given the availability of powerful methods for class probability 
estimation and the relative lack of such techniques for density estimation, it makes 
sense to apply a simple density estimation technique to the target data first to obtain 
Pr[X | A] and then employ a state-of-the-art class probability estimation method to the 
two-class problem that is obtained by combining the artificial data with the data from 
the target class.
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7.6  TRANSFORMING MULTIPLE CLASSES TO BINARY ONES
Recall from Chapter 6 that some learning algorithms—for example, standard sup
port vector machines—only work with two-class problems. In most cases, soph
isticated multiclass variants have been developed, but they may be very slow or 
difficult to implement. As an alternative, it is common practice to transform multi
class problems into multiple two-class ones: The dataset is decomposed into several 
two-class problems, the algorithm is run on each one, and the outputs of the result-
ing classifiers are combined. Several popular techniques can implement this idea. 
We begin with a very simple one that was touched on when we were discussing 
how to use linear regression for classification; we then move on to pairwise clas-
sification and more advanced techniques—error-correcting output codes and ensem-
bles of nested dichotomies—that can often be profitably applied even when the 
underlying learning algorithm is able to deal with multiclass problems directly.

Simple Methods
At the beginning of the Linear Classification section in Chapter 4 (page 125) we 
learned how to transform a multiclass dataset for multiresponse linear regression 
to perform a two-class regression for each class. The idea essentially produces 
several two-class datasets by discriminating each class against the union of all the 
other classes. This technique is commonly called one-vs.-rest (or somewhat mislead-
ingly, one-vs.-all). For each class, a dataset is generated containing a copy of each 
instance in the original data, but with a modified class value. If the instance has 
the class associated with the corresponding dataset, it is tagged yes; otherwise, no. 
Then classifiers are built for each of these binary datasets—classifiers that output 
a confidence figure with their predictions; for example, the estimated probability 
that the class is yes. During classification, a test instance is fed into each binary 
classifier, and the final class is the one associated with the classifier that predicts 
yes most confidently.

Of course, this method is sensitive to the accuracy of the confidence figures 
produced by the classifiers: If some classifiers have an exaggerated opinion of 
their own predictions, the overall result will suffer. That is why it can be impor-
tant to carefully tune parameter settings in the underlying learning algorithm. 
For example, in standard support vector machines for classification, it is gener-
ally necessary to tune the parameter C, which provides an upper bound to the 
influence of each support vector and controls the closeness of fit to the training 
data, and the value of the kernel parameter—for example, the degree of the 
exponent in a polynomial kernel. This can be done based on internal cross-
validation. It has been found empirically that the one-vs.-rest method can be 
very competitive, at least in the case of kernel-based classifiers, when appropriate 
parameter tuning is done. Note that it may also be useful to apply techniques 
for calibrating confidence scores, discussed in the next section, to the individual 
two-class models.
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Another simple and general method for multiclass problems is pairwise classi-
fication. Here, a classifier is built for every pair of classes, using only the instances 
from these two classes. The output on an unknown test example is based on which 
class receives the most votes. This scheme generally yields accurate results in terms 
of classification error. It can also be used to produce probability estimates by apply-
ing a method called pairwise coupling, which calibrates the individual probability 
estimates from the different classifiers.

If there are k classes, pairwise classification builds a total of k(k − 1)/2 classifiers. 
Although this sounds unnecessarily computation intensive, it is not. In fact, if the 
classes are evenly populated, a pairwise classifier is at least as quick to train as any 
other multiclass method. The reason is that each of the pairwise learning problems 
only involves instances pertaining to the two classes under consideration. If n 
instances are divided evenly among k classes, this amounts to 2n/k instances per 
problem. Suppose the learning algorithm for a two-class problem with n instances 
takes time proportional to n seconds to execute. Then the runtime for pairwise clas-
sification is proportional to k(k − 1)/2 × 2n/k seconds, which is (k − 1)n. In other 
words, the method scales linearly with the number of classes. If the learning algo-
rithm takes more time—say proportional to n2—the advantage of the pairwise 
approach becomes even more pronounced.

Error-Correcting Output Codes
The simple methods discussed above are often very effective. Pairwise classification 
in particular can be a very useful technique. It has been found that it can in some 
cases improve accuracy even when the underlying learning algorithm, such as a 
decision tree learner, can deal with multiclass problems directly. This may be due 
to the fact that pairwise classification actually generates an ensemble of many clas-
sifiers. Ensemble learning is a well-known strategy for obtaining accurate classifiers, 
and we will discuss several ensemble learning methods in Chapter 8. It turns out 
that there are methods other than pairwise classification that can be used to generate 
an ensemble classifier by decomposing a multiclass problem into several two-class 
subtasks. The one we discuss next is based on error-correcting output codes.

Two-class decompositions of multiclass problems can be viewed in terms of the 
so-called “output codes” they correspond to. Let us revisit the simple one-vs.-rest 
method to see what such codes look like. Consider a multiclass problem with four 
classes a, b, c, and d. The transformation can be visualized as illustrated in Table 
7.2(a), where yes and no are mapped to 1 and 0, respectively. Each of the original 
class values is converted into a 4-bit code word, 1 bit per class, and the four clas-
sifiers predict the bits independently. Interpreting the classification process in terms 
of these code words, errors occur when the wrong binary bit receives the highest 
confidence.

However, we do not have to use the particular code words shown. Indeed, there 
is no reason why each class must be represented by 4 bits. Look instead at the code 
of Table 7.2(b), where classes are represented by 7 bits. When applied to a dataset, 
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Table 7.2  Transforming a Multiclass Problem into a Two-Class One

(a) (b)

Class Class Vector Class Class Vector

a 1 0 0 0 a 1 1 1 1 1 1 1
b 0 1 0 0 b 0 0 0 0 1 1 1
c 0 0 1 0 c 0 0 1 1 0 0 1
d 0 0 0 1 d 0 1 0 1 0 1 0

(a) standard method and (b) error-correcting code.

seven classifiers must be built instead of four. To see what that might buy, consider 
the classification of a particular instance. Suppose it belongs to class a, and that the 
predictions of the individual classifiers are 1 0 1 1 1 1 1, respectively. Obviously, 
comparing this code word with those in Table 7.2(b), the second classifier has made 
a mistake: It predicted 0 instead of 1, no instead of yes.

Comparing the predicted bits with the code word associated with each class, the 
instance is clearly closer to a than to any other class. This can be quantified by the 
number of bits that must be changed to convert the predicted code word into those 
of Table 7.2(b): The Hamming distance, or the discrepancy between the bit strings, 
is 1, 3, 3, and 5 for the classes a, b, c, and d, respectively. We can safely conclude 
that the second classifier made a mistake and correctly identify a as the instance’s 
true class.

The same kind of error correction is not possible with the code words shown in 
Table 7.2(a) because any predicted string of 4 bits, other than these four 4-bit words, 
has the same distance to at least two of them. Thus, the output codes are not “error 
correcting.”

What determines whether a code is error correcting or not? Consider the Hamming 
distance between the code words representing different classes. The number of errors 
that can be possibly corrected depends on the minimum distance between any pair 
of code words, say d. The code can guarantee to correct up to (d − 1)/2 1-bit errors 
because if this number of bits of the correct code word are flipped, it will still be 
the closest and will therefore be identified correctly. In Table 7.2(a) the Hamming 
distance for each pair of code words is 2. Thus, the minimum distance d is also 2, 
and we can correct no more than 0 errors! However, in the code of Table 7.2(b) the 
minimum distance is 4 (in fact, the distance is 4 for all pairs). That means it is 
guaranteed to correct 1-bit errors.

We have identified one property of a good error-correcting code: The code words 
must be well separated in terms of their Hamming distance. Because they comprise 
the rows of the code table, this property is called row separation. There is a second 
requirement that a good error-correcting code should fulfill: column separation. The 
Hamming distance between every pair of columns must be large, as must the dis-
tance between each column and the complement of every other column. The seven 
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columns in Table 7.2(b) are separated from one another (and their complements) by 
at least 1 bit.

Column separation is necessary because if two columns are identical (or if one 
is the complement of another), the corresponding classifiers will make the same 
errors. Error correction is weakened if the errors are correlated—in other words, if 
many bit positions are simultaneously incorrect. The greater the distance between 
columns, the more errors are likely to be corrected.

With fewer than four classes it is impossible to construct an effective error-
correcting code because good row separation and good column separation cannot 
be achieved simultaneously. For example, with three classes there are only eight 
possible columns (23), four of which are complements of the other four. Moreover, 
columns with all 0s or all 1s provide no discrimination. This leaves just three pos-
sible columns, and the resulting code is not error correcting at all. (In fact, it is the 
standard “one-vs.-rest” encoding.)

If there are few classes, an exhaustive error-correcting code, such as the one 
in Table 7.2(b), can be built. In an exhaustive code for the k classes, the columns 
comprise every possible k-bit string, except for complements and the trivial all-0 
or all-1 strings. Each of the code words contains 2k−1 − 1 bits. The code is 
constructed as follows: The code word for the first class consists of all 1s; that 
for the second class has 2k−2 0s followed by 2k−2 − 1 1s; the third has 2k−3 0s 
followed by 2k−3 1s followed by 2k−3 0s followed by 2k−3 − 1 1s; and so on. The 
ith code word consists of alternating runs of 2k−i 0s and 1s, the last run being 
one short.

With more classes, exhaustive codes are infeasible because the number of 
columns increases exponentially and too many classifiers have to be built. In that 
case, more sophisticated methods are employed, which can build a code with good 
error-correcting properties from a smaller number of columns.

Error-correcting output codes do not work for local learning algorithms such as 
instance-based learners, which predict the class of an instance by looking at nearby 
training instances. In the case of a nearest-neighbor classifier, all output bits would 
be predicted using the same training instance. The problem can be circumvented by 
using different attribute subsets to predict each output bit, decorrelating the 
predictions.

Ensembles of Nested Dichotomies
Error-correcting output codes often produce accurate classifiers for multiclass prob-
lems. However, the basic algorithm produces classifications, whereas often we 
would like class probability estimates as well—for example, to perform cost-sensitive 
classification using the minimum expected cost approach discussed in Section 5.7 
(page 167). Fortunately, there is a method for decomposing multiclass problems into 
two-class ones that provides a natural way of computing class probability estimates, 
so long as the underlying two-class models are able to produce probabilities for the 
corresponding two-class subtasks.
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Table 7.3  Nested Dichotomy in the Form of a Code Matrix

Class Class Vector

a 0 0 X
b 1 1 X
c 0 X 0
d 1 X 0

The idea is to recursively split the full set of classes from the original multiclass 
problem into smaller and smaller subsets, while splitting the full dataset of instances 
into subsets corresponding to these subsets of classes. This yields a binary tree of 
classes. Consider the hypothetical four-class problem discussed earlier. At the root 
node is the full set of classes {a, b, c, d}, which is split into disjoint subsets, say {a, 
c} and {b, d}, along with the instances pertaining to these two subsets of classes. 
The two subsets form the two successor nodes in the binary tree. These subsets are 
then split further into one-element sets, yielding successors {a} and {c} for the node 
{a, c} and successors {b} and {d} for the node {b, d}. Once we reach one-element 
subsets, the splitting process stops.

The resulting binary tree of classes is called a nested dichotomy because each 
internal node and its two successors define a dichotomy—for example, discriminat-
ing between classes {a, c} and {b, d} at the root node—and the dichotomies are 
nested in a hierarchy. We can view a nested dichotomy as a particular type of sparse 
output code. Table 7.3 shows the output code matrix for the example just discussed. 
There is one dichotomy for each internal node of the tree structure. Thus, given that 
the example involves three internal nodes, there are three columns in the code matrix. 
In contrast to the class vectors considered before, the matrix contains elements 
marked X that indicate that instances of the corresponding classes are simply omitted 
from the associated two-class learning problems.

What is the advantage of this kind of output code? It turns out that, because the 
decomposition is hierarchical and yields disjoint subsets, there is a simple method 
for computing class probability estimates for each element in the original set of 
multiple classes, assuming two-class estimates for each dichotomy in the hierarchy. 
The reason is the chain rule from probability theory, which we already encountered 
when discussing Bayesian networks in Section 6.7 (page 265).

Suppose we want to compute the probability for class a given a particular 
instance x—that is, the conditional probability Pr[a | x]. This class corresponds to 
one of the four leaf nodes in the hierarchy of classes in the previous example. First, 
we learn two-class models that yield class probability estimates for the three two-
class datasets at the internal nodes of the hierarchy. Then, from the two-class model 
at the root node, an estimate of the conditional probability Pr[{a, b} | x]—namely, 
that x belongs to either a or b—can be obtained. Moreover, we can obtain an estimate 
of Pr[{a} | x, {a, b}]—the probability that x belongs to a given that we already know 
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that it belongs to either a or b—from the model that discriminates between the one-
element sets {a} and {b}. Now, based on the chain rule, Pr[{a} | x] = Pr[{a} | 
{a, b}, x ] × Pr[{a, b} | x]. Thus, to compute the probability for any individual class 
of the original multiclass problem—any leaf node in the tree of classes—we simply 
multiply together the probability estimates collected from the internal nodes encoun-
tered when proceeding from the root node to this leaf node: the probability estimates 
for all subsets of classes that contain the target class.

Assuming that the individual two-class models at the internal nodes produce 
accurate probability estimates, there is reason to believe that the multiclass probabil-
ity estimates obtained using the chain rule will generally be accurate. However, it 
is clear that estimation errors will accumulate, causing problems for very deep hier-
archies. A more basic issue is that in the previous example we arbitrarily decided 
on a particular hierarchical decomposition of the classes. Perhaps there is some 
background knowledge regarding the domain concerned, in which case one particu-
lar hierarchy may be preferable because certain classes are known to be related, but 
this is generally not the case.

What can be done? If there is no reason a priori to prefer any particular decom-
position, perhaps all of them should be considered, yielding an ensemble of nested 
dichotomies. Unfortunately, for any nontrivial number of classes there are too many 
potential dichotomies, making an exhaustive approach infeasible. But we could 
consider a subset, taking a random sample of possible tree structures, building two-
class models for each internal node of each tree structure (with caching of models, 
given that the same two-class problem may occur in multiple trees), and then averag-
ing the probability estimates for each individual class to obtain the final estimates.

Empirical experiments show that this approach yields accurate multiclass clas-
sifiers and is able to improve predictive performance even in the case of classifiers, 
such as decision trees, that can deal with multiclass problems directly. In contrast 
to standard error-correcting output codes, the technique often works well even when 
the base learner is unable to model complex decision boundaries. The reason is that, 
generally speaking, learning is easier with fewer classes so results become more 
successful the closer we get to the leaf nodes in the tree. This also explains why the 
pairwise classification technique described earlier works particularly well for simple 
models such as ones corresponding to hyperplanes: It creates the simplest possible 
dichotomies! Nested dichotomies appear to strike a useful balance between the 
simplicity of the learning problems that occur in pairwise classification—after all, 
the lowest-level dichotomies involve pairs of individual classes—and the power of 
the redundancy embodied in standard error-correcting output codes.

7.7  CALIBRATING CLASS PROBABILITIES
Class probability estimation is obviously more difficult than classification. Given a 
way of generating class probabilities, classification error is minimized as long as the 
correct class is predicted with maximum probability. However, a method for accurate 
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classification does not imply a method of generating accurate probability estimates: 
The estimates that yield the correct classification may be quite poor when assessed 
according to the quadratic (page 160) or informational (page 161) loss discussed in 
Section 5.6. Yet—as we have stressed several times—it is often more important to 
obtain accurate conditional class probabilities for a given instance than to simply 
place the instance into one of the classes. Cost-sensitive prediction based on the 
minimum expected cost approach is one example where accurate class probability 
estimates are very useful.

Consider the case of probability estimation for a dataset with two classes. If the 
predicted probabilities are on the correct side of the 0.5 threshold commonly used 
for classification, no classification errors will be made. However, this does not mean 
that the probability estimates themselves are accurate. They may be systematically 
too optimistic—too close to either 0 or 1—or too pessimistic—not close enough to 
the extremes. This type of bias will increase the measured quadratic or informational 
loss, and will cause problems when attempting to minimize the expected cost of 
classifications based on a given cost matrix.

Figure 7.7 demonstrates the effect of overoptimistic probability estimation for a 
two-class problem. The x-axis shows the predicted probability of the multinomial 
Naïve Bayes model from Section 4.2 (page 97) for one of two classes in a text clas-
sification problem with about 1000 attributes representing word frequencies. The 
y-axis shows the observed relative frequency of the target class. The predicted prob-
abilities and relative frequencies were collected by running a tenfold cross-validation. 
To estimate relative frequencies, the predicted probabilities were first discretized 
into 20 ranges using equal-frequency discretization. Observations corresponding to 
one interval were then pooled—predicted probabilities on the one hand and corre-
sponding 0/1 values on the other—and the pooled values are shown as the 20 points 
in the plot.

FIGURE 7.7 

Overoptimistic probability estimation for a two-class problem. 
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This kind of plot, known as a reliability diagram, shows how reliable the esti-
mated probabilities are. For a well-calibrated class probability estimator, the observed 
curve will coincide with the diagonal. This is clearly not the case here. The Naïve 
Bayes model is too optimistic, generating probabilities that are too close to 0 and 1. 
This is not the only problem: The curve is quite far from the line that corresponds 
to the 0.5 threshold that is used for classification. This means that classification 
performance will be affected by the poor probability estimates that the model 
generates.

The fact that we seek a curve that lies close to the diagonal makes the remedy 
clear: Systematic misestimation should be corrected by using post hoc calibration 
of the probability estimates to map the empirically observed curve into a diagonal. 
A coarse way of doing this is to use the data from the reliability diagram directly 
for calibration, and map the predicted probabilities to the observed relative frequen-
cies in the corresponding discretization intervals. Data for this can be obtained 
using internal cross-validation or a holdout set so that the actual test data remains 
untouched.

Discretization-based calibration is very fast. However, determining appropriate 
discretization intervals is not easy. With too few, the mapping is too coarse; with 
too many, each interval contains insufficient data for a reliable estimate of relative 
frequencies. However, other ways of calibrating can be devised. The key is to 
realize that calibrating probability estimates for two-class problems is a function 
estimation problem with one input—the estimated class probability—and one 
output—the calibrated probability. In principle, complex functions could be used 
to estimate the mapping—perhaps arbitrary polynomials. However, it makes sense 
to assume that the observed relationship is at least monotonically increasing, in 
which case increasing functions should be used.

Assuming that the calibration function is piecewise constant and monotonically 
increasing, there is an efficient algorithm that minimizes the squared error between 
the observed class “probabilities” (which are either 0 or 1 when no binning is 
applied) and the resulting calibrated class probabilities. Estimating a piecewise 
constant monotonically increasing function is an instance of isotonic regression, for 
which there is a fast algorithm based on the pair-adjacent violators (PAV) approach. 
The data consists of estimated probabilities and 0/1 values; assume it has been sorted 
according to the estimated probabilities. The basic PAV algorithm iteratively merges 
pairs of neighboring data points that violate the monotonicity constraint by comput-
ing their weighted mean—initially this will be the mean of 0/1 values—and using 
it to replace the original data points. This is repeated until all conflicts have been 
resolved. It can be shown that the order in which data points are merged does not 
affect the outcome of the process. The result is a function that increases monotoni-
cally in a stepwise fashion. This naïve algorithm is quadratic in the number of data 
points, but there is a clever variant that operates in linear time.

Another popular calibration method, which also presupposes a monotonic rela-
tionship, is to assume a linear relation between the log-odds of the estimated class 
probabilities and the target class probabilities. The logistic function is appropriate 
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here, and logistic regression can be used to estimate the calibration function, with 
the caveat that it is important to use log-odds of the estimated class probabilities 
rather than the raw values as the input for logistic regression.

Given that logistic regression, with only two parameters, uses a simpler model 
than the PAV approach, it can be more appropriate when little data is available for 
calibration. However, with a large volume of data, PAV-based calibration is generally 
preferable. Logistic regression has the advantage that it can be easily applied to 
calibrate probabilities for multiclass problems because multiclass versions of logistic 
regression exist. In the case of isotonic regression it is common to use the one-vs.-
rest method for problems with more than two classes, but pairwise coupling or 
ensembles of nested dichotomies—discussed in Section 7.6—offer an alternative.

Note that situations exist in which the relationship between the estimated and 
true probabilities is not monotonic. However, rather than switching to a more 
complex calibration method—or using discretization-based calibration, which does 
not assume monotonicity—this should perhaps be taken as an indication that the 
underlying class probability estimation method is not powerful enough for the 
problem at hand.

7.8  FURTHER READING
Attribute selection, under the term feature selection, has been investigated in the 
field of pattern recognition for decades. Backward elimination, for example, was 
introduced in the early 1960s (Marill and Green, 1963). Kittler (1978) surveys the 
feature-selection algorithms that have been developed for pattern recognition. Best-
first search and genetic algorithms are standard artificial intelligence techniques 
(Winston, 1992; Goldberg, 1989).

The experiments that show the performance of decision tree learners deteriorat-
ing when new attributes are added are reported by John (1997), who gives a nice 
explanation of attribute selection. The idea of finding the smallest attribute set that 
carves up the instances uniquely is from Almuallin and Dietterich (1991, 1992) and 
was further developed by Liu and Setiono (1996). Kibler and Aha (1987) and Cardie 
(1993) both investigated the use of decision tree algorithms to identify features for 
nearest-neighbor learning; Holmes and Nevill-Manning (1995) used OneR to order 
features for selection. Kira and Rendell (1992) used instance-based methods to 
select features, leading to a scheme called Relief for Recursive Elimination of 
Features. Gilad-Bachrach et al. (2004) show how this scheme can be modified to 
work better with redundant attributes. The correlation-based feature-selection 
method was developed by Hall (2000).

The use of wrapper methods for feature selection is from John et  al. (1994) 
and Kohavi and John (1997), and genetic algorithms have been applied within a 
wrapper framework by Vafaie and DeJong (1992) and Cherkauer and Shavlik 
(1996). The selective Naïve Bayes learning scheme is from Langley and Sage 
(1994). Guyon et  al. (2002) present and evaluate the recursive feature-elimination 
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scheme in conjunction with support vector machines. The method of raced search 
was developed by Moore and Lee (1994). Gütlein et  al. (2009) investigate how 
to speed up scheme-specific selection for datasets with many attributes using simple 
ranking-based methods.

Dougherty et al. (1995) give a brief account of supervised and unsupervised 
discretization, along with experimental results comparing the entropy-based method 
with equal-width binning and the OneR method. Frank and Witten (1999) describe 
the effect of using the ordering information in discretized attributes. Proportional 
k-interval discretization for Naïve Bayes was proposed by Yang and Webb (2001). 
The entropy-based method for discretization, including the use of the MDL stopping 
criterion, was developed by Fayyad and Irani (1993). The bottom-up statistical 
method using the χ2 test is from Kerber (1992), and its extension to an automatically 
determined significance level is described by Liu and Setiono (1997). Fulton et al. 
(1995) investigate the use of dynamic programming for discretization and derive the 
quadratic time bound for a general impurity function (e.g., entropy) and the linear 
one for error-based discretization. The example used for showing the weakness of 
error-based discretization is adapted from Kohavi and Sahami (1996), who were the 
first to clearly identify this phenomenon.

Principal components analysis is a standard technique that can be found in most 
statistics textbooks. Fradkin and Madigan (2003) analyze the performance of random 
projections. The algorithm for partial least-squares regression is from Hastie et al. 
(2009). The TF × IDF metric is described by Witten et al. (1999b).

The experiments on using C4.5 to filter its own training data were reported by 
John (1995). The more conservative approach of a consensus filter involving several 
different learning algorithms has been investigated by Brodley and Friedl (1996). 
Rousseeuw and Leroy (1987) describe the detection of outliers in statistical regres-
sion, including the least median of squares method; they also present the telephone 
data of Figure 7.6. It was Quinlan (1986) who noticed that removing noise from the 
training instance’s attributes can decrease a classifier’s performance on similarly 
noisy test instances, particularly at higher noise levels.

Barnett and Lewis (1994) address the general topic of outliers in statistical data, 
while Pearson (2005) describes the statistical approach of fitting a distribution to the 
target data. Schölkopf et al. (2000) describe the use of support vector machines for 
novelty detection, while Abe et al. (2006), among others, use artificial data as a 
second class. Combining density estimation and class probability estimation using 
artificial data is suggested as a generic approach to unsupervised learning by Hastie 
et al. (2009), and Hempstalk et al. (2008) describe it in the context of one-class 
classification. Hempstalk and Frank (2008) discuss the fair comparison of one-class 
and multiclass classification when several classes are available at training time and 
we want to discriminate against an entirely new class at prediction time.

Vitter (1985) explored the idea of reservoir sampling; he called the method we 
described algorithm R. Its computational complexity is O(N), where N is the number 
of instances in the stream, because a random number must be generated for every 
instance in order to determine whether, and where, to place it in the reservoir. Vitter 
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describes several other algorithms that improve on R by reducing the number of 
random numbers that must be generated in order to produce the sample.

Rifkin and Klautau (2004) show that the one-vs.-rest method for multiclass 
classification can work well if appropriate parameter tuning is applied. Friedman 
(1996) describes the technique of pairwise classification, Fürnkranz (2002) further 
analyzes it, and Hastie and Tibshirani (1998) extend it to estimate probabilities 
using pairwise coupling. Fürnkranz (2003) evaluates pairwise classification as a 
technique for ensemble learning. The idea of using error-correcting output codes 
for classification gained wide acceptance after a paper by Dietterich and Bakiri 
(1995); Ricci and Aha (1998) showed how to apply such codes to nearest-
neighbor classifiers. Frank and Kramer (2004) introduce ensembles of nested 
dichotomies for multiclass problems. Dong et  al. (2005) considered using bal-
anced nested dichotomies rather than unrestricted random hierarchies to reduce 
training time.

The importance of methods for calibrating class probability estimates is now 
well-established. Zadrozny and Elkan (2002) applied the PAV approach and logistic 
regression to calibration, and also investigated how to deal with multiclass problems. 
Niculescu-Mizil and Caruana (2005) compared a variant of logistic regression and 
the PAV-based method in conjunction with a large set of underlying class probability 
estimators, and found that the latter is preferable for sufficiently large calibration 
sets. They also found that multilayer perceptrons and bagged decision trees produce 
well-calibrated probabilities and do not require an extra calibration step. Stout 
(2008) describes a linear-time algorithm for isotonic regression based on minimizing 
the squared error.

7.9  WEKA IMPLEMENTATIONS
Attribute selection (see Section 11.8 and Tables 11.9 and 11.10):

•	 CfsSubsetEval (correlation-based attribute subset evaluator)
•	 ConsistencySubsetEval (measures class consistency for a given set of 

attributes)
•	 ClassifierSubsetEval (uses a classifier for evaluating subsets of attributes)
•	 SVMAttributeEval (ranks attributes according to the magnitude of the 

coefficients learned by a support vector machine)
•	 ReliefF (instance-based approach for ranking attributes)
•	 WrapperSubsetEval (uses a classifier plus cross-validation)
•	 GreedyStepwise (forward selection and backward elimination search)
•	 LinearForwardSelection (forward selection with a sliding window of 

attribute choices at each step of the search)
•	 BestFirst (search method that uses greedy hill-climbing with 

backtracking)
•	 RaceSearch (uses the race search methodology)
•	 Ranker (ranks individual attributes according to their evaluation)
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Learning decision tables—DecisionTable (see Section 11.4 and Table 11.5)

Discretization (see Section 11.3):
	 Discretize in Table 11.1 (provides a variety of options for unsupervised 

discretization)
	 PKIDiscretize in Table 11.1 (proportional k-interval discretization)
	 Discretize in Table 11.3 (provides a variety of options for supervised 

discretization)

Other data transformation operations (see Section 11.3):
•	 PrincipalComponents and RandomProjection in Table 11.1 (principal 

components analysis and random projections)
•	 Operations in Table 11.1 include arithmetic operations; time-series 

operations; obfuscation; generating cluster membership values; adding 
noise; various conversions between numeric, binary, and nominal  
attributes; and various data-cleansing operations.

•	 Operations in Table 11.2 include resampling and reservoir sampling.
•	 Operations in Table 11.3 include partial least-squares transformation.
•	 MultiClassClassifier (see Table 11.6; includes many ways of handling 

multiclass problems with two-class classifiers, including error-correcting 
output codes)

•	 END (see Table 11.6; ensembles of nested dichotomies)
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CHAPTER 

8 

Ensemble Learning

Having studied how to massage the input and calibrate the output, we now turn 
to techniques for combining different models learned from the data. There are 
some surprises in store. For example, it is often advantageous to take the train-
ing data and derive several different training sets from it, learn a model from 
each, and combine them to produce an ensemble of learned models. Indeed, 
techniques for doing this can be very powerful. It is, for example, possible to 
transform a relatively weak learning scheme into an extremely strong one (in a 
precise sense that we will explain). Loss of interpretability is a drawback when 
applying ensemble learning, but there are ways to derive intelligible structured 
descriptions based on what these methods learn. Finally, if several learning 
schemes are available, it may be advantageous not to choose the best-performing 
one for your dataset (using cross-validation) but to use them all and combine 
the results.

Many of these results are quite counterintuitive, at least at first blush. How  
can it be a good idea to use many different models together? How can you possibly 
do better than choose the model that performs best? Surely, all this runs counter  
to Occam’s razor, which advocates simplicity? How can you possibly obtain first-
class performance by combining indifferent models, as one of these techniques 
appears to do? But consider committees of humans, which often come up with  
wiser decisions than individual experts. Recall Epicurus’ view that, faced with  
alternative explanations, one should retain them all. Imagine a group of specialists 
each of whom excels in a limited domain even though none is competent across  
the board. In struggling to understand how these methods work, researchers  
have exposed all sorts of connections and links that have led to even greater 
improvements.

8.1  COMBINING MULTIPLE MODELS
When wise people make critical decisions, they usually take into account the opin-
ions of several experts rather than relying on their own judgment or that of a solitary 
trusted advisor. For example, before choosing an important new policy direction, a 
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benign dictator consults widely: He or she would be ill advised to follow just one 
expert’s opinion blindly. In a democratic setting, discussion of different viewpoints 
may produce a consensus; if not, a vote may be called for. In either case, different 
expert opinions are being combined.

In data mining, a model generated by machine learning can be regarded as an 
expert. Expert is probably too strong a word!—depending on the amount and quality 
of the training data, and whether the learning algorithm is appropriate to the problem 
at hand, the expert may in truth be regrettably ignorant—but we use the term nev-
ertheless. An obvious approach to making decisions more reliable is to combine the 
output of several different models. Several machine learning techniques do this by 
learning an ensemble of models and using them in combination: Prominent among 
these are schemes called bagging, boosting, and stacking. They can all, more often 
than not, increase predictive performance over a single model. And they are general 
techniques that are able to be applied to classification tasks and numeric prediction 
problems.

Bagging, boosting, and stacking have been developed over the last couple of 
decades, and their performance is often astonishingly good. Machine learning 
researchers have struggled to understand why. And during that struggle, new methods 
have emerged that are sometimes even better. For example, whereas human com-
mittees rarely benefit from noisy distractions, shaking up bagging by adding random 
variants of classifiers can improve performance. Closer analysis reveals that 
boosting—perhaps the most powerful of the three methods—is closely related to the 
established statistical technique of additive models, and this realization has led to 
improved procedures.

These combined models share the disadvantage of being rather hard to analyze: 
They can comprise dozens or even hundreds of individual models, and although they 
perform well it is not easy to understand in intuitive terms what factors are contribut-
ing to the improved decisions. In the last few years methods have been developed 
that combine the performance benefits of committees with comprehensible models. 
Some produce standard decision tree models; others introduce new variants of trees 
that provide optional paths.

8.2  BAGGING
Combining the decisions of different models means amalgamating the various 
outputs into a single prediction. The simplest way to do this in the case of classifica-
tion is to take a vote (perhaps a weighted vote); in the case of numeric prediction it 
is to calculate the average (perhaps a weighted average). Bagging and boosting both 
adopt this approach, but they derive the individual models in different ways. In 
bagging the models receive equal weight, whereas in boosting weighting is used to 
give more influence to the more successful ones—just as an executive might place 
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different values on the advice of different experts depending on how successful their 
predictions were in the past.

To introduce bagging, suppose that several training datasets of the same size are 
chosen at random from the problem domain. Imagine using a particular machine 
learning technique to build a decision tree for each dataset. You might expect these 
trees to be practically identical and to make the same prediction for each new test 
instance. But, surprisingly, this assumption is usually quite wrong, particularly if 
the training datasets are fairly small. This is a rather disturbing fact and seems to 
cast a shadow over the whole enterprise! The reason for it is that decision tree 
induction (at least the standard top-down method described in Chapter 4) is an 
unstable process: Slight changes to the training data may easily result in a different 
attribute being chosen at a particular node, with significant ramifications for the 
structure of the subtree beneath that node. This automatically implies that there are 
test instances for which some of the decision trees produce correct predictions and 
others do not.

Returning to the preceding experts analogy, consider the experts to be the indi-
vidual decision trees. We can combine the trees by having them vote on each test 
instance. If one class receives more votes than any other, it is taken as the correct 
one. Generally, the more the merrier: Predictions made by voting become more reli-
able as more votes are taken into account. Decisions rarely deteriorate if new training 
sets are discovered, trees are built for them, and their predictions participate in the 
vote as well. In particular, the combined classifier will seldom be less accurate than 
a decision tree constructed from just one of the datasets. (Improvement is not guar-
anteed, however. It can be shown theoretically that pathological situations exist in 
which the combined decisions are worse.)

Bias–Variance Decomposition
The effect of combining multiple hypotheses can be viewed through a theoretical 
device known as the bias–variance decomposition. Suppose we could have an 
infinite number of independent training sets of the same size and use them to 
make an infinite number of classifiers. A test instance is processed by all clas-
sifiers, and a single answer is determined by majority vote. In this idealized 
situation, errors will still occur because no learning scheme is perfect: The error 
rate will depend on how well the machine learning method matches the problem 
at hand, and there is also the effect of noise in the data, which cannot possibly 
be learned.

Suppose the expected error rate were evaluated by averaging the error of the 
combined classifier over an infinite number of independently chosen test examples. 
The error rate for a particular learning algorithm is called its bias for the learning 
problem and measures how well the learning method matches the problem. (We 
include the “noise” component in the bias term because it is generally unknown in 
practice anyway.) This technical definition is a way of quantifying the vaguer notion 
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of bias that was introduced in Section 1.5 (page 31): It measures the “persistent” 
error of a learning algorithm that can’t be eliminated even by taking an infinite 
number of training sets into account. Of course, it cannot be calculated exactly in 
practical situations; it can only be approximated.

A second source of error in a learned model, in a practical situation, stems from 
the particular training set used, which is inevitably finite and therefore not fully 
representative of the actual population of instances. The expected value of this 
component of the error, over all possible training sets of the given size and all pos-
sible test sets, is called the variance of the learning method for that problem. The 
total expected error of a classifier is made up of the sum of bias and variance—this 
is the bias–variance decomposition.

Note that we are glossing over the details here. The bias–variance decomposition 
was introduced in the context of numeric prediction based on squared error, where 
there is a widely accepted way of performing it. However, the situation is not so 
clear for classification, and several competing decompositions have been proposed. 
Regardless of the specific decomposition used to analyze the error, combining mul-
tiple classifiers in this manner generally decreases the expected error by reducing 
the variance component. The more classifiers that are included, the greater the reduc-
tion in variance. Of course, a difficulty arises when putting this voting scheme into 
practice: Usually there’s only one training set, and obtaining more data is either 
impossible or expensive.

Bagging attempts to neutralize the instability of learning methods by simulating 
the process described previously using a given training set. Instead of sampling a 
fresh, independent training dataset each time, the original training data is altered by 
deleting some instances and replicating others. Instances are randomly sampled, with 
replacement, from the original dataset to create a new one of the same size. This 
sampling procedure inevitably replicates some of the instances and deletes others. 
If this idea strikes a chord, it is because we encountered it in Section 5.4 (page 155) 
when explaining the bootstrap method for estimating the generalization error of a 
learning method; indeed, the term bagging stands for bootstrap aggregating. Bagging 
applies the learning scheme—for example, a decision tree inducer—to each one of 
these artificially derived datasets, and the classifiers generated from them vote for 
the class to be predicted. The algorithm is summarized in Figure 8.1.

The difference between bagging and the idealized procedure described before is 
the way in which the training datasets are derived. Instead of obtaining independent 
datasets from the domain, bagging just resamples the original training data. The 
datasets generated by resampling are different from one another but are certainly 
not independent because they are all based on one dataset. However, it turns out that 
bagging produces a combined model that often performs significantly better than the 
single model built from the original training data, and is never substantially worse.

Bagging can also be applied to learning schemes for numeric prediction—for 
example, model trees. The only difference is that, instead of voting on the outcome, 
the individual predictions, being real numbers, are averaged. The bias–variance 
decomposition is applied to numeric prediction by decomposing the expected value 
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of the mean-squared error of the predictions on fresh data. Bias is defined as the 
mean-squared error expected when averaging over models built from all possible 
training datasets of the same size, and variance is the component of the expected 
error of a single model that is due to the particular training data it was built from. 
It can be shown theoretically that averaging over infinitely many models built from 
independent training sets always reduces the expected value of the mean-squared 
error. (As we mentioned earlier, the analogous result is not true for classification.)

Bagging with Costs
Bagging helps most if the underlying learning scheme is unstable in that small 
changes in the input data can lead to quite different classifiers. Indeed, results can 
be improved by increasing the diversity in the ensemble of classifiers by making the 
learning scheme as unstable as possible. For example, when bagging decision trees, 
which are already unstable, better performance is often achieved by switching 
pruning off, which makes them even more unstable. Another improvement can be 
obtained by changing the way that predictions are combined for classification. As 
originally formulated, bagging uses voting. But when the models can output prob-
ability estimates and not just plain classifications, it makes intuitive sense to average 
these probabilities instead. Not only does this often improve classification slightly, 
but the bagged classifier also generates probability estimates—ones that are often 
more accurate than those produced by the individual models. Implementations of 
bagging commonly use this method of combining predictions.

In Section 5.7 (page 166), we showed how to make a classifier cost sensitive by 
minimizing the expected cost of predictions. Accurate probability estimates are neces-
sary because they are used to obtain the expected cost of each prediction. Bagging is a 

FIGURE 8.1 

Algorithm for bagging. 

Model Generation 

Let n be the number of instances in the training data. 
For each of t iterations: 
  Sample n instances with replacement from training data. 
  Apply the learning algorithm to the sample. 
  Store the resulting model. 

Classification 

For each of the t models: 
  Predict class of instance using model. 
Return class that has been predicted most often. 
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prime candidate for cost-sensitive classification because it produces very accurate 
probability estimates from decision trees and other powerful, yet unstable, classifiers. 
However, a disadvantage is that bagged classifiers are hard to analyze.

A method called MetaCost combines the predictive benefits of bagging with a 
comprehensible model for cost-sensitive prediction. It builds an ensemble classifier 
using bagging and deploys it to relabel the training data by giving every training 
instance the prediction that minimizes the expected cost, based on the probability 
estimates obtained from bagging. MetaCost then discards the original class labels 
and learns a single new classifier—for example, a single pruned decision tree—from 
the relabeled data. This new model automatically takes costs into account because 
they have been built into the class labels! The result is a single cost-sensitive clas-
sifier that can be analyzed to see how predictions are made.

In addition to the cost-sensitive classification technique just mentioned, Section 
5.7 (page 167) also described a cost-sensitive learning method that learns a cost-
sensitive classifier by changing the proportion of each class in the training data to 
reflect the cost matrix. MetaCost seems to produce more accurate results than this 
method, but it requires more computation. If there is no need for a comprehensible 
model, MetaCost’s postprocessing step is superfluous: It is better to use the bagged 
classifier directly in conjunction with the minimum expected cost method.

8.3  RANDOMIZATION
Bagging generates a diverse ensemble of classifiers by introducing randomness into 
the learning algorithm’s input, often with excellent results. But there are other ways 
of creating diversity by introducing randomization. Some learning algorithms 
already have a built-in random component. For example, when learning multilayer 
perceptrons using the backpropagation algorithm (as described in Section 6.4—page 
235), the initial network weights are set to small randomly chosen values. The 
learned classifier depends on the random numbers because the algorithm may find 
a different local minimum of the error function. One way to make the outcome of 
classification more stable is to run the learner several times with different random 
number seeds and combine the classifiers’ predictions by voting or averaging.

Almost every learning method is amenable to some kind of randomization. 
Consider an algorithm that greedily picks the best option at every step, such as a 
decision tree learner that picks the best attribute to split on at each node. It could be 
randomized by picking one of the N best options at random instead of a single 
winner, or by choosing a random subset of options and picking the best from that. 
Of course, there is a tradeoff: More randomness generates more variety in the learner 
but makes less use of the data, probably decreasing the accuracy of each individual 
model. The best dose of randomness can only be prescribed by experiment.

Although bagging and randomization yield similar results, it sometimes pays to 
combine them because they introduce randomness in different, perhaps complemen-
tary, ways. A popular algorithm for learning random forests builds a randomized 
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decision tree in each iteration of the bagging algorithm, and often produces excellent 
predictors.

Randomization versus Bagging
Randomization demands more work than bagging because the learning algorithm 
must be modified, but it can profitably be applied to a greater variety of learners. 
Bagging fails with stable learning algorithms whose output is insensitive to small 
changes in the input. For example, it is pointless to bag nearest-neighbor classifiers 
because their output changes very little if the training data is perturbed by sampling. 
But randomization can be applied even to stable learners: The trick is to randomize 
in a way that makes the classifiers diverse without sacrificing too much performance. 
A nearest-neighbor classifier’s predictions depend on the distances between instances, 
which in turn depend heavily on which attributes are used to compute them, so 
nearest-neighbor classifiers can be randomized by using different, randomly chosen 
subsets of attributes. In fact, this approach is called the random subspaces method 
for constructing an ensemble of classifiers and was proposed as a method for learn-
ing a random forest. As with bagging, it does not require any modification to the 
learning algorithm. Of course, random subspaces can be used in conjunction with 
bagging in order to introduce randomness to the learning process in terms of both 
instances and attributes.

Returning to plain bagging, the idea is to exploit instability in the learning algo-
rithm in order to create diversity among the ensemble members—but the degree of 
diversity achieved is less than that of other ensemble learning methods such as 
random forests because of randomization built into the learning algorithm, or boost-
ing (discussed in Section 8.4). This is because bootstrap sampling creates training 
data sets with a distribution that resembles the original data. Consequently, the clas-
sifiers learned by bagging are individually quite accurate, but their low diversity can 
detract from the overall accuracy of the ensemble. Introducing randomness in the 
learning algorithm increases diversity but sacrifices accuracy of the individual clas-
sifiers. If it were possible for ensemble members to be both diverse and individually 
accurate, smaller ensembles could be used. Of course, this would have computa-
tional benefits.

Rotation Forests
An ensemble learning method called rotation forests has the specific goal of creating 
diverse yet accurate classifiers. It combines the random subspace and bagging 
approaches with principal components feature generation to construct an ensemble 
of decision trees. In each iteration, the input attributes are randomly divided into k 
disjoint subsets. Principal components analysis is applied to each subset in turn in 
order to create linear combinations of the attributes in the subset that are rotations 
of the original axes. The k sets of principal components are used to compute values 
for the derived attributes; these comprise the input to the tree learner at each 
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iteration. Because all the components obtained on each subset are retained, there are 
as many derived attributes as there are original ones. To discourage the generation 
of identical coefficients if the same feature subset is chosen in different iterations, 
principal component analysis is applied to training instances from a randomly chosen 
subset of the class values (however, the values of the derived attributes that are input 
to the tree learner are computed from all the instances in the training data). To further 
increase diversity, a bootstrap sample of the data can be created in each iteration 
before the principal components transformations are applied.

Experiments indicate that rotation forests can give similar performance to random 
forests, with far fewer trees. An analysis of diversity (measured by the Kappa sta-
tistic, introduced in Section 5.7 (page 166), which can be used to measure agreement 
between classifiers) versus error for pairs of ensemble members shows a minimal 
increase in diversity and reduction in error for rotation forests when compared to 
bagging. However, this appears to translate into significantly better performance for 
the ensemble as a whole.

8.4  BOOSTING
We have explained that bagging exploits the instability inherent in learning algo-
rithms. Intuitively, combining multiple models only helps when these models are 
significantly different from one another and each one treats a reasonable percentage 
of the data correctly. Ideally, the models complement one another, each being a 
specialist in a part of the domain where the other models don’t perform very well—
just as human executives seek advisors whose skills and experience complement, 
rather than duplicate, one another.

The boosting method for combining multiple models exploits this insight by 
explicitly seeking models that complement one another. First, the similarities: Like 
bagging, boosting uses voting (for classification) or averaging (for numeric predic-
tion) to combine the output of individual models. Again like bagging, it combines 
models of the same type—for example, decision trees. However, boosting is iterative. 
Whereas in bagging individual models are built separately, in boosting each new 
model is influenced by the performance of those built previously. Boosting encourages 
new models to become experts for instances handled incorrectly by earlier ones by 
assigning greater weight to those instances. A final difference is that boosting weights 
a model’s contribution by its confidence rather than giving equal weight to all models.

AdaBoost
There are many variants on the idea of boosting. We describe a widely used method 
called AdaBoost.M1 that is designed specifically for classification. Like bagging, it 
can be applied to any classification learning algorithm. To simplify matters we 
assume that the learning algorithm can handle weighted instances, where the weight 
of an instance is a positive number (we revisit this asumption later). The presence 
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of instance weights changes the way in which a classifier’s error is calculated: It is 
the sum of the weights of the misclassified instances divided by the total weight of 
all instances, instead of the fraction of instances that are misclassified. By weighting 
instances, the learning algorithm can be forced to concentrate on a particular set of 
instances, namely those with high weight. Such instances become particularly 
important because there is a greater incentive to classify them correctly. The C4.5 
algorithm, described in Section 6.1, is an example of a learning method that can 
accommodate weighted instances without modification because it already uses the 
notion of fractional instances to handle missing values.

The boosting algorithm, summarized in Figure 8.2, begins by assigning equal 
weight to all instances in the training data. It then calls the learning algorithm to 
form a classifier for this data and reweights each instance according to the classifier’s 
output. The weight of correctly classified instances is decreased, and that of misclas-
sified ones is increased. This produces a set of “easy” instances with low weight and 
a set of “hard” ones with high weight. In the next iteration—and all subsequent 
ones—a classifier is built for the reweighted data, which consequently focuses on 
classifying the hard instances correctly. Then the instances’ weights are increased or 
decreased according to the output of this new classifier. As a result, some hard 
instances might become even harder and easier ones even easier; on the other hand, 
other hard instances might become easier, and easier ones harder—all possibilities 
can occur in practice. After each iteration, the weights reflect how often the instances 
have been misclassified by the classifiers produced so far. By maintaining a measure 

FIGURE 8.2 

Algorithm for boosting. 

Model Generation 

Assign equal weight to each training instance. 
For each of t iterations: 

Apply learning algorithm to weighted dataset and store resulting 

  Compute error e of model on weighted dataset and store error. 
  If e equal to zero, or e greater or equal to 0.5: 
    Terminate model generation. 
  For each instance in dataset: 
    If instance classified correctly by model: 
       Multiply weight of instance by e / (1 - e). 
  Normalize weight of all instances. 

Classification 

Assign weight of zero to all classes. 
For each of the t (or less) models: 
  Add -log(e / (1 - e)) to weight of class predicted by model. 
Return class with highest weight. 

model. 
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of “hardness” with each instance, this procedure provides an elegant way of generat-
ing a series of experts that complement one another.

How much should the weights be altered after each iteration? The answer depends 
on the current classifier’s overall error. More specifically, if e denotes the classifier’s 
error on the weighted data (a fraction between 0 and 1), then weights are updated by 

weight weight← × −e e( )1

for correctly classified instances, and the weights remain unchanged for misclassified 
ones. Of course, this does not increase the weight of misclassified instances as 
claimed earlier. However, after all weights have been updated they are renormalized 
so that their sum remains the same as it was before. Each instance’s weight is divided 
by the sum of the new weights and multiplied by the sum of the old ones. This 
automatically increases the weight of each misclassified instance and reduces that 
of each correctly classified one.

Whenever the error on the weighted training data exceeds or equals 0.5, the 
boosting procedure deletes the current classifier and does not perform any more 
iterations. The same thing happens when the error is 0 because then all instance 
weights become 0.

We have explained how the boosting method generates a series of classifiers. To 
form a prediction, their output is combined using a weighted vote. To determine the 
weights, note that a classifier that performs well on the weighted training data from 
which it was built (e close to 0) should receive a high weight, and a classifier that 
performs badly (e close to 0.5) should receive a low one. The AdaBoost.M1 algo-
rithm uses 

weight
e

e
= −

−
log

1

which is a positive number between 0 and infinity. Incidentally, this formula explains 
why classifiers that perform perfectly on the training data must be deleted:  
When e is 0 the weight is undefined. To make a prediction, the weights of all clas-
sifiers that vote for a particular class are summed, and the class with the greatest 
total is chosen.

We began by assuming that the learning algorithm can cope with weighted 
instances. Any algorithm can be adapted to deal with weighted instances; we 
explained how at the end of Section 6.6, Locally Weighted Linear Regression  
(page 258). Instead of changing the learning algorithm, it is possible to generate an 
unweighted dataset from the weighted data by resampling—the same technique that 
bagging uses. Whereas for bagging, each instance is chosen with equal probability, 
for boosting, instances are chosen with probability proportional to their weight. As 
a result, instances with high weight are replicated frequently, and ones with low 
weight may never be selected. Once the new dataset becomes as large as the original 
one, it is fed into the learning scheme instead of the weighted data. It’s as simple  
as that.
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A disadvantage of this procedure is that some instances with low weight don’t 
make it into the resampled dataset, so information is lost before the learning scheme 
is applied. However, this can be turned into an advantage. If the learning scheme 
produces a classifier with an error that exceeds 0.5, boosting must terminate if the 
weighted data is used directly, whereas with resampling it might be possible to 
produce a classifier with an error below 0.5 by discarding the resampled dataset and 
generating a new one from a different random seed. Sometimes more boosting itera-
tions can be performed by resampling than when using the original weighted version 
of the algorithm.

The Power of Boosting
The idea of boosting originated in a branch of machine learning research known as 
computational learning theory. Theoreticians are interested in boosting because it 
is possible to derive performance guarantees. For example, it can be shown that the 
error of the combined classifier on the training data approaches 0 very quickly as 
more iterations are performed (exponentially quickly in the number of iterations). 
Unfortunately, as explained in Section 5.1, guarantees for the training error are not 
very interesting because they do not necessarily indicate good performance on fresh 
data. However, it can be shown theoretically that boosting only fails on fresh data 
if the individual classifiers are too “complex” for the amount of training data present 
or if their training errors become too large too quickly (in a precise sense explained 
by Schapire et al., 1997). As usual, the problem lies in finding the right balance 
between the individual models’ complexity and their fit to the data.

If boosting does succeed in reducing the error on fresh test data, it often does so 
in a spectacular way. One very surprising finding is that performing more boosting 
iterations can reduce the error on new data long after the error of the combined 
classifier on the training data has dropped to 0. Researchers were puzzled by this 
result because it seems to contradict Occam’s razor, which declares that, of two 
hypotheses that explain the empirical evidence equally well, the simpler one is to 
be preferred. Performing more boosting iterations without reducing the training error 
does not explain the training data any better, and it certainly adds complexity to the 
combined classifier. The contradiction can be resolved by considering the classifier’s 
confidence in its predictions. More specifically, we measure confidence by the dif-
ference between the estimated confidence for the true class and that of the most 
likely predicted class other than the true class—a quantity known as the margin. The 
larger the margin, the more confident the classifier is in predicting the true class. It 
turns out that boosting can increase the margin long after the training error has 
dropped to 0. The effect can be visualized by plotting the cumulative distribution of 
the margin values of all the training instances for different numbers of boosting 
iterations, giving a graph known as the margin curve. Thus, if the explanation of 
empirical evidence takes the margin into account, Occam’s razor remains as sharp 
as ever.
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The beautiful thing about boosting is that a powerful combined classifier can be 
built from very simple ones as long as they achieve less than 50% error on the 
reweighted data. Usually, this is easy—certainly for learning problems with two 
classes! Simple learning schemes are called weak learners, and boosting converts 
weak learners into strong ones. For example, good results for two-class problems 
can often be obtained by boosting extremely simple decision trees that have only 
one level, called decision stumps. Another possibility is to apply boosting to an 
algorithm that learns a single conjunctive rule—such as a single path in a decision 
tree—and classifies instances based on whether or not the rule covers them. Of 
course, multiclass datasets make it more difficult to achieve error rates below 0.5. 
Decision trees can still be boosted, but they usually need to be more complex than 
decision stumps. More sophisticated algorithms have been developed that allow very 
simple models to be boosted successfully in multiclass situations.

Boosting often produces classifiers that are significantly more accurate on fresh 
data than ones generated by bagging. However, unlike bagging, boosting sometimes 
fails in practical situations: It can generate a classifier that is significantly less accu-
rate than a single classifier built from the same data. This indicates that the combined 
classifier overfits the data.

8.5  ADDITIVE REGRESSION
When boosting was first investigated it sparked intense interest among researchers 
because it could coax first-class performance from indifferent learners. Statisticians 
soon discovered that it could be recast as a greedy algorithm for fitting an additive 
model. Additive models have a long history in statistics. Broadly, the term refers to 
any way of generating predictions by summing up contributions obtained from other 
models. Most learning algorithms for additive models do not build the base models 
independently but ensure that they complement one another and try to form an 
ensemble of base models that optimizes predictive performance according to some 
specified criterion.

Boosting implements forward stagewise additive modeling. This class of algo-
rithms starts with an empty ensemble and incorporates new members sequentially. 
At each stage the model that maximizes the predictive performance of the ensemble 
as a whole is added, without altering those already in the ensemble. Optimizing the 
ensemble’s performance implies that the next model should focus on those training 
instances on which the ensemble performs poorly. This is exactly what boosting does 
by giving those instances larger weights.

Numeric Prediction
Here’s a well-known forward stagewise additive modeling method for numeric 
prediction. First, build a standard regression model—for example, a regression tree. 
The errors it exhibits on the training data—the differences between predicted and 
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observed values—are called residuals. Then correct for these errors by learning a 
second model—perhaps another regression tree—that tries to predict the observed 
residuals. To do this, simply replace the original class values by their residuals before 
learning the second model. Adding the predictions made by the second model to 
those of the first one automatically yields lower error on the training data. Usually 
some residuals still remain because the second model is not a perfect one, so we 
continue with a third model that learns to predict the residuals of the residuals, and 
so on. The procedure is reminiscent of the use of rules with exceptions for classifica-
tion that we discussed in Section 3.4 (page 73).

If the individual models minimize the squared error of the predictions, as linear 
regression models do, this algorithm minimizes the squared error of the ensemble 
as a whole. In practice, it also works well when the base learner uses a heuristic 
approximation instead, such as the regression and model tree learners described in 
Section 6.6. In fact, there is no point in using standard linear regression as the base 
learner for additive regression because the sum of linear regression models is again 
a linear regression model and the regression algorithm itself minimizes the squared 
error. However, it is a different story if the base learner is a regression model based 
on a single attribute, the one that minimizes the squared error. Statisticians call this 
simple linear regression, in contrast to the standard multi-attribute method, properly 
called multiple linear regression. In fact, using additive regression in conjunction 
with simple linear regression and iterating until the squared error of the ensemble 
decreases no further yields an additive model identical to the least-squares multiple 
linear regression function.

Forward stagewise additive regression is prone to overfitting because each model 
added fits the training data closer and closer. To decide when to stop, use cross-
validation. For example, perform a cross-validation for every number of iterations 
up to a user-specified maximum and choose the one that minimizes the cross-
validated estimate of squared error. This is a good stopping criterion because cross-
validation yields a fairly reliable estimate of the error on future data. Incidentally, 
using this method in conjunction with simple linear regression as the base learner 
effectively combines multiple linear regression with built-in attribute selection. The 
reason is that the next most important attribute’s contribution is only included if it 
decreases the cross-validated error.

For implementation convenience, forward stagewise additive regression usually 
begins with a level-0 model that simply predicts the mean of the class on the training 
data so that every subsequent model fits residuals. This suggests another possibility 
for preventing overfitting: Instead of subtracting a model’s entire prediction to gener-
ate target values for the next model, shrink the predictions by multiplying them by 
a user-specified constant factor between 0 and 1 before subtracting. This reduces the 
model’s fit to the residuals and consequently reduces the chance of overfitting. Of 
course, it may increase the number of iterations needed to arrive at a good additive 
model. Reducing the multiplier effectively damps down the learning process, 
increasing the chance of stopping at just the right moment but also increasing 
runtime.
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Additive Logistic Regression
Additive regression can also be applied to classification just as linear regression can. 
But we know from Section 4.6 that logistic regression is more suitable than linear 
regression for classification. It turns out that a similar adaptation can be made to 
additive models by modifying the forward stagewise modeling method to perform 
additive logistic regression. Use the logit transform to translate the probability esti-
mation problem into a regression problem, as we did in Section 4.6 (page 126), and 
solve the regression task using an ensemble of models—for example, regression 
trees—just as for additive regression. At each stage, add the model that maximizes 
the probability of the data given the ensemble classifier.

Suppose fj is the j th regression model in the ensemble and fj(a) is its prediction 
for instance a. Assuming a two-class problem, use the additive model Σfj(a) to obtain 
a probability estimate for the first class: 
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This closely resembles the expression used in Section 4.6 (page 126), except that 
here it is abbreviated by using vector notation for the instance a and the original 
weighted sum of the attributes’ values is replaced by a sum of arbitrarily complex 
regression models f.

Figure 8.3 shows the two-class version of the so-called LogitBoost algorithm, 
which performs additive logistic regression and generates the individual models 
fj. Here, yi is 1 for an instance in the first class and 0 for an instance in the 
second. In each iteration this algorithm fits a regression model fj to a weighted 
version of the original dataset based on dummy class values zi and weights wi. 
We assume that p(1 | a) is computed using the fj that were built in previous 
iterations.

The derivation of this algorithm is beyond the scope of this book, but it can be 
shown that the algorithm maximizes the probability of the data with respect to the 
ensemble if each model fj is determined by minimizing the squared error on the 
corresponding regression problem. In fact, if multiple linear regression is used to 
form the fj, the algorithm converges to the maximum-likelihood, linear-logistic 
regression model: It is an incarnation of the iteratively reweighted least-squares 
method mentioned in Section 4.6 (page 126).

Superficially, LogitBoost looks quite different from AdaBoost, but the predictors 
they produce differ mainly in that the former optimizes the likelihood directly 
whereas the latter optimizes an exponential loss function that can be regarded as an 
approximation to it. From a practical perspective, the difference is that LogitBoost 
uses a regression scheme as the base learner whereas AdaBoost works with classi-
fication algorithms.

We have only shown the two-class version of LogitBoost, but the algorithm can 
be generalized to multiclass problems. As with additive regression, the danger of 
overfitting can be reduced by shrinking the predictions of the individual fj by a 
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FIGURE 8.3 

Algorithm for additive logistic regression. 

Model generation 

for j = 1 to t iterations: 
  for each instance a[i]: 
    set the target value for the regression to  
      z[i] = (y[i] – p(1|a[i])) / [p(1|a[i]) * (1 - p(1|a[i])] 
    set the weight w[i] of instance a[i] to p(1|a[i]) * (1 - p(1|a[i]) 
  fit a regression model f[j] to the data with class values z[i] and

Classification 

predict class 1 if p(1 | a) > 0.5, otherwise predict class 0 

weights w[i]

predetermined multiplier and using cross-validation to determine an appropriate 
number of iterations.

8.6  INTERPRETABLE ENSEMBLES
Bagging, boosting, and randomization all produce ensembles of classifiers. This 
makes it very difficult to analyze what kind of information has been extracted from 
the data. It would be nice to have a single model with the same predictive perfor-
mance. One possibility is to generate an artificial dataset, by randomly sampling 
points from the instance space and assigning them the class labels predicted by the 
ensemble classifier, and then learn a decision tree or rule set from this new dataset. 
To obtain similar predictive performance from the tree as from the ensemble, a huge 
dataset may be required, but in the limit this strategy should be able to replicate the 
performance of the ensemble classifier—and it certainly will if the ensemble itself 
consists of decision trees.

Option Trees
Another approach is to derive a single structure that can represent an ensemble of 
classifiers compactly. This can be done if the ensemble consists of decision trees; 
the result is called an option tree. Option trees differ from decision trees in that they 
contain two types of node: decision nodes and option nodes. Figure 8.4 shows a 
simple example for the weather data, with only one option node. To classify an 
instance, filter it down through the tree. At a decision node take just one of the 



366	 CHAPTER 8  Ensemble Learning

branches, as usual, but at an option node take all of the branches. This means that 
the instance ends up in more than one leaf, and the classifications obtained from 
those leaves must somehow be combined into an overall classification. This can be 
done simply by voting, taking the majority vote at an option node to be the predic-
tion of the node. In that case it makes little sense to have option nodes with only 
two options (as in Figure 8.4) because there will only be a majority if both branches 
agree. Another possibility is to average the probability estimates obtained from the 
different paths, using either an unweighted average or a more sophisticated Bayesian 
approach.

Option trees can be generated by modifying an existing decision tree learner to 
create an option node if there are several splits that look similarly useful according 
to their information gain. All choices within a certain user-specified tolerance of the 
best one can be made into options. During pruning, the error of an option node is 
the average error of its options.

Another possibility is to grow an option tree by incrementally adding nodes to 
it. This is commonly done using a boosting algorithm, and the resulting trees are 
usually called alternating decision trees instead of option trees. In this context, the 
decision nodes are called splitter nodes and the option nodes are called prediction 
nodes. Prediction nodes are leaves if no splitter nodes have been added to them yet. 
The standard alternating decision tree applies to two-class problems, and with each 
prediction node a positive or negative numeric value is associated. To obtain a 

FIGURE 8.4 

Simple option tree for the weather data. 
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prediction for an instance, filter it down all applicable branches and sum up the 
values from any prediction nodes that are encountered; predict one class or the other 
depending on whether the sum is positive or negative.

A simple example tree for the weather data is shown in Figure 8.5, where a posi-
tive value corresponds to class play = no and a negative one to play = yes. To classify 
an instance with outlook = sunny, temperature = hot, humidity = normal, and windy 
= false, filter it down to the corresponding leaves, obtaining values −0.255, 0.213, 
−0.430, and −0.331. The sum of these values is negative; thus, predict play = yes. 
Alternating decision trees always have a prediction node at the root, as in this 
example.

The alternating tree is grown using a boosting algorithm—for example, a boost-
ing algorithm that employs a base learner for numeric prediction, such as the Logit
Boost method described previously. Assume that the base learner produces a single 
conjunctive rule in each boosting iteration. Then an alternating decision tree can be 

FIGURE 8.5 

Alternating decision tree for the weather data. 
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generated by simply adding each rule into the tree. The numeric scores associated 
with the prediction nodes are obtained from the rules. However, the resulting tree 
would grow large very quickly because the rules from different boosting iterations 
are likely to be different. Thus, learning algorithms for alternating decision trees 
consider only those rules that extend one of the existing paths in the tree by adding 
a splitter node and two corresponding prediction nodes (assuming binary splits). In 
the standard version of the algorithm, every possible location in the tree is considered 
for addition and a node is added according to a performance measure that depends 
on the particular boosting algorithm employed. However, heuristics can be used 
instead of an exhaustive search to speed up the learning process.

Logistic Model Trees
Option trees and alternating trees yield very good classification performance based 
on a single structure, but they may still be difficult to interpret when there are many 
option nodes because it becomes difficult to see how a particular prediction is 
derived. However, it turns out that boosting can also be used to build very effective 
decision trees that do not include any options at all. For example, the LogitBoost 
algorithm has been used to induce trees with linear-logistic regression models at the 
leaves. These are called logistic model trees and are interpreted in the same way as 
the model trees for regression described in Section 6.6.

LogitBoost performs additive logistic regression. Suppose that each iteration 
of the boosting algorithm fits a simple regression function by going through all 
the attributes, finding the simple regression function with the smallest error, and 
adding it into the additive model. If the LogitBoost algorithm is run until con-
vergence, the result is a maximum-likelihood, multiple-logistic regression model. 
However, for optimum performance on future data it is usually unnecessary to 
wait for convergence—and to do so is often detrimental. An appropriate number 
of boosting iterations can be determined by estimating the expected performance 
for a given number of iterations using cross-validation and stopping the process 
when performance ceases to increase.

A simple extension of this algorithm leads to logistic model trees. The boost-
ing process terminates when there is no further structure in the data that can be 
modeled using a linear-logistic regression function. However, there may still be 
structure that linear models can fit if attention is restricted to subsets of the data, 
obtained, for example, by splitting the data using a standard decision tree criterion 
such as information gain. Then, once no further improvement can be obtained 
by adding more simple linear models, the data is split and boosting is resumed 
separately in each subset. This process takes the logistic model generated so far 
and refines it separately for the data in each subset. Again, cross-validation is 
run in each subset to determine an appropriate number of iterations to perform 
in that subset.

The process is applied recursively until the subsets become too small. The result-
ing tree will surely overfit the training data, and one of the standard methods of 
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decision tree learning can be used to prune it. Experiments indicate that the pruning 
operation is very important. Using the cost-complexity pruning method discussed in 
Section 6.1 (page 202), which chooses the right tree size using cross-validation, the 
algorithm produces small but very accurate trees with linear logistic models at the 
leaves.

8.7  STACKING
Stacked generalization, or stacking for short, is a different way of combining mul-
tiple models. Although developed some years ago, it is less widely used than bagging 
and boosting partly because it is difficult to analyze theoretically and partly because 
there is no generally accepted best way of doing it—the basic idea can be applied 
in many different variations.

Unlike bagging and boosting, stacking is not normally used to combine models 
of the same type—for example, a set of decision trees. Instead, it is applied to 
models built by different learning algorithms. Suppose you have a decision tree 
inducer, a Naïve Bayes learner, and an instance-based learning scheme and you 
want to form a classifier for a given dataset. The usual procedure would be to 
estimate the expected error of each algorithm by cross-validation and to choose the 
best one to form a model for prediction on future data. But isn’t there a better way? 
With three learning algorithms available, can’t we use all three for prediction and 
combine the outputs?

One way to combine outputs is by voting—the same mechanism used in bagging. 
However, (unweighted) voting only makes sense if the learning schemes perform 
comparably well. If two of the three classifiers make predictions that are grossly 
incorrect, we will be in trouble! Instead, stacking introduces the concept of a meta-
learner, which replaces the voting procedure. The problem with voting is that it’s 
not clear which classifier to trust. Stacking tries to learn which classifiers are the 
reliable ones, using another learning algorithm—the metalearner—to discover how 
best to combine the output of the base learners.

The input to the metamodel—also called the level-1 model—are the predictions 
of the base models, or level-0 models. A level-1 instance has as many attributes as 
there are level-0 learners, and the attribute values give the predictions of these learn-
ers on the corresponding level-0 instance. When the stacked learner is used for 
classification, an instance is first fed into the level-0 models, and each one guesses 
a class value. These guesses are fed into the level-1 model, which combines them 
into the final prediction.

There remains the problem of training the level-1 learner. To do this, we need to 
find a way of transforming the level-0 training data (used for training the level-0 
learners) into level-1 training data (used for training the level-1 learner). This seems 
straightforward: Let each level-0 model classify a training instance, and attach to 
their predictions the instance’s actual class value to yield a level-1 training instance. 
Unfortunately, this doesn’t work well. It allows simplistic rules to be learned, such as 
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always believe the output of classifier A, and ignore B and C. This rule may well be 
appropriate for particular base classifiers A, B, and C; and if so it will probably be 
learned. But just because it seems appropriate on the training data doesn’t necessarily 
mean that it will work well on the test data—because it will inevitably learn to  
prefer classifiers that overfit the training data over ones that make decisions more 
realistically.

Consequently, stacking does not simply transform the level-0 training data into 
level-1 data in this manner. Recall from Chapter 5 that there are better methods of 
estimating a classifier’s performance than using the error on the training set. One is 
to hold out some instances and use them for an independent evaluation. Applying 
this to stacking, we reserve some instances to form the training data for the level-1 
learner and build level-0 classifiers from the remaining data. Once the level-0 clas-
sifiers have been built they are used to classify the instances in the holdout set, 
forming the level-1 training data. Because the level-0 classifiers haven’t been trained 
on these instances, their predictions are unbiased; therefore, the level-1 training data 
accurately reflects the true performance of the level-0 learning algorithms. Once the 
level-1 data has been generated by this holdout procedure, the level-0 learners can 
be reapplied to generate classifiers from the full training set, making slightly better 
use of the data and leading to better predictions.

The holdout method inevitably deprives the level-1 model of some of the training 
data. In Chapter 5, cross-validation was introduced as a means of circumventing this 
problem for error estimation. This can be applied in conjunction with stacking by 
performing a cross-validation for every level-0 learner. Each instance in the training 
data occurs in exactly one of the test folds of the cross-validation, and the predictions 
of the level-0 inducers built from the corresponding training fold are used to build 
a level-1 training instance from it. This generates a level-1 training instance for each 
level-0 training instance. Of course, it is slow because a level-0 classifier has to be 
trained for each fold of the cross-validation, but it does allow the level-1 classifier 
to make full use of the training data.

Given a test instance, most learning schemes are able to output probabilities 
for every class label instead of making a single categorical prediction. This can be 
exploited to improve the performance of stacking by using the probabilities to 
form the level-1 data. The only difference from the standard procedure is that each 
nominal level-1 attribute—representing the class predicted by a level-0 learner—is 
replaced by several numeric attributes, each representing a class probability output 
by the level-0 learner. In other words, the number of attributes in the level-1 data 
is multiplied by the number of classes. This procedure has the advantage that the 
level-1 learner is privy to the confidence that each level-0 learner associates with 
its predictions, thereby amplifying communication between the two levels of 
learning.

An outstanding question remains: What algorithms are suitable for the level-1 
learner? In principle, any learning scheme can be applied. However, because most 
of the work is already done by the level-0 learners, the level-1 classifier is basically 
just an arbiter and it makes sense to choose a rather simple algorithm for this 
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purpose. In the words of David Wolpert, the inventor of stacking, it is reasonable 
that “relatively global, smooth” level-1 generalizers should perform well. Simple 
linear models or trees with linear models at the leaves usually work well.

Stacking can also be applied to numeric prediction. In that case, the level-0 
models and the level-1 model all predict numeric values. The basic mechanism 
remains the same; the only difference lies in the nature of the level-1 data. In the 
numeric case, each level-1 attribute represents the numeric prediction made by one 
of the level-0 models, and instead of a class value the numeric target value is attached 
to level-1 training instances.

8.8  FURTHER READING
Ensemble learning is a popular research topic in machine learning research, with 
many related publications. The term bagging (for “bootstrap aggregating”) was 
coined by Breiman (1996b), who investigated the properties of bagging theoretically 
and empirically for both classification and numeric prediction.

The bias–variance decomposition for classification presented in Section 8.2 is due 
to Dietterich and Kong (1995). We chose this version because it is both accessible 
and elegant. However, the variance can turn out to be negative because, as we men-
tioned, aggregating models from independent training sets by voting may in patho-
logical situations actually increase the overall error compared to a model from a 
single training set. This is a serious disadvantage because variances are normally 
squared quantities—the square of the standard deviation—and therefore cannot 
become negative. In his technical report, Breiman (1996c) proposed a different bias–
variance decomposition for classification. This has caused some confusion in the 
literature because three different versions of this report can be located on the Web. 
The official version, entitled “Arcing classifiers,” describes a more complex decom-
position that cannot, by construction, produce negative variance. However, the origi-
nal version, entitled “Bias, variance, and arcing classifiers,” follows Dietterich and 
Kong’s formulation (except that Breiman splits the bias term into bias plus noise). 
There is also an intermediate version with the original title but the new decomposi-
tion; it includes an appendix in which Breiman explains that he abandoned the old 
definition because it can produce negative variance. (Authors sometimes mistakenly 
refer to the earlier drafts, which have been superseded, or use an earlier title for the 
latest, official, report.) However, in the new version (and in decompositions proposed 
by other authors) the bias of the aggregated classifier can exceed the bias of a  
classifier built from a single training set, which also seems counterintuitive.

The MetaCost algorithm was introduced by Domingos (1999).
The random subspace method was suggested as an approach for learning ensem-

ble classifiers by Ho (1998) and applied as a method for learning ensembles of 
nearest-neighbor classifiers by Bay (1999). Randomization was evaluated by Diet-
terich (2000) and compared with bagging and boosting. Random forests were intro-
duced by Breiman (2001). Rotation forests are a relatively new ensemble learning 
method introduced by Rodriguez et al. (2006). Subsequent studies by Kuncheva and 
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Rodriguez (2007) show that the main factors responsible for its performance are the 
use of principal components transformations (as opposed to other feature-extraction 
methods such as random projections) and the application of principal components 
analysis to random subspaces of the original input attributes.

Freund and Schapire (1996) developed the AdaBoost.M1 boosting algorithm  
and derived theoretical bounds for its performance. Later they improved these 
bounds using the concept of margins (Freund and Schapire, 1999). Drucker (1997) 
adapted AdaBoost.M1 for numeric prediction. The LogitBoost algorithm was devel-
oped by Friedman et al. (2000). Friedman (2001) describes how to make boosting 
more resilient in the presence of noisy data.

Domingos (1997) describes how to derive a single interpretable model from an 
ensemble using artificial training examples. Bayesian option trees were introduced 
by Buntine (1992), and majority voting was incorporated into option trees by Kohavi 
and Kunz (1997). Freund and Mason (1999) introduced alternating decision trees; 
experiments with multiclass alternating decision trees were reported by Holmes et al. 
(2002). Landwehr et al. (2005) developed logistic model trees using the LogitBoost 
algorithm.

Stacked generalization originated with Wolpert (1992), who presented the idea 
in the neural-network literature; it was applied to numeric prediction by Breiman 
(1996a). Ting and Witten (1997a) compared different level-1 models empirically and 
found that a simple linear model performs best; they also demonstrated the advan-
tage of using probabilities as level-1 data. A combination of stacking and bagging 
has also been investigated (Ting and Witten, 1997b).

8.9  WEKA IMPLEMENTATIONS
In Weka, ensemble learning is done using the mechanism of “metalearners,” 
described near the end of Section 11.2. They are covered in Section 11.5 and listed 
in Table 11.6, excluding the RandomForest classifier, which is located in Weka’s 
trees package (Section 11.4 and Table 11.5), and the interpretable ensembles, which 
are also located there:

•	 Bagging:
•	 Bagging (bag a classifier; works for regression too)
•	 MetaCost (make a classifier cost-sensitive)

•	 Randomization:
•	 RandomCommittee (ensembles using different random number seeds)
•	 RandomSubSpace (ensembles using random subsets of attributes)
•	 RandomForest (bag ensembles of random trees)
•	 RotationForest (ensembles using rotated random subspaces)

•	 Boosting: AdaBoostM1
•	 Additive regression:

•	 AdditiveRegression
•	 LogitBoost (additive logistic regression)
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•	 Interpretable ensembles:
•	 ADTree (alternating decision trees)
•	 LADTree (learns alternating decision trees using LogitBoost)
•	 LMT (logistic model trees)

•	 Selecting or combining algorithms:
•	 MultiScheme (selection using cross-validation)
•	 Vote (simple combination of predictions)
•	 Stacking (learns how to combine predictions)
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CHAPTER 

9 

Moving on: Applications  
and Beyond

Machine learning is a burgeoning new technology for mining knowledge from data, 
a technology that a lot of people are beginning to take seriously. We don’t want to 
oversell it. The kind of machine learning we know is not about the big problems: 
futuristic visions of autonomous robot servants, philosophical conundrums of con-
sciousness, metaphysical issues of free will, evolutionary (or theological) questions 
of where intelligence comes from, linguistic debates over language learning, psy-
chological theories of child development, or cognitive explanations of what intel-
ligence is and how it works. For us, it’s far more prosaic: Machine learning is about 
algorithms for inferring structure from data and ways of validating that structure. 
These algorithms are not abstruse and complicated, but they’re not completely 
obvious and trivial either.

Looking forward, the main challenge ahead is applications. Opportunities abound. 
Wherever there is data, things can be learned from it. Whenever there is too much 
data for people to pore over themselves, the mechanics of learning will have to be 
automatic. But the inspiration will certainly not be automatic! Applications will 
come not from computer programs, nor from machine learning experts, nor from 
the data itself, but from the people who work with the data and the problems from 
which it arises. That is why we have written this book, and that is what the Weka 
system described in Part III is for—to empower those who are not machine learning 
experts to apply these techniques to problems that arise in daily working life. The 
ideas are simple. The algorithms are here. The rest is really up to you!

Of course, development of the technology is certainly not finished. Machine 
learning is a hot research topic, and new ideas and techniques continually emerge. 
To give a flavor of the scope and variety of research fronts, we close Part II by 
looking at some topical areas in the world of data mining.

9.1  APPLYING DATA MINING
In 2006 a poll was taken by the organizers of the International Data Mining Confer-
ence to identify the top 10 data mining algorithms. Table 9.1 shows the results, in 
order. It is good to see that they are all covered in this book! The conference orga-
nizers divided the algorithms into rough categories, which are also shown. Many of 
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Table 9.1  Top 10 Algorithms in Data Mining

Algorithm Category Book Section

1 C4.5 Classification 4.3, 6.2
2 k-means Clustering 4.8
3 SVM Statistical learning 6.4
4 Apriori Association analysis 4.5, 6.3
5 EM Statistical learning 6.8
6 PageRank Link mining 9.6
7 Adaboost Ensemble learning 8.4
8 kNN Classification 4.7, 6.5
9 Naïve Bayes Classification 4.2

10 CART Classification 6.1

Note: The information here was obtained during a 2006 poll conducted by the International Data 
Mining Conference.

the assignments are rather arbitrary—Naïve Bayes, for example, is certainly a sta-
tistical learning method, and we have introduced EM as a statistically based cluster-
ing algorithm. Nevertheless, the emphasis on classification over other forms of 
learning, which reflects the emphasis in this book, is evident in the table, as is the 
dominance of C4.5, which we have also noted. One algorithm in Table 9.1 that has 
not been mentioned so far is the PageRank algorithm for link mining, which we 
were a little surprised to see in this list. Section 9.6 contains a brief description.

We have repeatedly stressed that productive use of data mining is not just a matter 
of finding some data and then blindly applying learning algorithms to it. Of course, 
the existence of the Weka workbench makes that easy to do—and therein lies a 
danger. We have seen many publications that seem to follow this methodology: The 
authors run a plethora of learning algorithms on a particular dataset and then write 
an article claiming that such-and-such a machine learning method is best for such-
and-such a problem—with little apparent understanding of what those algorithms 
do, the nature of the data, or consideration of statistical significance. The usefulness 
of such studies is questionable.

A related but rather different issue concerns the improvements in machine learn-
ing methods that have been reported over the years. In a 2006 paper provocatively 
entitled “Classifier technology and the illusion of progress,” David Hand, a promi-
nent statistician and machine learning researcher, points out that a great many 
algorithms have been devised for supervised classification, and a great many com-
parative studies have been conducted that apparently establish the superiority of new 
methods over their predecessors. Yet he contends that the continued steady progress 
that publication of these studies seems to document is, in fact, to a large extent 
illusory. This message brings to mind the 1R machine learning scheme some 15 
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years earlier with which we began Chapter 4. As pointed out there, 1R was never 
really intended as a machine learning “method” but was devised to demonstrate that 
putting high-powered inductive inference methods to work on simple datasets is like 
using a sledgehammer to crack a nut. That insight underlies the simplicity-first 
methodology that pervades this book, of which Hand’s recent paper is a salutary 
reminder.

How can progress be largely illusory, given documented improvements in mea-
sured classification success? The claim is basically that the differences in perfor-
mance are very small and, in practical applications, are likely to be swamped by 
other sources of uncertainty. There are many reasons for this. Simple methods may 
not perform as well as complex ones, but they often perform nearly as well. An 
extremely simple model—always choose the majority class—sets a baseline upon 
which any learning method should be able to improve. Consider the improvement 
over the baseline achieved by a simple method as a proportion of the improvement 
over the baseline achieved by a sophisticated method. For a variety of randomly 
chosen datasets, it turns out that a very simple method achieved more than 90% of 
the improvement yielded by the most sophisticated scheme. This is not so surprising. 
In standard classification schemes such as decision trees and rules, a huge propor-
tional gain in predictive accuracy is achieved at the beginning of the process when 
the first branch or rule is determined, and subsequent gains are small—usually very 
small indeed.

Small improvements are easily swamped by other factors. A fundamental assump-
tion of machine learning is that the training data is representative of the distribution 
from which future data will be chosen—the assumption is generally that the data is 
independent and identically distributed (often abbreviated to IID). But in real life, 
things drift. Yet training data is always retrospective. And it might be quite old. 
Consider the loan scenario introduced in Section 1.3 (page 22). To collect a substan-
tial volume of training data (and thorough training needs a substantial volume), we 
must wait until many loans have been issued. And then we must wait until the end 
of the loan period (two years? five years?) for the outcome to be known. By the time 
we use it for training, the data is quite old. And what has changed in the meantime? 
There are new ways of doing things. The bank has changed the way it defines mea-
surements on which the features are based. New features have become available. 
Policies have altered. Is that ancient data really representative of today’s problem?

Another fundamental problem is the reliability of the class labels in the training 
data. There may be small errors—random or even systematic ones—in which case, 
perhaps, we should stick to simpler models because the higher-order terms of more 
complex models may be very inaccurate. In determining class labels, someone, 
somewhere, may be mapping a gray world onto a black-and-white one, which 
requires judgment and invites inconsistency. And things may change: The notion of 
a “defaulter” on a loan—say, unpaid bills for three months—may be subtly different 
today than it was before—perhaps, in today’s economic climate, hard-pressed cus-
tomers will be given another couple of month’s leeway before calling in the bailiffs. 
The point is not that learning will necessarily fail. The changes may be fairly subtle, 



378	 CHAPTER 9  Moving on: Applications and Beyond 

and the learned models may still work well. The point is that the extra few percent 
gained by a sophisticated model over a simple one may be swamped by other factors.

Another issue, when looking at comparative experiments with machine learning 
methods, is who is doing the driving. It’s not just a matter of firing up the various 
different methods and recording the results. Many machine learning schemes benefit 
from tweaking—optimization to fit the problem at hand. Hopefully the data used for 
tweaking is kept entirely separate from that used for training and testing (otherwise 
the results are dishonest). But it is natural that an expert in some particular method—
maybe the person who developed it—can squeeze more performance out of it than 
someone else. If they are trying to get their work published, they will certainly want 
to present the new method in the best possible light. They may not be so experienced 
at squeezing good performance out of existing, competitive methods—or so diligent. 
New methods always look better than old ones; also, more complicated schemes are 
harder to criticize than simpler ones!

The upshot is that small gains in laboratory performance, even though real, may 
be swamped by other factors when machine learning is applied to a practical data 
mining problem. If you want to do something worthwhile on a practical dataset, you 
need to take the entire problem context into account.

9.2  LEARNING FROM MASSIVE DATASETS
The enormous proliferation of very large databases in today’s companies and scien-
tific institutions makes it necessary for machine learning algorithms to operate on 
massive datasets. Two separate dimensions become critical when any algorithm is 
applied to very large datasets: space and time.

Suppose the data is so large that it cannot be held in main memory. This causes 
no difficulty if the learning scheme works in an incremental fashion, processing 
one instance at a time when generating the model. An instance can be read from 
the input file, the model can be updated, the next instance can be read, and so on—
without ever holding more than one training instance in main memory. This is 
“data stream learning,” and we discuss it in the next section. Other methods, such 
as basic instance-based schemes and locally weighted regression, need access to all 
the training instances at prediction time. In that case, sophisticated caching and 
indexing mechanisms have to be employed to keep only the most frequently used 
parts of a dataset in memory and to provide rapid access to relevant instances in 
the file.

The other critical dimension when applying learning algorithms to massive 
datasets is time. If the learning time does not scale linearly (or almost linearly) with 
the number of training instances, it will eventually become infeasible to process very 
large datasets. In some applications the number of attributes is a critical factor, and 
only methods that scale linearly in the number of attributes are acceptable. Alterna-
tively, prediction time might be the crucial issue. Fortunately, there are many learn-
ing algorithms that scale gracefully during both training and testing. For example, 
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the training time for Naïve Bayes is linear in both the number of instances and the 
number of attributes. For top-down decision tree inducers, we saw in Section 6.1 
(page 199) that training time is linear in the number of attributes and, if the tree is 
uniformly bushy, log-linear in the number of instances (if subtree raising is not used).

When a dataset is too large for a particular learning algorithm to be applied, there 
are three ways to make learning feasible. The first is trivial: Instead of applying the 
scheme to the full dataset, use just a small subset for training. Of course, information 
is lost when subsampling is employed. However, the loss may be negligible because 
the predictive performance of a learned model often flattens out long before all the 
training data is incorporated into it. If this is the case, it can easily be verified by 
observing the model’s performance on a holdout test set for training sets of different 
sizes.

This kind of behavior, called the law of diminishing returns, may arise because 
the learning problem is a simple one, so that a small volume of training data is suf-
ficient to learn an accurate model. Alternatively, the learning algorithm might be 
incapable of grasping the detailed structure of the underlying domain. This is often 
observed when Naïve Bayes is employed in a complex domain: Additional training 
data may not improve the performance of the model, whereas a decision tree’s 
accuracy may continue to climb. In this case, of course, if predictive performance 
is the main objective, you should switch to the more complex learning algorithm. 
But beware of overfitting! Take care not to assess performance on the training data.

Parallelization is another way of reducing the time complexity of learning. The 
idea is to split the problem into smaller parts, solve each using a separate processor, 
and combine the results together. To do this, a parallelized version of the learning 
algorithm must be created. Some algorithms lend themselves naturally to paralleliza-
tion. Nearest-neighbor methods, for example, can be easily distributed among 
several processors by splitting the data into parts and letting each processor find the 
nearest neighbor in its part of the training set. Decision tree learners can be paral-
lelized by letting each processor build a subtree of the complete tree. Bagging and 
stacking (although not boosting) are naturally parallel algorithms. However, paral-
lelization is only a partial remedy because with a fixed number of processors, the 
algorithm’s asymptotic time complexity cannot be improved.

A simple way to apply any algorithm to a large dataset is to split the data into 
chunks of limited size and learn models separately for each one, combining the 
results using voting or averaging. Either a parallel bagging-like scheme or a sequen-
tial boosting-like scheme can be employed for this purpose. Boosting has the advan-
tage that new chunks can be weighted based on the classifiers learned from previous 
chunks, thus transferring knowledge between chunks. In both cases, memory con-
sumption increases linearly with dataset size; thus, some form of pruning is neces-
sary for very large datasets. This can be done by setting aside some validation data 
and only adding a model from a new chunk to the committee classifier if it increases 
the committee’s performance on the validation set. The validation set can also be 
used to identify an appropriate chunk size by running the method with several dif-
ferent chunk sizes in parallel and monitoring performance on the validation set.
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The best but most challenging way to enable a learning paradigm to deal with 
very large datasets would be to develop new algorithms with lower computational 
complexity. In some cases, it is provably impossible to derive exact algorithms with 
lower complexity. Decision tree learners that deal with numeric attributes fall into 
this category. Their asymptotic time complexity is dominated by the sorting process 
for the numeric attribute values, a procedure that must be performed at least once 
for any given dataset. However, stochastic algorithms can sometimes be derived that 
approximate the true solution but require a much smaller amount of time.

Background knowledge can make it possible to vastly reduce the amount of data 
that needs to be processed by a learning algorithm. Depending on which attribute is 
the class, most of the attributes in a huge dataset might turn out to be irrelevant when 
background knowledge is taken into account. As usual, it pays to carefully engineer 
the data that is passed to the learning scheme and make the greatest possible use  
of any prior information about the learning problem at hand. If insufficient back-
ground knowledge is available, the attribute filtering algorithms described in Section 
7.1 (page 308) can often drastically reduce the amount of data—possibly at the 
expense of a minor loss in predictive performance. Some of these—for example, 
attribute selection using decision trees or the 1R learning scheme—are linear in the 
number of attributes.

To give a feeling for the volume of data that can be handled by straightforward 
implementations of machine learning algorithms on ordinary microcomputers, we 
ran Weka’s decision tree learner J4.8 on a dataset with 4.9 M instances, 40 attributes 
(almost all numeric), and a class with 25 values.1 We used a reasonably modern 
Linux machine running Sun’s 64-bit Java Virtual Machine (Java 1.6) in server mode 
with 6 Gb of heap space (half of this was required just to load the data). The result-
ing tree, which had 1388 nodes, took two hours to build. (A method that presorts 
the attributes and uses reduced-error pruning took only 30 minutes.) In general, Java 
is a little slower than equivalent C/C++ code—but less than twice as slow.

There are datasets today that truly deserve the adjective massive. Scientific data-
sets from astrophysics, nuclear physics, earth science, and molecular biology are 
measured in terabytes. So are datasets containing records of financial transactions. 
Application of standard programs for machine learning to such datasets in their 
entirety is a very challenging proposition.

9.3  DATA STREAM LEARNING
One way of addressing massive datasets is to develop learning algorithms that treat 
the input as a continuous data stream. In the new paradigm of data stream mining, 
which has developed during the last decade, algorithms are developed that cope 

1We used the 1999 KDD Cup data at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. (See 
also http://iscx.ca/NSL-KDD.)
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naturally with datasets that are many times the size of main memory—perhaps even 
indefinitely large. The core assumption is that each instance can be inspected once 
only (or at most once) and must then be discarded to make room for subsequent 
instances. The learning algorithm has no control over the order in which instances 
are processed and must update its model incrementally as each one arrives. Most 
models also satisfy the “anytime” property—they are ready to be applied at any 
point during the learning process. Such algorithms are ideal for real-time learning 
from data streams, making predictions in real time while adapting the model to 
changes in the evolving input stream. They are typically applied to online learning 
from data produced by physical sensors.

For such applications, the algorithm must operate indefinitely yet use a limited 
amount of memory. Even though we have stipulated that instances are discarded as 
soon as they have been processed, it is obviously necessary to remember at least 
something about at least some of the instances; otherwise, the model would be static. 
And as time progresses, the model grows—inexorably. But it must not be allowed 
to grow without bound. When processing big data, memory is quickly exhausted 
unless limits are enforced on every aspect of its use. Moving from space to time, 
algorithms intended for real-time application must process instances faster than they 
arrive, dealing with each one within a fixed, constant, preferably small, time bound. 
This does not allow, for example, for occasional complex reorganizations of a tree 
model—unless the cost can be amortized over several instances, which introduces 
a further level of complexity.

Naïve Bayes is a rare example of an algorithm that needs no adaptation to deal 
with data streams. Training is incremental: It merely involves updating a fixed set 
of numeric parameters. Memory usage is small because no structure is added to the 
model. Other classifiers with the same properties include 1R and the basic percep-
tron. Multilayer neural nets usually have a fixed structure as well, and as we saw in 
Section 6.4 (page 238), stochastic backpropagation updates weights incrementally 
after each training instance has been processed, rather than in a batch operation, and 
thus is suitable for online learning. Rules with exceptions make modifications incre-
mentally by expressing exceptions to existing rules rather than reengineering the 
entire set, and thus could be rendered suitable for data stream learning—although 
care would need to be taken to ensure that memory usage did not increase inexorably 
as the number of exceptions increased. Instance-based algorithms and related 
methods such as locally weighted linear regression are also incremental, but do not 
usually operate within a fixed memory bound.

To convey the flavor of how a standard algorithm might be adapted for stream 
processing, we will examine the case of decision trees, which have the advantage 
of evolving structure in a form that is interpretable. Early work on incremental 
induction of decision trees devised methods for creating a tree and allowing it to be 
restructured when sufficient evidence had accumulated that an alternative version 
would be better. However, a large amount of information needs to be retained to 
support the restructuring operation—in some cases, all of the training data. Further-
more, restructuring tends to be slow—sometimes slower than recreating the entire 
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tree from scratch. Although interesting, these methods do not support indefinite 
processing of data streams in real time.

Their problem is that they adopt the usual paradigm of squeezing as much infor-
mation as possible out of the available instances. With data streams, this is not 
necessarily appropriate—it is perfectly acceptable to discard some information about 
the instances because if it is important it will always reappear. A new paradigm of 
“Hoeffding trees” was introduced in 2000, which builds models that can be proven 
equivalent to standard decision trees if the data is static and the number of examples 
is large enough.

Hoeffding trees are based on a simple idea known as the Hoeffding bound. It 
makes intuitive sense that, given enough independent observations, the true mean 
of a random variable will not differ from the estimated mean by more than a certain 
amount. In fact, the Hoeffding bound states that with probability 1 − δ, a random 
variable of range R will not differ from the estimated mean after n observations by 
more than 

ε δ
= ×

ln( )1

2n
R

This bound holds regardless of the probability distribution that underlies the values. 
Being general, it is more conservative than distribution-dependent bounds. Although 
tighter bounds are known for particular distributions, the Hoeffding formulation 
works well empirically.

The basic issue in decision tree induction is to choose an attribute to branch on 
at each stage. To apply the Hoeffding bound, first set a small value of δ (say 10−7), 
which is the probability that the choice of attribute will be incorrect. The random 
variable being estimated is the difference in information gain between the best two 
attributes, and R is the base two logarithms of the number of possible class labels. 
For example, if the difference in gain between the best two attributes is estimated 
to be 0.3, and the preceding formula yields a value for ε of 0.1, the bound guarantees 
that the actual difference in gain exceeds 0.2 with high probability, which represents 
positive separation for the best attribute. Thus, it is safe to split.

If the difference in information gain between the best two attributes is less than 
ε, it is not safe to split. However, ε will decrease as n continues to increase, so it is 
simply a matter of waiting until more examples have been seen—although, of 
course, this may alter the estimate of which are the two best attributes and how far 
apart they are.

This simple test is the core principle of Hoeffding trees: to decide, with probabil-
ity 1 − δ, that a particular attribute exhibits greater information gain than all the 
others. That is, the gap between it and its closest competitor exceeds ε. The bound 
decays rapidly as more examples are seen—for example, for a two-class problem 
(R = 1) with δ = 10−7, it falls below 0.1 after the first 1000 examples and below 0.01 
after the first 100,000. One might object that as the number of leaves grows indefi-
nitely, the probability of making incorrect decisions will continually increase even 
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though the probability of error at each one falls below δ. This is true—except that, 
working within finite memory, the number of leaves cannot grow indefinitely. Given 
a maximum tree size, keeping the overall probability of error within a given bound 
is just a matter of choosing an appropriate value for δ. The basic principle can be 
applied to measures other than the information gain and to learning methods other 
than decision trees.

There are many other issues. A tie-breaking strategy is advisable to permit further 
development of the tree in situations where the top two attributes exhibit very similar 
information gains. Indeed, the presence of two identical attributes could block any 
development of the tree at all. To prevent this, nodes should be split whenever the 
Hoeffding bound falls below a small prespecified tie-breaking parameter, no matter 
how close the next best option. To increase efficiency the Hoeffding test may be 
performed periodically for each leaf, after k new instances have reached it, and only 
when a mix of classes have reached the leaf; otherwise, there is no need to split. 
Prepruning is another simple possibility. The algorithm can incorporate this by also 
evaluating the merit of not splitting at all—that is, by splitting only if the best attri-
bute’s information gain at the node exceeds zero. Unlike prepruning in the batch 
learning setting, this is not a permanent decision: Nodes are only prevented from 
splitting until it appears that a split will be useful.

Now consider memory usage. What must be stored within a leaf is simply counts 
of the number of times each class label reaches that leaf, for each attribute value. 
This causes problems for numeric attributes, which require separate treatment. 
Unsupervised discretization is easy, but supervised prediscretization is infeasible 
because it is inconsistent with stream-based processing. A Gaussian approximation 
can be made for numeric attributes on a per-class basis and updated using simple 
incremental update algorithms for mean and variance. To prevent indefinite growth 
in memory requirements, a strategy must be devised to limit the total number of 
nodes in the tree. This can be done by deactivating leaves that look insufficiently 
promising in terms of the accuracy gain that further development might yield. The 
potential gain is bounded by the expected number of mistakes a leaf might make, 
so this is an obvious candidate for measuring its promise. Leaves can periodically 
be ordered from most to least promising and deactivated accordingly. A further pos-
sibility for saving space is to abandon attributes that seem to be poor predictors and 
discard their statistics from the model.

Although this section has focused on decision trees for classification, research-
ers have studied stream-based versions of all the classical data mining problems: 
regression, clustering, ensemble methods, association rules, and so on. An open-
source system called Moa, for Massive Online Analysis, is closely related to 
Weka and contains a collection of online learning algorithms, as well as tools 
for evaluation.2

2See http://moa.cs.waikato.ac.nz. The moa, like the weka, is a flightless New Zealand bird, but it is 
very large—and also, unfortunately, extinct.
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9.4  INCORPORATING DOMAIN KNOWLEDGE
Throughout this book we have emphasized the importance of getting to know your 
data when undertaking practical data mining. Knowledge of the domain is absolutely 
essential for success. Data about data is often called metadata, and one of the fron-
tiers in machine learning is the development of ways to allow learning methods to 
take metadata into account in a useful way.

You don’t have to look far for examples of how metadata might be applied. In 
Chapter 2 (page 52), we divided attributes into nominal and numeric. But we also 
noted that many finer distinctions are possible. If an attribute is numeric an ordering 
is implied, but sometimes there is a zero point and sometimes not (for time intervals 
there is, but for dates there is not). Even the ordering may be nonstandard: Angular 
degrees have a different ordering from integers because 360° is the same as 0° and 
180° is the same as −180° or indeed 900°. Discretization schemes assume ordinary 
linear ordering, as do learning schemes that accommodate numeric attributes, but it 
would be a routine matter to extend them to circular orderings. Categorical data may 
also be ordered. Imagine how much more difficult our lives would be if there were 
no conventional ordering for letters of the alphabet. (Looking up a listing in the 
Hong Kong telephone directory presents an interesting and nontrivial problem!) And 
the rhythms of everyday life are reflected in circular orderings: days of the week, 
months of the year. To further complicate matters there are many other kinds of 
ordering, such as partial orderings on subsets: subset A may include subset B, or 
subset B may include subset A, or neither may include the other. Extending ordinary 
learning schemes to take account of this kind of information in a satisfactory and 
general way is an open research problem.

Metadata often involves relations among attributes. Three kinds of relation can 
be distinguished: semantic, causal, and functional. A semantic relation between two 
attributes indicates that if the first is included in a rule, the second should be, too. 
In this case, it is known a priori that the attributes only make sense together. For 
example, in the agricultural data that we have analyzed, an attribute called milk 
production measures how much milk an individual cow produces, and the purpose 
of our investigation meant that this attribute had a semantic relationship with three 
other attributes: cow-identifier, herd-identifier, and farmer-identifier. In other words, 
a milk production value can only be understood in the context of the cow that pro-
duced the milk, and the cow is further linked to a specific herd owned by a given 
farmer. Semantic relations are, of course, problem dependent: They depend not just 
on the dataset but also on what you are trying to do with it.

Causal relations occur when one attribute causes another. In a system that is 
trying to predict an attribute caused by another, we know that the other attribute 
should be included to make the prediction more meaningful. For example, in the 
agricultural data mentioned previously there is a chain from the farmer, herd, and 
cow identifiers, through measured attributes such as milk production, down to the 
attribute that records whether a particular cow was retained or sold by the farmer. 
Learned rules should recognize this chain of dependence.
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Functional dependencies occur in many databases, and the people who create 
databases strive to identify them for the purpose of normalizing the relations in the 
database. When learning from the data, the significance of a functional dependency 
of one attribute on another is that if the latter is used in a rule there is no need to 
consider the former. Learning schemes often rediscover functional dependencies that 
are already known. Not only does this generate meaningless or, more accurately, 
tautological rules, but also other, more interesting patterns may be obscured by the 
functional relationships. However, there has been much work in automatic database 
design on the problem of inferring functional dependencies from example queries, 
and the methods developed should prove useful in weeding out tautological rules 
generated by learning schemes.

Taking these kinds of metadata, or prior domain knowledge, into account when 
doing induction using any of the algorithms we have met does not seem to present 
any deep or difficult technical challenges. The only real problem—and it is a big 
one—is how to express the metadata in a general and easily understandable way so 
that it can be generated by a person and used by the algorithm.

It seems attractive to couch the metadata knowledge in just the same representa-
tion as the machine learning scheme generates. We focus on rules, which are the norm 
for much of this work. The rules that specify metadata correspond to prior knowledge 
of the domain. Given training examples, additional rules can be derived by one of the 
rule-induction schemes we have already met. In this way, the system might be able 
to combine “experience” (from examples) with “theory” (from domain knowledge). 
It would be capable of confirming and modifying its programmed-in knowledge 
based on empirical evidence. Loosely put, the user tells the system what he or she 
knows and gives it some examples, and the system figures the rest out for itself!

To make use of prior knowledge expressed as rules in a sufficiently flexible way, 
it is necessary for the system to be able to perform logical deduction. Otherwise, the 
knowledge has to be expressed in precisely the right form for the learning algorithm 
to take advantage of it, which is likely to be too demanding for practical use. Con-
sider causal metadata: If attribute A causes B and B causes C, we would like the 
system to deduce that A causes C rather than having to state that fact explicitly. 
Although in this simple example explicitly stating the new fact presents little 
problem, in practice, with extensive metadata, it will be unrealistic to expect users 
to express all logical consequences of their prior knowledge.

A combination of deduction from prespecified domain knowledge and induction 
from training examples seems like a flexible way of accommodating metadata. At 
one extreme, when examples are scarce (or nonexistent), deduction is the prime (or 
only) means of generating new rules. At the other, when examples are abundant but 
metadata is scarce (or nonexistent), the standard machine learning techniques 
described in this book suffice. Practical situations span the territory between.

This is a compelling vision, and methods of inductive logic programming, men-
tioned in Section 3.4 (page 75), offer a general way of specifying domain knowledge 
explicitly through statements in a formal logic language. However, current logic pro-
gramming solutions suffer serious shortcomings in real-world environments. They 
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tend to be brittle and to lack robustness, and they may be so computation intensive as 
to be completely infeasible on datasets of any practical size. Perhaps this stems from 
the fact that they use first-order logic—that is, they allow variables to be introduced 
into the rules. The machine learning schemes we have seen, the input and output of 
which are represented in terms of attributes and constant values, perform their machi-
nations in propositional logic, without variables, greatly reducing the search space and 
avoiding all sorts of difficult problems of circularity and termination.

Some aspire to realize the vision without the accompanying brittleness and com-
putational infeasibility of full logic programming solutions by adopting simplified 
reasoning systems. Others place their faith in the general mechanism of Bayesian 
networks, introduced in Section 6.7, in which causal constraints can be expressed 
in the initial network structure and hidden variables can be postulated and evaluated 
automatically. Probabilistic logic learning offers a way to cope with both the com-
plexity and the uncertainty of the real world by combining logic programming with 
statistical reasoning. It will be interesting to see whether systems that allow flexible 
specification of different types of domain knowledge will become widely deployed.

9.5  TEXT MINING
Data mining is about looking for patterns in data. Likewise, text mining is about 
looking for patterns in text: It is the process of analyzing text to extract information 
that is useful for particular purposes. Compared with the kind of data we have been 
talking about in this book, text is unstructured, amorphous, and difficult to deal with. 
Nevertheless, in modern Western culture, text is the most common vehicle for the 
formal exchange of information. The motivation for trying to extract information 
from it is compelling—even if success is only partial.

The superficial similarity between text and data mining conceals real differences. 
In the Preface (page xxi), we characterized data mining as the extraction of implicit, 
previously unknown, and potentially useful information from data. With text mining, 
however, the information to be extracted is clearly and explicitly stated in the text. 
It is not hidden at all—most authors go to great pains to make sure that they express 
themselves clearly and unambiguously. From a human point of view, the only sense 
in which it is “previously unknown” is that time restrictions make it infeasible for 
people to read the text themselves. The problem, of course, is that the information 
is not couched in a manner that is amenable to automatic processing. Text mining 
strives to bring it out in a form that is suitable for consumption by computers or by 
people who do not have time to read the full text.

A requirement common to both data and text mining is that the information 
extracted should be potentially useful. In one sense, this means actionable—capable 
of providing a basis for actions to be taken automatically. In the case of data mining, 
this notion can be expressed in a relatively domain-independent way: Actionable 
patterns are ones that allow nontrivial predictions to be made on new data from the 
same source. Performance can be measured by counting successes and failures, 



	 9.5  Text Mining� 387

statistical techniques can be applied to compare different data mining methods on 
the same problem, and so on. However, in many text mining situations it is hard to 
characterize what “actionable” means in a way that is independent of the particular 
domain at hand. This makes it difficult to find fair and objective measures of success.

As we have emphasized throughout this book, “potentially useful” is often given 
another interpretation in practical data mining: The key to success is that the infor-
mation extracted must be comprehensible in that it helps to explain the data. This is 
necessary whenever the result is intended for human consumption rather than (or as 
well as) a basis for automatic action. This criterion is less applicable to text mining 
because, unlike data mining, the input itself is comprehensible. Text mining with 
comprehensible output is tantamount to summarizing salient features from a large 
body of text, which is a subfield in its own right: text summarization.

We have already encountered one important text mining problem: document 
classification, in which each instance represents a document and the instance’s class 
is the document’s topic. Documents are characterized by the words that appear in 
them. The presence or absence of each word can be treated as a Boolean attribute, 
or documents can be treated as bags of words, rather than sets, by taking word 
frequencies into account. We encountered this distinction in Section 4.2 (page 97), 
where we learned how to extend Naïve Bayes to the bag-of-words representation, 
yielding the multinomial version of the algorithm.

There is, of course, an immense number of different words, and most of them 
are not very useful for document classification. This presents a classic feature-
selection problem. Some words—for example function words, often called stop-
words—can usually be eliminated a priori, but although these occur very frequently 
there are not all that many of them. Other words occur so rarely that they are unlikely 
to be useful for classification. Paradoxically, infrequent words are common—nearly 
half the words in a document or corpus of documents occur just once. Nevertheless, 
such an overwhelming number of words remain after these word classes are removed 
that further feature selection may be necessary using the methods described in 
Section 7.1 (page 307). Another issue is that the bag-of-words (or set-of-words) 
model neglects word order and contextual effects. There is a strong case for detecting 
common phrases and treating them as single units.

Document classification is supervised learning: The categories are known before-
hand and given in advance for each training document. The unsupervised version of 
the problem is called document clustering. Here there is no predefined class, but 
groups of cognate documents are sought. Document clustering can assist information 
retrieval by creating links between similar documents, which in turn allows related 
documents to be retrieved once one of the documents has been deemed relevant to 
a query.

There are many applications of document classification. A relatively easy catego-
rization task, language identification, provides an important piece of metadata for 
documents in international collections. A simple representation that works well for 
language identification is to characterize each document by a profile that consists of 
the n-grams, or sequences of n consecutive letters (for some small value such as 
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n = 3), that appear in it. The most frequent 300 or so n-grams are highly correlated 
with the language. A more challenging application is authorship ascription, where 
a document’s author is uncertain and must be guessed from the text. Here, the stop-
words, not the content words, are the giveaway because their distribution is author 
dependent but topic independent. A third problem is the assignment of key phrases 
to documents from a controlled vocabulary of possible phrases, given a large number 
of training documents that are tagged from this vocabulary.

Another general class of text mining problems is metadata extraction. Metadata 
was mentioned earlier as data about data: In the realm of text the term generally 
refers to salient features of a work, such as author, title, subject classification, subject 
headings, and keywords. Metadata is a kind of highly structured (and therefore 
actionable) document summary. The idea of metadata is often expanded to encom-
pass words or phrases that stand for objects or “entities” in the world, leading to the 
notion of entity extraction. Ordinary documents are full of such terms: phone 
numbers, fax numbers, street addresses, email addresses, email signatures, abstracts, 
tables of contents, lists of references, tables, figures, captions, meeting announce-
ments, web addresses, and more. In addition, there are countless domain-specific 
entities, such as International Standard Book Numbers (ISBNs), stock symbols, 
chemical structures, and mathematical equations. These terms act as single vocabu-
lary items, and many document-processing tasks can be significantly improved if 
they are identified as such. They can aid searching, interlinking, and cross-referenc-
ing between documents.

How can textual entities be identified? Rote learning—that is, dictionary lookup—
is one idea, particularly when coupled with existing resources—lists of personal 
names and organizations, information about locations from gazetteers, or abbrevia-
tion and acronym dictionaries. Another is to use capitalization and punctuation 
patterns for names and acronyms; titles (e.g., Ms.), suffixes (e.g., Jr.), and baronial 
prefixes (e.g., von); or unusual language statistics for foreign names. Regular expres-
sions suffice for artificial constructs such as uniform resource locators (URLs); 
explicit grammars can be written to recognize dates and sums of money. Even the 
simplest task opens up opportunities for learning to cope with the huge variation 
that real-life documents present. As just one example, what could be simpler than 
looking up a name in a table? But the name of Libyan leader Muammar Qaddafi is 
represented in 47 different ways in documents that have been received by the Library 
of Congress!

Many short documents describe a particular kind of object or event, combining 
entities into a higher-level composite that represents the document’s entire content. 
The task of identifying the composite structure, which can often be represented as 
a template with slots that are filled by individual pieces of structured information, 
is called information extraction. Once the entities have been found, the text is parsed 
to determine relationships among them. Typical extraction problems require finding 
the predicate structure of a small set of predetermined propositions. These are 
usually simple enough to be captured by shallow parsing techniques such as small 
finite-state grammars, although matters may be complicated by ambiguous pronoun 
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references and attached prepositional phrases and other modifiers. Machine learning 
has been applied to information extraction by seeking rules that extract fillers for 
slots in the template. These rules may be couched in pattern-action form, the patterns 
expressing constraints on the slot-filler and words in its local context. These con-
straints may involve the words themselves, their part-of-speech tags, and their 
semantic classes.

Taking information extraction a step further, the extracted information can be 
used in a subsequent step to learn rules—not rules about how to extract information 
but rules that characterize the content of the text itself. These rules might predict 
the values for certain slot-fillers from the rest of the text. In certain tightly con-
strained situations, such as Internet job postings for computing-related jobs, informa-
tion extraction based on a few manually constructed training examples can compete 
with an entire manually constructed database in terms of the quality of the rules 
inferred.

Text mining is a burgeoning technology that is still, because of its newness and 
intrinsic difficulty, in a fluid state—akin, perhaps, to the state of machine learning 
in the mid-1980s. There is no real consensus about what it covers: Broadly inter-
preted, all natural language processing comes under the ambit of text mining. It is 
usually difficult to provide general and meaningful evaluations because the mining 
task is highly sensitive to the particular text under consideration. Automatic text 
mining techniques have a long way to go before they rival the ability of people, even 
without any special domain knowledge, to glean information from large document 
collections.

9.6  WEB MINING
The World Wide Web is a massive repository of text. Almost all of it differs from 
ordinary “plain” text because it contains explicit structural markup. Some markup 
is internal and indicates document structure or format; other markup is external and 
defines explicit hypertext links between documents. Both these information sources 
give additional leverage for mining web documents. Web mining is like text mining 
but takes advantage of this extra information and often improves results by capital-
izing on the existence of topic directories and other information on the Web.

Consider internal markup. Internet resources that contain relational data—tele-
phone directories, product catalogs, and so on—use HyperText Markup Language 
(HTML) formatting commands to clearly present the information they contain to 
Web users. However, it is quite difficult to extract data from such resources in an 
automatic way. To do so, software systems use simple parsing modules called wrap-
pers to analyze the page structure and extract the requisite information. If wrappers 
are coded by hand, which they often are, this is a trivial kind of text mining because 
it relies on the pages having a fixed, predetermined structure from which information 
can be extracted algorithmically. But pages rarely obey the rules. Their structures 
vary; web sites evolve. Errors that are insignificant to human readers throw 
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automatic extraction procedures completely awry. When change occurs, adjusting a 
wrapper manually can be a nightmare that involves getting your head around the 
existing code and patching it up in a way that does not cause breakage elsewhere.

Enter wrapper induction—learning wrappers automatically from examples. The 
input is a training set of pages along with tuples representing the information derived 
from each page. The output is a set of rules that extracts the tuples by parsing the 
page. For example, it might look for certain HTML delimiters—paragraph boundar-
ies (<p>), list entries (<li>), or boldface (<b>)—that the web page designer has used 
to set off key items of information, and learn the sequence in which entities are 
presented. This could be accomplished by iterating over all choices of delimiters, 
stopping when a consistent wrapper is encountered. Then recognition will depend 
only on a minimal set of cues, providing some defense against extraneous text and 
markers in the input. Alternatively, one might follow Epicurus’ advice at the end of 
Section 5.9 (page 186) and seek a robust wrapper that uses multiple cues to guard 
against accidental variation. The great advantage of automatic wrapper induction is 
that when errors are caused by stylistic variants it is a simple matter to add these to 
the training data and reinduce a new wrapper that takes them into account. Wrapper 
induction reduces recognition problems when small changes occur and makes it far 
easier to produce new sets of extraction rules when structures change radically.

One of the problems with the Web is that a lot of it is rubbish. In order to separate 
the wheat from the chaff, a metric called PageRank was introduced by the founders 
of Google; it is used in various guises by other search engines too, and in many 
other web mining applications. It attempts to measure the prestige of a web page or 
site, where prestige is, according to a dictionary definition, “high standing achieved 
through success or influence.” The hope is that this is a good way to determine 
authority, defined as “an accepted source of expert information or advice.” Recall 
that the PageRank algorithm was identified earlier in Table 9.1 as one of the top 10 
data mining algorithms, the only one that we have not encountered so far. It is 
perhaps questionable whether it should be classed as a data mining algorithm, but 
it is worth describing all the same.

The key is external markup in the form of hyperlinks. In a networked community, 
people reward success with links. If you link to my page, it’s probably because you 
find it useful and informative—it’s a successful web page. If a host of people link 
to it, that indicates prestige: My page is successful and influential. Look at Figure 
9.1, which shows a tiny fraction of the Web, including links between pages. Which 
ones do you think are most authoritative? Page F has five incoming links, which 
indicates that five people found it worth linking to, so there’s a good chance that 
this page is more authoritative than the others. B is second best, with four links.

Merely counting links is a crude measure. Some web pages have thousands of 
outgoing links, whereas others have just one or two. Rarer links are more discrimi-
nating and should count more than others. A link from your page to mine bestows 
more prestige if your page has few outlinks. In Figure 9.1 the many links emanating 
from page A mean that each one carries less weight simply because A is a prolific 
linker. From F’s point of view, the links from D and E may be more valuable than 
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the one from A. There is another factor: A link is more valuable if it comes from a 
prestigious page. The link from B to F may be better than the others into F because 
B is more prestigious. Admittedly, this factor involves a certain circularity, and 
without further analysis it’s not clear that it can be made to work. But indeed it can.

Here are the details. We define the PageRank of a page to be a number between 
0 and 1 that measures its prestige. Each link into the page contributes to its Page
Rank. The amount it contributes is the PageRank of the linking page divided by the 
number of outlinks from it. The PageRank of any page is calculated by summing 
that quantity over all links into it. The value for D in Figure 9.1 is calculated by 
adding one-fifth of the value for A (because it has five outlinks) to one-half the value 
for C.

A simple iterative method is used to resolve the apparently circular nature of the 
calculation. Start by randomly assigning an initial value to each page. Then recom-
pute each page’s PageRank by summing the appropriate quantities, described earlier, 
over its inlinks. If the initial values are thought of as an approximation to the true 
value of PageRank, the new values are a better approximation. Keep going, generat-
ing a third approximation, a fourth, and so on. At each stage, recompute the Page
Rank for every page in the Web. Stop when, for every page, the next iteration turns 
out to give almost exactly the same PageRank as the previous one.

Subject to two modifications discussed later, this iteration is guaranteed to con-
verge, and fairly quickly too. Although the precise details are shrouded in secrecy, 
today’s search engines probably seek an accuracy for the final values of between 

FIGURE 9.1 
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10−9 and 10−12. An early experiment reported 50 iterations for a much smaller version 
of the Web than the one that exists today, before the details became commercial; 
several times as many iterations are needed now. Google is thought to run programs 
for several days to perform the PageRank calculation for the entire Web, and the 
operation is—or at any rate, used to be—performed every few weeks.

There are two problems with the calculation we have described. You probably 
have a mental picture of PageRank flowing through the tangled “web” of Figure 9.1, 
coming into a page through its inlinks and leaving it through its outlinks. What if 
there are no inlinks (page H)? Or no outlinks (page G)?

To operationalize this picture, imagine a web surfer who clicks links at random. 
He takes the current page, chooses an outlink at random, and goes to that link’s 
target page. The probability of taking any particular link is smaller if there are many 
outlinks, which is exactly the behavior we want from PageRank. It turns out that 
the PageRank of a given page is proportional to the probability that the surfer ran-
domly searching lands on that page.

Now the problem raised by a page with no outlinks becomes apparent: It’s a 
PageRank sink because when surfers come in they cannot get out. More generally, 
a set of pages might link to each other but not to anywhere else. This incestuous 
group is also a PageRank sink: The random surfer gets stuck in a trap. And a page 
with no inlinks? Random surfers never reach it. In fact, they never reach any group 
of pages that has no inlinks from the rest of the Web, even though it may have 
internal links and outlinks to the Web at large.

These two problems mean that the iterative calculation described above does not 
converge, as we earlier claimed it would. But the solution is simple: teleportation. 
With a certain small probability, just make the surfer arrive at a randomly chosen 
page instead of following a link from the one she is on. That solves both problems. 
If surfers are stuck at G they will eventually teleport out of it. And if they can’t 
reach H by surfing, they will eventually teleport into it.

The teleport probability has a strong influence on the rate of convergence of the 
iterative algorithm—and on the accuracy of its results. At the extreme, if it were 
equal to 1, meaning that the surfer always teleported, the link structure would have 
no effect on PageRank, and no iteration would be necessary. If it were 0 and the 
surfer never teleported, the calculation would not converge at all. Early published 
experiments used a teleportation probability of 0.15; some speculate that search 
engines increase it a little to hasten convergence.

Instead of teleporting to a randomly chosen page, you could choose a predeter-
mined probability for each page, and—once you had decided to teleport—use that 
probability to determine where to land. This does not affect the calculation. But it 
does affect the result. If a page was discriminated against by receiving a smaller 
probability than the others, it would end up with a smaller PageRank than it deserves. 
This gives search engine operators an opportunity to influence the results of the 
calculation—an opportunity that they probably use to discriminate against certain 
sites (e.g., ones they believe are trying to gain an unfair advantage by exploiting the 
PageRank system). This is the stuff of which lawsuits are made.
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9.7  ADVERSARIAL SITUATIONS
A prime application of machine learning is junk email filtering. When we wrote 
the second edition of this book (2005), the scourge of unwanted email was a burning 
issue; now, as we write the third edition (2011), the problem seems to have abated 
despite the continual growth of spam (by some estimates it accounts for 95% of 
all emails). This is largely due to the widespread use of spam filtering, which often 
uses learning techniques. At first blush, junk email filtering appears to present a 
standard problem of document classification: Divide documents into “ham” and 
“spam” on the basis of the text they contain, guided by training data, of which 
there are copious amounts. But it differs from ordinary document classification 
because it involves an adversarial aspect. The documents that are being classified 
are not chosen at random from an unimaginably huge set of all possible documents; 
they contain emails that are carefully crafted to evade the filtering process, designed 
specifically to beat the system.

Early spam filters simply discarded messages containing “spammy” words that 
connote such things as sex, lucre, and quackery. Of course, much legitimate corre-
spondence concerns gender, money, and medicine: A balance must be struck. So 
filter designers recruited Bayesian text classification schemes that learned to strike 
an appropriate balance during the training process. Spammers quickly adjusted with 
techniques that concealed the spammy words by misspelling them; overwhelmed 
them with legitimate text, perhaps printed in white on a white background so that 
only the filter saw it; or simply put the spam text elsewhere, in an image or a URL 
that most mail readers download automatically.

The problem is complicated by the fact that it is hard to compare spam detection 
algorithms objectively. Although training data abounds, privacy issues preclude 
publishing large public corpora of representative email. And there are strong tem-
poral effects. Spam changes character rapidly, invalidating sensitive statistical tests 
such as cross-validation. Finally, the bad guys can also use machine learning. For 
example, if they could get hold of examples of what your filter blocks and what it 
lets through, they could use this as training data to learn how to evade filtering.

There are, unfortunately, many other examples of adversarial learning situations 
in our world today. Closely related to junk email is search engine spam: sites that 
attempt to deceive Internet search engines into placing them prominently in lists of 
search results. Highly ranked pages yield direct financial benefits to their owners 
because they present opportunities for advertising, providing strong motivation for 
profit seekers. Then there are the computer virus wars, in which designers of viruses 
and virus protection software react to one another’s innovations. Here the motivation 
tends to be general disruption and denial of service rather than monetary gain.

Computer network security is a continually escalating battle. Protectors harden 
networks, operating systems, and applications, and attackers find vulnerabilities in 
all three areas. Intrusion detection systems sniff out unusual patterns of activity that 
might be caused by a hacker’s reconnaissance activity. Attackers realize this and try 
to obfuscate their trails, perhaps by working indirectly or by spreading their activities 
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over a long time—or, conversely, by striking very quickly. Data mining is being 
applied to this problem in an attempt to discover semantic connections among 
attacker traces in computer network data that intrusion detection systems miss. This 
is a large-scale problem: Audit logs used to monitor computer network security can 
amount to gigabytes a day even in medium-size organizations.

Many automated threat detection systems are based on matching current data  
to known attack types. The U.S. Federal Aviation Administration developed the 
Computer-Assisted Passenger Prescreening System (CAPPS), which screens airline 
passengers on the basis of their flight records and flags individuals for additional 
checked baggage screening. Although the exact details are unpublished, CAPPS is, 
for example, thought to assign higher threat scores to cash payments. However, this 
approach can only spot known or anticipated threats. Researchers are using unsu-
pervised approaches such as anomaly and outlier detection in an attempt to detect 
suspicious activity. As well as flagging potential threats, anomaly detection systems 
can be applied to the detection of illegal activities such as financial fraud and money 
laundering.

Data mining is being used today to sift through huge volumes of data in the name 
of homeland defense. Heterogeneous information such as financial transactions, 
healthcare records, and network traffic is being mined to create profiles, construct 
social network models, and detect terrorist communications. This activity raises 
serious privacy concerns and has resulted in the development of privacy-preserving 
data mining techniques. These algorithms try to discern patterns in the data without 
accessing the original data directly, typically by distorting it with random values. To 
preserve privacy, they must guarantee that the mining process does not receive 
enough information to reconstruct the original data. This is easier said than done.

On a lighter note, not all adversarial data mining is aimed at combating nefarious 
activity. Multi-agent systems in complex, noisy, real-time domains involve autono-
mous agents that must both collaborate as a team and compete against antagonists. 
If you are having trouble visualizing this, think soccer. Robo-soccer is a rich and 
popular domain for exploring how machine learning can be applied to such difficult 
problems. Players must not only hone low-level skills but must also learn to work 
together and adapt to the behavior patterns of different opponents.

Finally, machine learning has been used to solve an actual historical literary 
mystery by unmasking a prolific author who had attempted to conceal his identity. 
As Koppel and Schler (2004) relate, Ben Ish Chai was the leading rabbinic scholar 
in Baghdad in the late nineteenth century. Among his vast literary legacy are two 
separate collections of about 500 Hebrew–Aramaic letters written in response to 
legal queries. He is known to have written one collection. Although Chai claims to 
have found the other in an archive, historians suspect that he wrote it, too but 
attempted to disguise his authorship by deliberately altering his style. The problem 
this case presents to machine learning is that there is no corpus of work to ascribe 
to the mystery author. There were a few known candidates, but the letters could 
equally well have been written by anyone. A new technique appropriately called 
unmasking was developed that creates a model to distinguish the known author’s 
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work A from the unknown author’s work X, iteratively removes those features that 
are most useful for distinguishing the two, and examines the speed with which cross-
validation accuracy degrades as more features are removed.

The hypothesis is that if work X is written by work A’s author, who is trying to 
conceal his identity, whatever differences there are between work X and work A will 
be reflected in only a relatively small number of features compared with the differ-
ences between work X and the works of a completely different author, say the author 
of work B. In other words, when work X is compared with works A and B, the 
accuracy curve as features are removed will decline much faster for work A than it 
does for work B. Koppel and Schler concluded that Ben Ish Chai did indeed write 
the mystery letters, and their technique is a striking example of original and creative 
use of machine learning in an adversarial situation.

9.8  UBIQUITOUS DATA MINING
We began this book by pointing out that we are overwhelmed with data. Nowhere 
does this impact the lives of ordinary people more than on the World Wide Web. At 
present, the Web contains around 10 to 20 billion documents, totaling perhaps 
50 Tb—and it continues to grow. No one can keep pace with the information explo-
sion. Whereas data mining originated in the corporate world because that’s where 
the databases are, text mining is moving machine learning technology out of the 
companies and into the home. Whenever we are overwhelmed by data on the Web, 
text mining promises tools to tame it. Applications are legion. Finding friends and 
contacting them, maintaining financial portfolios, shopping for bargains in an elec-
tronic world, using data detectors of any kind—all of these could be accomplished 
automatically without explicit programming. Already, text mining techniques are 
being used to predict what link you’re going to click next, to organize documents 
for you, sort your mail, and prioritize your search results. In a world where informa-
tion is overwhelming, disorganized, and anarchic, text mining may be the solution 
we so desperately need.

Many believe that the Web is but the harbinger of an even greater paradigm 
shift known as ubiquitous computing. Small portable devices are everywhere—
mobile telephones, personal digital assistants, personal stereo and video players, 
digital cameras, mobile Web access. Already some devices integrate all these func-
tions. They know our location in physical time and space, help us communicate in 
social space, organize our personal planning space, recall our past, and envelop us 
in global information space. It is easy to find dozens of processors in a American 
middle-class home today. They do not communicate with one another or with the 
global information infrastructure—yet. But they will, and when they do the potential 
for data mining will soar.

Take consumer music. Popular music leads the vanguard of technological 
advance. Sony’s original Walkman paved the way to today’s ubiquitous portable 
electronics. Apple’s iPOD pioneered large-scale portable storage. Napster’s network 
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technology spurred the development of peer-to-peer protocols. Recommender 
systems such as Firefly brought computing to social networks. Content-aware music 
services are migrating to portable devices. Applications for data mining in networked 
communities of people will be legion: discovering musical trends, tracking prefer-
ences and tastes, and analyzing listening behaviors.

Ubiquitous computing will weave digital space closely into real-world activities. 
To many—extrapolating their own computer experiences of extreme frustration, 
arcane technology, perceived personal inadequacy, and machine failure—this sounds 
like a nightmare. But proponents point out that it can’t be like that because, if it is, 
it won’t work. Today’s visionaries foresee a world of “calm” computing in which 
hidden machines silently cooperate behind the scenes to make our lives richer and 
easier. They’ll reach beyond the big problems of corporate finance and school home-
work to the little annoyances such as where are the car keys, can I get a parking 
place, and is that shirt I saw last week at Macy’s still on the rack? Clocks will find 
the correct time after a power failure, the microwave will download new recipes 
from the Internet, kid’s toys will refresh themselves with new games and new 
vocabularies. Clothes labels will track washing, coffee cups will alert cleaning staff 
to mold, light switches will save energy if no one is in the room, and pencils will 
digitize everything we draw. Where will data mining be in this new world? 
Everywhere!

It’s difficult to point to examples of a future that does not yet exist. But the 
advances in user interface technology are suggestive. Many repetitive tasks in direct-
manipulation computer interfaces cannot be automated with standard application 
tools, forcing users to perform the same interface actions over and over again. This 
typifies the frustrations alluded to previously: Who’s in charge—me or it? Experi-
enced programmers might write a script to carry out such tasks on their behalf, but 
as operating systems accrue layer upon layer of complexity, the power of program-
mers to command the machine is eroded; it vanishes altogether when complex 
functionality is embedded in appliances rather than in general-purpose computers.

Research in programming by demonstration enables ordinary users to automate 
predictable tasks without requiring any programming knowledge at all. The user 
need only know how to perform the task in the usual way to be able to communicate 
it to the computer. One system, called Familiar, helps users automate iterative tasks 
involving existing applications on Macintosh computers. It works across applica-
tions and can work with completely new ones never before encountered. It does this 
by using Apple’s scripting language to glean information from each application and 
exploiting that information to make predictions. The agent tolerates noise. It gener-
ates explanations to inform the user about its predictions, and it incorporates feed-
back. It’s adaptive: It learns specialized tasks for individual users. Furthermore, it 
is sensitive to each user’s style. If two people were teaching a task and happened to 
give identical demonstrations, Familiar would not necessarily infer identical pro-
grams—it’s tuned to users’ habits because it learns from their interaction history.

Familiar employs standard machine learning techniques to infer the user’s intent. 
Rules are used to evaluate predictions so that the best one can be presented to the 
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user at each point. These rules are conditional so that users can teach classification 
tasks such as sorting files based on their type and assigning labels based on their 
size. They are learned incrementally: The agent adapts to individual users by record-
ing their interaction history.

Many difficulties arise. One is scarcity of data. Users are loath to demonstrate 
several iterations of a task—they think the agent should immediately catch on to 
what they are doing. Whereas a data miner would consider a 100-instance dataset 
miniscule, users bridle at the prospect of demonstrating a task even half a dozen 
times. A second difficulty is the plethora of attributes. The computer desktop envi-
ronment has hundreds of features that any given action might depend on. This means 
that small datasets are overwhelmingly likely to contain attributes that are apparently 
highly predictive but nevertheless irrelevant, and specialized statistical tests are 
needed to compare alternative hypotheses. A third difficulty is that the iterative, 
improvement-driven development style that characterizes data mining applications 
fails. It is impossible in principle to create a fixed training and testing corpus for an 
interactive problem, such as programming by demonstration, because each improve-
ment in the agent alters the test data by affecting how users react to it. A fourth 
difficulty is that existing application programs provide limited access to application 
and user data: Often, the raw material on which successful operation depends is 
inaccessible, buried deep within the application program.

Data mining is already widely used at work. Text and web mining is bringing 
the techniques in this book into our own lives as we read our email and surf  
the Web. As for the future, it will be stranger than we can imagine. The spreading 
computing infrastructure will offer untold opportunities for learning. Data mining 
will be in there, behind the scenes, playing a role that will turn out to be 
foundational.

9.9  FURTHER READING
Wu et al. (2008) describe the process of identifying the top 10 algorithms in data 
mining for presentation at the International Conference on Data Mining in 2006 in 
Hong Kong; they have followed this up with a book that describes all the algorithms 
(Wu and Kumar, 2009). The paper on the “illusion of progress” in classification is 
by Hand (2006), and it was he who found that a very simple method achieves more 
than 90 percent of the classification improvement yielded by the most sophisticated 
scheme.

There is a substantial volume of literature that treats the topic of massive datasets, 
and we can only point to a few references here. Fayyad and Smyth (1995) describe 
the application of data mining to voluminous data from scientific experiments. 
Shafer et al. (1996) describe a parallel version of a top-down decision tree inducer. 
A sequential decision tree algorithm for massive disk-resident datasets has been 
developed by Mehta et al. (1996). The technique of applying any algorithm to a 
large dataset by splitting it into smaller chunks and bagging or boosting the result 
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is described by Breiman (1999); Frank et al. (2002) explain the related pruning and 
selection scheme.

Early work on incremental decision trees is reported by Utgoff (1989) and 
Utgoff et al. (1997). The Hoeffding tree was introduced by Domingos and Hulten 
(2000). Our description of it, including extensions and improvement, closely 
follows Kirkby’s Ph.D. thesis (2007). The Moa system is described by Bifet et al. 
(2010).

Despite its importance, comparatively little seems to have been written about the 
general problem of incorporating metadata into practical data mining. A scheme for 
encoding domain knowledge into propositional rules and its use for both deduction 
and induction has been investigated by Giraud-Carrier (1996). The related area of 
inductive logic programming, which deals with knowledge represented by first-order 
logic rules, is covered by Bergadano and Gunetti (1996). Probabilistic logic learning 
is covered by de Raedt (2008).

Text mining is an emerging area, and there are few comprehensive surveys of 
the area as a whole: Witten (2004) provides one. A large number of feature-selection 
and machine learning techniques have been applied to text categorization (Sebas-
tiani, 2002). Martin (1995) describes applications of document clustering to informa-
tion retrieval. Cavnar and Trenkle (1994) show how to use n-gram profiles to 
ascertain with high accuracy the language in which a document is written. The use 
of support vector machines for authorship ascription is described by Diederich et al. 
(2003); the same technology was used by Dumais et al. (1998) to assign key phrases 
from a controlled vocabulary to documents on the basis of a large number of training 
documents. The use of machine learning to extract key phrases from document text 
has been investigated by Turney (1999), Frank et al. (1999), and Medelyan and 
Witten (2008).

Appelt (1996) describes many problems of information extraction. Many authors 
have applied machine learning to seek rules that extract slot-fillers for templates, for 
example, Soderland et al. (1995), Huffman (1996), and Freitag (2002). Califf and 
Mooney (1999) and Nahm and Mooney (2000) investigated the problem of extract-
ing information from job ads posted by Internet newsgroups. An approach to finding 
information in running text based on compression techniques has been reported by 
Witten et al. (1999a). Mann (1993) notes the plethora of variations of Muammar 
Qaddafi in documents received by the U.S. Library of Congress.

Chakrabarti (2003) has written an excellent and comprehensive book on tech-
niques of web mining. Kushmerick et al. (1997) developed techniques of wrapper 
induction. The founders of Google wrote an early paper that introduced the Page
Rank algorithm (Brin and Page, 1998). At the same time, Kleinberg (1998) described 
a system called HITS (hypertext-induced topic selection) that has some superficial 
similarities with PageRank but produces strikingly different results.

The first paper on junk email filtering was written by Sahami et al. (1998). Our 
material on computer network security is culled from Yurcik et al. (2003). The 
information on the CAPPS system comes from the U.S. House of Representatives 
Subcommittee on Aviation (2002), and the use of unsupervised learning for threat 
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detection is described by Bay and Schwabacher (2003). Problems with current pri-
vacy-preserving data mining techniques have been identified by Datta et al. (2003). 
Stone and Veloso (2000) surveyed multi-agent systems of the kind that are used for 
playing robo-soccer from a machine learning perspective. The fascinating story of 
Ben Ish Chai and the technique used to unmask him is from Koppel and Schler 
(2004).

The vision of calm computing, as well as the examples we have mentioned, 
is from Weiser and Brown (1997). More information on different methods of 
programming by demonstration can be found in compendia by Cypher (1993) and 
Lieberman (2001). Mitchell et  al. (1994) report some experience with learning 
apprentices. Familiar is described by Paynter (2000). Permutation tests (Good, 
1994) are statistical tests that are suitable for small sample problems: Frank (2000) 
describes their application in machine learning.
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CHAPTER 

10 

Introduction to Weka

Experience shows that no single machine learning scheme is appropriate to all data 
mining problems. The universal learner is an idealistic fantasy. As we have empha-
sized throughout this book, real datasets vary, and to obtain accurate models the bias 
of the learning algorithm must match the structure of the domain. Data mining is an 
experimental science.

The Weka workbench is a collection of state-of-the-art machine learning algo-
rithms and data preprocessing tools. It includes virtually all the algorithms described 
in this book. It is designed so that you can quickly try out existing methods on new 
datasets in flexible ways. It provides extensive support for the whole process of 
experimental data mining, including preparing the input data, evaluating learning 
schemes statistically, and visualizing the input data and the result of learning. As 
well as a variety of learning algorithms, it includes a wide range of preprocessing 
tools. This diverse and comprehensive toolkit is accessed through a common inter-
face so that its users can compare different methods and identify those that are most 
appropriate for the problem at hand.

Weka was developed at the University of Waikato in New Zealand; the name 
stands for Waikato Environment for Knowledge Analysis. (Outside the university, 
the weka, pronounced to rhyme with Mecca, is a flightless bird with an inquisitive 
nature found only on the islands of New Zealand.) The system is written in Java and 
distributed under the terms of the GNU General Public License. It runs on almost 
any platform and has been tested under Linux, Windows, and Macintosh operating 
systems—and even on a personal digital assistant. It provides a uniform interface to 
many different learning algorithms, along with methods for pre- and postprocessing 
and for evaluating the result of learning schemes on any given dataset.

10.1  WHAT’S IN WEKA?
Weka provides implementations of learning algorithms that you can easily apply to 
your dataset. It also includes a variety of tools for transforming datasets, such as the 
algorithms for discretization described in Chapter 7. You can preprocess a dataset, 
feed it into a learning scheme, and analyze the resulting classifier and its perfor-
mance—all without writing any program code at all.
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The workbench includes methods for the main data mining problems: regression, 
classification, clustering, association rule mining, and attribute selection. Getting to 
know the data is an integral part of the work, and many data visualization facilities 
and data preprocessing tools are provided. All algorithms take their input in the form 
of a single relational table in the ARFF format described in Section 2.4, which can 
be read from a file or generated by a database query.

One way of using Weka is to apply a learning method to a dataset and analyze 
its output to learn more about the data. Another is to use learned models to generate 
predictions on new instances. A third is to apply several different learners and 
compare their performance in order to choose one for prediction. In the interactive 
Weka interface, you select the learning method you want from a menu. Many 
methods have tunable parameters, which you access through a property sheet or 
object editor. A common evaluation module is used to measure the performance of 
all classifiers.

Implementations of actual learning schemes are the most valuable resource that 
Weka provides. But tools for preprocessing the data, called filters, come a close 
second. Like classifiers, you select filters from a menu and tailor them to your 
requirements. We will show how different filters can be used, list the filtering algo-
rithms, and describe their parameters. Weka also includes implementations of algo-
rithms for learning association rules, clustering data for which no class value is 
specified, and selecting relevant attributes in the data, which we describe briefly.

10.2  HOW DO YOU USE IT?
The easiest way to use Weka is through a graphical user interface called Explorer. 
This gives access to all of its facilities using menu selection and form filling. For 
example, you can quickly read in a dataset from an ARFF file (or spreadsheet) and 
build a decision tree from it. But learning decision trees is just the beginning: There 
are many other algorithms to explore. The Explorer interface helps you do just that. 
It guides you by presenting choices as menus, by forcing you to work in an appro-
priate order by graying out options until they are applicable, and by presenting 
options as forms to be filled out. Helpful tool tips pop up as the mouse passes over 
items on the screen to explain what they do. Sensible default values ensure that you 
can get results with a minimum of effort—but you will have to think about what 
you are doing to understand what the results mean.

There are two other graphical user interfaces to Weka. The Knowledge Flow 
interface allows you to design configurations for streamed data processing. A fun-
damental disadvantage of the Explorer interface is that it holds everything in main 
memory—when you open a dataset, it immediately loads it all in. This means that 
the Explorer can only be applied to small- to medium-size problems. However, Weka 
contains some incremental algorithms that can be used to process very large datasets. 
The Knowledge Flow interface lets you drag boxes representing learning algorithms 
and data sources around the screen and join them together into the configuration you 
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want. It enables you to specify a data stream by connecting components representing 
data sources, preprocessing tools, learning algorithms, evaluation methods, and 
visualization modules. If the filters and learning algorithms are capable of incremen-
tal learning, data will be loaded and processed incrementally.

Weka’s third interface, Experimenter, is designed to help you answer a basic 
practical question when applying classification and regression techniques: Which 
methods and parameter values work best for the given problem? There is usually 
no way to answer this question a priori, and one reason we developed the 
workbench was to provide an environment that enables Weka users to compare 
a variety of learning techniques. This can be done interactively using the Explorer 
interface. However, the Experimenter interface allows you to automate the process 
by making it easy to run classifiers and filters with different parameter settings 
on a corpus of datasets, to collect performance statistics, and to perform sig-
nificance tests. Advanced users can employ Experimenter to distribute the com-
puting load across multiple machines using Java remote method invocation (RMI). 
In this way, you can set up large-scale statistical experiments and leave them 
to run.

Behind these interactive interfaces lies the basic functionality of Weka. This can 
be accessed in raw form by entering textual commands, which gives access to all 
features of the system. When you fire up Weka, you have to choose among four 
different user interfaces: the Explorer, the Knowledge Flow, the Experimenter, and 
command-line interfaces. We describe them in turn in the next chapters. Most people 
choose Explorer, at least initially.

10.3  WHAT ELSE CAN YOU DO?
An important resource when working with Weka is the online documentation, which 
has been automatically generated from the source code and concisely reflects its 
structure. We will explain how to use this documentation. We will also identify 
Weka’s major building blocks, highlighting which parts contain supervised learning 
methods, which contain tools for data preprocessing, and which contain methods 
for other learning schemes. The online documentation gives the only complete list 
of available algorithms because Weka is continually growing and—being generated 
automatically from the source code—the online documentation is always up to date. 
Moreover, it becomes essential if you want to proceed to the next level and access 
the library from your own Java programs or write and test learning schemes of 
your own.

In most data mining applications, the machine learning component is just a small 
part of a far larger software system. If you intend to write a data mining application, 
you will want to access the programs in Weka from inside your own code. By doing 
so, you can solve the machine learning subproblem of your application with a 
minimum of additional programming. We show how to do that by presenting an 
example of a simple data mining application in Java. This will enable you to become 
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familiar with the basic data structures in Weka, representing instances, classifiers, 
and filters.

If you intend to become an expert in machine learning algorithms (or, indeed, if 
you already are one), you’ll probably want to implement your own algorithms 
without having to address such mundane details as reading the data from a file, 
implementing filtering algorithms, or providing code to evaluate the results. If so, 
we have good news for you: Weka already includes all this. To make full use of it, 
you must become acquainted with the basic data structures. To help you reach this 
point, we will describe these structures in more detail and explain an illustrative 
implementation of a classifier in Chapter 16.

10.4  HOW DO YOU GET IT?
Weka is available from www.cs.waikato.ac.nz/ml/weka. You can download either a 
platform-specific installer or an executable Java jar file that you run in the usual way 
if Java is installed. We recommend that you download and install it now, and follow 
through the examples in the upcoming chapters.
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CHAPTER 

11 

The Explorer

Weka’s main graphical user interface, the Explorer, gives access to all its facilities 
using menu selection and form filling. It is illustrated in Figure 11.1. There are six 
different panels, selected by the tabs at the top, corresponding to the various data 
mining tasks that Weka supports.

11.1  GETTING STARTED
Suppose you have some data and you want to build a decision tree from it. First, 
you need to prepare the data, then fire up the Explorer and load it in. Next, you 
select a decision tree construction method, build a tree, and interpret the output. It’s 
easy to do it again with a different tree construction algorithm or a different evalu-
ation method. In the Explorer you can flip back and forth between the results you 
have obtained, evaluate the models that have been built on different datasets, and 
visualize graphically both the models and the datasets themselves, including any 
classification errors the models make.

Preparing the Data
The data is often presented in a spreadsheet or database. However, Weka’s native 
data storage method is the ARFF format (see Section 2.4, page 52). You can easily 
convert from a spreadsheet to ARFF. The bulk of an ARFF file consists of a list 
of the instances, and the attribute values for each instance are separated by commas 
(see Figure 2.2). Most spreadsheet and database programs allow you to export data 
into a file in comma-separated value (CSV) format as a list of records with commas 
between items. Having done this, you need only load the file into a text editor or 
word processor; add the dataset’s name using the @relation tag, the attribute infor-
mation using @attribute, and an @data line; then save the file as raw text. For 
example, Figure 11.2 shows an Excel spreadsheet containing the weather data from 
Section 1.2 (page 9), the data in CSV form loaded into Microsoft Word, and the 
result of converting it manually into an ARFF file. However, you don’t actually 
have to go through these steps to create the ARFF file yourself because the Explorer 
can read CSV spreadsheet files directly, as described later.
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Loading the Data into the Explorer

Let’s load this data into the Explorer and start analyzing it. Fire up Weka to get the 
GUI Chooser panel in Figure 11.3(a). Select Explorer from the four choices on the 
right side. (The others were mentioned earlier: Simple CLI is the old-fashioned 
command-line interface.)

What you see next is the main Explorer screen, shown in Figure 11.3(b). Actu-
ally, the figure shows what it will look like after you have loaded in the weather 
data. The six tabs along the top are the basic operations that the Explorer supports: 
Right now we are on Preprocess. Click the Open file button to bring up a standard 
dialog through which you can select a file. Choose the weather.arff file. If you have 
it in CSV format, change from ARFF data files to CSV data files. When you specify 
a .csv file it is automatically converted into ARFF format.

Figure 11.3(b) shows the screen once you have loaded the file. This tells you 
about the dataset: It has 14 instances and 5 attributes (center left); the attributes are 
called outlook, temperature, humidity, windy, and play (lower left). The first 
attribute, outlook, is selected by default (you can choose others by clicking them) 
and has no missing values, three distinct values, and no unique values; the actual 

FIGURE 11.1 

The Explorer interface. 
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values are sunny, overcast, and rainy and they occur five, four, and five times, 
respectively (center right). A histogram at the lower right shows how often each of 
the two values of the play class occurs for each value of the outlook attribute. The 
outlook attribute is used because it appears in the box above the histogram, but you 
can draw a histogram of any other attribute instead. Here, play is selected as the 
class attribute; it is used to color the histogram, and any filters that require a class 
value use it too.

The outlook attribute in Figure 11.3(b) is nominal. If you select a numeric attri-
bute, you see its minimum and maximum values, mean, and standard deviation. In 

FIGURE 11.2 

Weather data: (a) spreadsheet, (b) CSV format, and (c) ARFF. 

(a) (b)

(c)
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FIGURE 11.3 

The Weka Explorer: (a) choosing the Explorer interface and (b) reading in the weather data. 

(a) (b)

this case the histogram will show the distribution of the class as a function of this 
attribute (an example appears later in Figure 11.10).

You can delete an attribute by clicking its checkbox and using the Remove button. 
All selects all the attributes, None selects none, Invert inverts the current selection, 
and Pattern selects those attributes of which the names match a user-supplied regular 
expression. You can undo a change by clicking the Undo button. The Edit button 
brings up an editor that allows you to inspect the data, search for particular values 
and edit them, and delete instances and attributes. Right-clicking on values and 
column headers brings up corresponding context menus.

Building a Decision Tree
To see what the C4.5 decision tree learner described in Section 6.1 (page 201) does 
with this dataset, use the J4.8 algorithm, which is Weka’s implementation of this 
decision tree learner. (J4.8 actually implements a later and slightly improved version 
called C4.5 revision 8, which was the last public version of this family of algorithms 
before the commercial implementation C5.0 was released.) Click the Classify tab to 
get a screen that looks like Figure 11.4(b). Actually, the figure shows what it will 
look like after you have analyzed the weather data.

First select the classifier by clicking the Choose button at the top left, opening 
up the trees section of the hierarchical menu in Figure 11.4(a), and finding J48. The 
menu structure represents the organization of the Weka code into modules, which  
is described in Chapter 14 (page 519). For now, just open up the hierarchy as 
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FIGURE 11.4 

Using J4.8: (a) finding it in the classifiers list and (b) the Classify tab. 

(a) (b)

necessary—the items you need to select are always at the lowest level. Once selected, 
J48 appears in the line beside the Choose button as shown in Figure 11.4(b), along 
with its default parameter values. If you click that line, the J4.8 classifier’s object 
editor opens up and you can see what the parameters mean and alter their values if 
you wish. The Explorer generally chooses sensible defaults.

Having chosen the classifier, invoke it by clicking the Start button. Weka works 
for a brief period—when it is working, the little bird at the lower right of Figure 
11.4(b) jumps up and dances—and then produces the output shown in the main panel 
of Figure 11.4(b).

Examining the Output
Figure 11.5 shows the full output (Figure 11.4(b) only gives the lower half). At the 
beginning is a summary of the dataset and the fact that tenfold cross-validation was 
used to evaluate it. That is the default, and if you look closely at Figure 11.4(b) you 
will see that the Cross-validation box on the left is checked. Then comes a pruned 
decision tree in textual form. The model that is shown here is always one generated 
from the full dataset available from the Preprocess panel. The first split is on the 
outlook attribute, and then, at the second level, the splits are on humidity and windy, 
respectively.

In the tree structure, a colon introduces the class label that has been assigned to 
a particular leaf, followed by the number of instances that reach that leaf, expressed 
as a decimal number because of the way the algorithm uses fractional instances to 
handle missing values. If there were incorrectly classified instances (there aren’t in 
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FIGURE 11.5 

Output from the J4.8 decision tree learner. 

=== Run information === 
 
Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 
Relation:     weather 
Instances:    14 
Attributes:   5 
              outlook 
              temperature 
              humidity 
              windy 
              play 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
J48 pruned tree 
------------------ 
 
outlook = sunny 
|   humidity <= 75: yes (2.0) 
|   humidity > 75: no (3.0) 
outlook = overcast: yes (4.0) 
outlook = rainy 
|   windy = TRUE: no (2.0) 
|   windy = FALSE: yes (3.0) 
 
Number of Leaves  :  5 
 
Size of the tree :  8 
 
Time taken to build model: 0.27 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances           9               64.2857 % 
Incorrectly Classified Instances         5               35.7143 % 
Kappa statistic                          0.186  
Mean absolute error                      0.2857 
Root mean squared error                  0.4818 
Relative absolute error                 60      % 
Root relative squared error             97.6586 % 
Total Number of Instances               14      
 
=== Detailed Accuracy By Class === 
 
             TP Rate  FP Rate Precision Recall   F-Measure  ROC Area   Class 

              0.778    0.6      0.7      0.778    0.737    0.789    yes 
              0.4      0.222    0.5      0.4      0.444    0.789    no 
Weighted      0.643    0.465    0.629    0.643    0.632    0.789 
 

=== Confusion Matrix === 
 
 a b   <-- classified as 
 7 2 | a = yes 
 3 2 | b = no 

Avg.
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this example) their number would appear too; thus, 2.0/1.0 means that two instances 
reached that leaf, of which one is classified incorrectly. Beneath the tree structure 
the number of leaves is printed; then the total number of nodes (Size of the tree). 
There is a way to view decision trees more graphically, which will be shown later 
in this chapter.

The next part of the output gives estimates of the tree’s predictive performance. 
In this case they are obtained using stratified cross-validation with 10 folds, the 
default in Figure 11.4(b). As you can see, more than 30% of the instances (5 out of 
14) have been misclassified in the cross-validation. This indicates that the results 
obtained from the training data are optimistic compared with what might be obtained 
from an independent test set from the same source. From the confusion matrix at 
the end (described in Section 5.7, page 164) observe that 2 instances of class yes 
have been assigned to class no and 3 of class no are assigned to class yes.

As well as the classification error, the evaluation module also outputs the Kappa 
statistic (see Section 5.7, page 166), the mean absolute error, and the root mean-
squared error of the class probability estimates assigned by the tree. The root 
mean-squared error is the square root of the average squared loss (see Section 5.6, 
page 160). The mean absolute error is calculated in a similar way using the absolute 
instead of the squared difference. It also outputs relative errors, which are based 
on the prior probabilities (i.e., those obtained by the ZeroR learning scheme 
described later). Finally, for each class it also outputs some statistics described in 
Section 5.7. Also reported is the per-class average of each statistic, weighted by 
the number of instances from each class.

Doing It Again
You can easily run J4.8 again with a different evaluation method. Select Use training 
set (near the top left in Figure 11.4(b)) and click Start. The classifier output is quickly 
replaced to show how well the derived model performs on the training set, instead 
of showing the cross-validation results. This evaluation is highly optimistic (see 
Section 5.1, page 148). It may still be useful because it generally represents an upper 
bound to the model’s performance on fresh data. In this case, all 14 training instances 
are classified correctly. In some cases a classifier may decide to leave some instances 
unclassified, in which case these will be listed as Unclassified Instances. This does 
not happen for most learning schemes in Weka.

The panel in Figure 11.4(b) has further test options: Supplied test set, in which 
you specify a separate file containing the test set, and Percentage split, with which 
you can hold out a certain percentage of the data for testing. You can output the 
predictions for each instance by clicking the More options button and checking the 
appropriate entry. There are other useful options, such as suppressing some output 
and including other statistics such as entropy evaluation measures and cost-sensitive 
evaluation. For the latter, you must enter a cost matrix: Type the number of classes 
into the Classes box (and terminate it with the Enter or Return key) to get a default 
cost matrix (see Section 5.7, page 166), then edit the values as required.
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The small pane at the lower left of Figure 11.4(b), which contains one highlighted 
line, is a history list of the results. The Explorer adds a new line whenever you run 
a classifier. Because you have now run the classifier twice, the list will contain two 
items. To return to a previous result set, click the corresponding line and the output 
for that run will appear in the Classifier Output pane. This makes it easy to explore 
different classifiers or evaluation schemes and revisit the results to compare them.

Working with Models
The result history list is the entry point to some powerful features of the Explorer. 
When you right-click an entry, a menu appears that allows you to view the results 
in a separate window or to save the result buffer. More important, you can save the 
model that Weka has generated in the form of a Java object file. You can reload a 
model that was saved previously, which generates a new entry in the result list. If 
you now supply a test set, you can reevaluate the old model on that new set.

Several items on the right-click menu allow you to visualize the results in various 
ways. At the top of the Explorer interface is a separate Visualize tab, but that is dif-
ferent: It shows the dataset, not the results for a particular model. By right-clicking 
an entry in the history list you can see the classifier errors. If the model is a tree or 
a Bayesian network you can see its structure. You can also view the margin curve 
and various cost and threshold curves, including the cost–benefit analyzer tool (see 
Section 5.7, page 170). For all of these you must choose a class value from a submenu. 
The Visualize threshold curve menu item allows you to see the effect of varying the 
probability threshold above which an instance is assigned to that class. You can 
select from a wide variety of curves that include the ROC and recall–precision curves 
(see Table 5.7). To see these, choose the x-axis and y-axis appropriately from the 
menus given. For example, set X to False Positive Rate and Y to True Positive Rate 
for an ROC curve or X to Recall and Y to Precision for a recall–precision curve.

Figure 11.6 shows two ways of looking at the result of using J4.8 to classify the 
iris dataset (see Section 1.2, page 13)—we use this rather than the weather data 
because it produces more interesting pictures. Figure 11.6(a) shows the tree; right-
click a blank space in this window to bring up a menu enabling you to automatically 
scale the view or force the tree into the window. Drag the mouse to pan around the 
space. It’s also possible to visualize the instance data at any node if it has been  
saved by the learning algorithm.

Figure 11.6(b) shows the classifier errors on a two-dimensional plot. You can 
choose which attributes to use for X and Y using the selection boxes at the top. 
Alternatively, click one of the speckled horizontal strips to the right of the plot: 
Left-click for X and right-click for Y. Each strip shows the spread of instances along 
that attribute. X and Y appear beside the ones you have chosen for the axes.

The data points are colored according to their class: blue, red, and green for Iris 
setosa, Iris versicolor, and Iris virginica, respectively (there is a key at the bottom 
of the screen). Correctly classified instances are shown as crosses; incorrectly clas-
sified ones appear as boxes (of which there are three in Figure 11.6(b)). You can 
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FIGURE 11.6 

Visualizing the result of J4.8 on the iris dataset: (a) the tree and (b) the classifier errors. 

(a)

(b)

click on an instance to bring up relevant details: its instance number, the values of 
the attributes, its class, and the predicted class.

When Things Go Wrong
Beneath the result history list, at the bottom of Figure 11.4(b), is a status line that 
says, simply, OK. Occasionally this changes to See error log, an indication 
that something has gone wrong. For example, there may be constraints among the 
various selections you can make in a panel. Most of the time the interface grays  
out inappropriate selections and refuses to let you choose them. But, occasionally, 
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the interactions are more complex, and you can end up selecting an incompatible 
set of options. In this case, the status line changes when Weka discovers the 
incompatibility—typically when you press Start. To see the error, click the Log 
button to the left of the bird in the lower right corner of the interface. Weka also 
writes a detailed log to a file in the user’s home directory called weka.log, which 
often contains more information about the causes of problems than the Explorer’s 
Log window because it captures debugging output directed to the standard out and 
error channels (see Section 11.2).

11.2  EXPLORING THE EXPLORER
We have briefly investigated two of the six tabs at the top of the Explorer window 
in Figure 11.3(b) and Figure 11.4(b). In summary, here’s what all of the tabs do:

1.	 Preprocess: Choose the dataset and modify it in various ways.
2.	 Classify: Train learning schemes that perform classification or regression and 

evaluate them.
3.	 Cluster: Learn clusters for the dataset.
4.	 Associate: Learn association rules for the data and evaluate them.
5.	 Select attributes: Select the most relevant aspects in the dataset.
6.	 Visualize: View different two-dimensional plots of the data and interact with 

them.

Each tab gives access to a whole range of facilities. In our tour so far, we have barely 
scratched the surface of the Preprocess and Classify panels.

At the bottom of every panel is a status box and a Log button. The status box 
displays messages that keep you informed about what’s going on. For example, if 
the Explorer is busy loading a file, the status box will say so. Right-clicking any-
where inside this box brings up a menu with two options: display the amount of 
memory available to Weka and run the Java garbage collector. Note that the garbage 
collector runs constantly as a background task anyway.

Clicking the Log button opens a textual log of the actions that Weka has per-
formed in this session, with timestamps.

As noted earlier, the little bird at the lower right of the window jumps up and 
dances when Weka is active. The number beside the × shows how many concurrent 
processes are running. If the bird is standing but stops moving, it’s sick! Something 
has gone wrong, and you may have to restart the Explorer.

Loading and Filtering Files
Along the top of the Preprocess panel in Figure 11.3(b) are buttons for opening files, 
URLs, and databases. Initially, only files of which the names end in .arff appear in 
the file browser; to see others, change the Format item in the file selection box.
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Converting Files to ARFF
Weka has converters for the following file formats:

•	 Spreadsheet files with extension .csv.
•	 C4.5’s native file format with extensions .names and .data.
•	 Serialized instances with extension .bsi.
•	 LIBSVM format files with extension .libsvm.
•	 SVM-Light format files with extension .dat.
•	 XML-based ARFF format files with extension .xrff.

The appropriate converter is used based on the file extension. If Weka cannot load 
the data, it tries to interpret it as ARFF. If that fails, it pops up the box shown in 
Figure 11.7(a).

This is a generic object editor, used throughout Weka for selecting and configur-
ing an object. For example, when you set parameters for a classifier, you use the 

FIGURE 11.7 

Generic Object Editor: (a) the editor, (b) more information (click More), and (c) choosing 
a converter (click Choose). 

(a) (b)

(c)
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same kind of box. The CSVLoader for .csv files is selected by default, and the More 
button gives you more information about it, shown in Figure 11.7(b). It is always 
worth looking at the documentation! In this case, it explains that the spreadsheet’s 
first row determines the attribute names and gives a brief description of the CSV-
Loader’s options. Click OK to use this converter. For a different one, click Choose 
to select from the list in Figure 11.7(c).

The ArffLoader is the first option, and we reached this point only because it 
failed. The second option is for the C4.5 format, in which there are two files for a 
dataset, one giving field names and the other giving the actual data. The third option, 
CSVLoader, is the default, and we clicked Choose because we want a different one. 
The fourth option is for reading from a database rather than a file; however, the 
SQLViewer tool, shown in Figure 11.8 and accessible by pressing the Open DB 
button on the Preprocess panel, is a more user-friendly route for accessing a data-
base. The serialized instances option is for reloading datasets that have been saved 
as a Java-serialized object. Any Java object can be saved in this format and reloaded. 
As a native Java format, it is quicker to load than an ARFF file, which must be 

FIGURE 11.8 

The SQLViewer tool. 



parsed and checked. When repeatedly reloading a large dataset it may be worth 
saving it in this form.

The eighth menu item is for importing a directory containing plaintext files for 
the purposes of text mining. The imported directory is expected to have a specific 
structure—namely, a set of subdirectories, each containing one or more text files 
with the extension .txt. Each text file becomes one instance in the dataset, with a 
string attribute holding the contents of the file and a nominal class attribute holding 
the name of the subdirectory that it came from. This dataset can then be further 
processed into word frequencies (see Section 7.3, page 328) using the StringTo
WordVector filter (covered in the next section). The last option is for loading data 
files in XRFF, the XML Attribute Relation File format. As the name suggests, this 
gives ARFF header and instance information in the XML markup language.

Further features of the generic object editor in Figure 11.7(a) are Save, which 
saves a configured object, and Open, which opens a previously saved one. These are 
not useful for this particular kind of object. However, other generic object editor 
panels have many editable properties, and having gone to some trouble to set them 
up you may want to save the configured object to reuse later.

Files on your computer are not the only source of datasets for Weka. You can 
open a URL, and Weka will use the hypertext transfer protocol (HTTP) to down-
load an ARFF file from the Web. Or you can open a database (Open DB)—any 
database that has a Java database connectivity (JDBC) driver—and retrieve instances 
using the SQL Select statement. This returns a relation that Weka reads in as an 
ARFF file. To make this work with your database, you may need to modify the 
file weka/experiment/DatabaseUtils.props in the Weka distribution by adding your 
database driver to it. (To access this file, expand the weka.jar file in the Weka 
distribution.) Figure 11.8 shows the SQLViewer tool that appears when Open DB 
is clicked. In this example, the iris dataset has been extracted from a single 
database table.

Data can be saved in all these formats (with the exception of the directory con-
taining text files) using the Save button in the Preprocess panel (Figure 11.3(b)). It 
is also possible to generate artificial data using the Generate button. Artificial data 
suitable for classification can be generated from decision lists, radial-basis function 
networks, and Bayesian networks, as well as from the classic LED24 domain. Arti-
ficial regression data can be generated according to mathematical expressions. There 
are also several generators for producing artificial data for clustering purposes. Apart 
from loading and saving datasets, the Preprocess panel also allows you to filter them. 
Filters are an important component of Weka.

Using Filters
Clicking Choose (near the top left) in Figure 11.3(b) gives a list of filters like that 
in Figure 11.9(a). Actually, you get a collapsed version—click on an arrow to open 
up its contents. We will describe how to use a simple filter to delete specified attri-
butes from a dataset—in other words, to perform manual attribute selection. The 
same effect can be achieved more easily by selecting the relevant attributes using 
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FIGURE 11.9 

Choosing a filter: (a) the filters menu, (b) an object editor, (c) more information (click 
More), (d) information about the filter’s capabilities (click Capabilities), and (e) 
constraints on capabilities. 

(a)

(b)

(d)

(c)

(e)



the tick boxes and pressing the Remove button. Nevertheless, we describe the equiva-
lent filtering operation explicitly, as an example.

Remove is an unsupervised attribute filter, and to see it you must scroll further 
down the list. When selected, it appears in the line beside the Choose button, along 
with its parameter values—in this case, the line reads simply “Remove.” Click that 
line to bring up a generic object editor with which you can examine and alter the 
filter’s properties. (You did the same thing earlier by clicking the J48 line in Figure 
11.4(b) to open the J4.8 classifier’s object editor.) The object editor for the Remove 
filter is shown in Figure 11.9(b).

To learn about it, click More to show the information in Figure 11.9(c). This 
explains that the filter removes a range of attributes from the dataset. It has an 
option, attributeIndices, that specifies the range to act on and another called invert
Selection that determines whether the filter selects attributes or deletes them. There 
are boxes for both of these in the object editor shown in Figure 11.9(b), and in fact 
we have already set them to 1,2 (to affect attributes 1 and 2, namely outlook and 
temperature) and False (to remove rather than retain them). Click OK to set these 
properties and close the box. Notice that the line beside the Choose button now 
reads Remove –R 1,2. In the command-line version of the Remove filter, the option 
–R is used to specify which attributes to remove. After configuring an object it’s 
often worth glancing at the resulting command-line formulation that the Explorer 
sets up.

Figure 11.9 demonstrates a further feature of the generic object editor, namely 
capabilities. Algorithms in Weka may provide information about what data charac-
teristics they can handle and, if they do, a Capabilities button appears underneath 
More in the generic object editor (Figure 11.9(b)). Clicking it brings up Figure 
11.9(d), which gives information about what the method can do. Here, it states that 
Remove can handle many attribute characteristics, such as different types (nominal, 
numeric, relational, etc.) and missing values. It shows the minimum number of 
instances that are required for Remove to operate on.

Figure 11.9(e) shows a list of selected constraints on the capabilities which is 
obtained by clicking the Filter button at the bottom of Figure 11.9(a). If the current 
dataset exhibits some characteristic that is ticked in Figure 11.9(e) but missing from 
the capabilities for the Remove filter (Figure 11.9(d)), the Apply button to the right 
of Choose in Figure 11.3(b) will be grayed out, as will the entry in the list in Figure 
11.9(a). Although you cannot apply it, you can nevertheless select a grayed-out entry 
to inspect its options, documentation, and capabilities using the generic object editor. 
You can release individual constraints by deselecting them in Figure 11.9(e), or click 
the Remove filter button to clear all the constraints.

Apply the filter by clicking Apply (at the right side of Figure 11.3(b)). Immedi-
ately, the screen in Figure 11.10 appears—just like the one in Figure 11.3(b) but 
with only three attributes, humidity, windy, and play. At this point the fifth button 
in the row near the top becomes active. Undo reverses the filtering operation and 
restores the original dataset, which is useful when you experiment with different 
filters.
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FIGURE 11.10 

The weather data with two attributes removed. 

The first attribute, humidity, is selected and a summary of its values appears on 
the right. As a numeric attribute, the minimum and maximum values, mean, and 
standard deviation are shown. In Figure 11.10 is a histogram that shows the distribu-
tion of the play attribute. Unfortunately, this display is impoverished because the 
attribute has so few different values that they fall into two equal-size bins. More 
realistic datasets yield more informative histograms.

Training and Testing Learning Schemes
The Classify panel lets you train and test learning schemes that perform classification 
or regression. Section 11.1 explained how to interpret the output of a decision tree 
learner and showed the performance figures that are automatically generated by the 
evaluation module. The interpretation of these is the same for all models that predict 
a categorical class. However, when evaluating models for numeric prediction, Weka 
produces a different set of performance measures.

As an example, in Figure 11.11(a) the CPU performance dataset from Table 1.5 
has been loaded into Weka. You can see the histogram of values of the first attribute, 
MYCT, at the lower right. In Figure 11.11(b) the model tree inducer M5′ has been 



FIGURE 11.11 

Processing the CPU performance data with M5′. 

(a)

(b)
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chosen as the classifier by going to the Classify panel, clicking the Choose button 
at the top left, opening up the trees section of the hierarchical menu shown in Figure 
11.4(a), finding M5P, and clicking Start. The hierarchy helps to locate particular 
classifiers by grouping items with common functionality.

Figure 11.12 shows the output. The pruned model tree contains splits on three 
of the six attributes in the data. The root splits on the CHMIN attribute, yielding a 
linear model at the leaf on the left branch and the remaining structure in the right 
branch. There are five leaves in all, each with a corresponding linear model. The 
first number in parentheses at each leaf is the number of instances that reach it; the 
second is the root mean-squared error of the predictions from the leaf’s linear model 
for those instances, expressed as a percentage of the standard deviation of the class 
attribute computed over all the training data. The description of the tree is followed 
by several figures that measure its performance. These are derived from the test 
option chosen in Figure 11.11(b), tenfold cross-validation (not stratified because 
stratification doesn’t make sense for numeric prediction). Section 5.8 (Table 5.8) 
explains the meaning of the various measures.

Ordinary linear regression (see Section 4.6, page 124), another scheme for 
numeric prediction, is found under LinearRegression in the functions section of the 
menu in Figure 11.4(a). It builds a single linear regression model rather than the five 
in Figure 11.12; not surprisingly, its performance is slightly worse.

To get a feel for their relative performance, let’s visualize the errors these 
schemes make, as we did for the iris dataset in Figure 11.6(b). Right-click the 
entry in the history list and select Visualize classifier errors to bring up the two-
dimensional plot of the data in Figure 11.13. The points are color-coded by class—in 
this case the color varies continuously because the class is numeric. In Figure 
11.13 the MMAX attribute has been selected for the x-axis and the instance number 
has been chosen for the y-axis because this gives a good spread of points. Each 
data point is marked by a cross of which the size indicates the absolute value of 
the error for that instance. The smaller crosses in Figure 11.13(a) (for M5′), when 
compared with those in Figure 11.13(b) (for linear regression), show that M5′ 
is superior.

Do It Yourself: The User Classifier
The User Classifier (mentioned in Section 3.2, page 65) allows Weka users to build 
their own classifiers interactively. It resides in the trees section of the hierarchical 
menu in Figure 11.4(a) under UserClassifier. We illustrate its operation on a new 
problem, segmenting visual image data into classes such as grass, sky, foliage, brick, 
and cement based on attributes giving average intensity, hue, size, position, and 
various simple textural features. The training data file is supplied with the Weka 
distribution and called segment-challenge.arff. Having loaded it, select the User 
Classifier. For evaluation use the special test set called segment-test.arff as the Sup-
plied test set on the Classify panel. Evaluation by cross-validation is impossible 
when you have to construct a classifier manually for each fold.



FIGURE 11.12 

Output from the M5′ program for numeric prediction. 

=== Run information === 
 
Scheme:       weka.classifiers.trees.M5P -M 4.0 
Relation:     cpu 
Instances:    209 
Attributes:   7 
              MYCT 
              MMIN 
              MMAX 
              CACH 
              CHMIN 
              CHMAX 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
M5 pruned model tree: 
(using smoothed linear models) 
 
CHMIN <= 7.5 : LM1 (165/12.903%) 
CHMIN >  7.5 :  
|   MMAX <= 28000 :  
|   |   MMAX <= 13240 :  
|   |   |   CACH <= 81.5 : LM2 (6/18.551%) 
|   |   |   CACH >  81.5 : LM3 (4/30.824%) 
|   |   MMAX >  13240 : LM4 (11/24.185%) 
|   MMAX >  28000 : LM5 (23/48.302%) 
 
LM num: 1 
class = -0.0055 * MYCT + 0.0013 * MMIN + 0.0029 * MMAX + 0.8007 * CACH  
        + 0.4015 * CHMAX   + 11.0971 
 
LM num: 2 
class = -1.0307 * MYCT + 0.0086 * MMIN + 0.0031 * MMAX + 0.7866 * CACH  
        - 2.4503 * CHMIN + 1.1597 * CHMAX + 70.8672 
 
LM num: 3 
class = -1.1057 * MYCT + 0.0086 * MMIN + 0.0031 * MMAX + 0.7995 * CACH  
        - 2.4503 * CHMIN + 1.1597 * CHMAX + 83.0016 
 
LM num: 4 
class = -0.8813 * MYCT + 0.0086 * MMIN + 0.0031 * MMAX + 0.6547 * CACH  
        - 2.3561 * CHMIN + 1.1597 * CHMAX + 82.5725 
 
LM num: 5 
class = -0.4882 * MYCT + 0.0218 * MMIN + 0.003 * MMAX + 0.3865 * CACH  
        - 1.3252 * CHMIN + 3.3671 * CHMAX - 51.8474 
 
Number of Rules : 5 
 
Time taken to build model: 0.56 seconds 
 
=== Cross-validation === 
=== Summary === 
 
Correlation coefficient                  0.9274 
Mean absolute error                     29.8309 
Root mean squared error                 60.7112 
Relative absolute error                 30.9967 % 
Root relative squared error             37.7434 % 
Total Number of Instances              209      
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FIGURE 11.13 

Visualizing the errors: (a) from M5′ and (b) from linear regression. 

(a)

(b)



Following Start, a new window appears and Weka waits for you to build the 
classifier. The Tree Visualizer and Data Visualizer tabs switch between different 
views. The former shows the current state of the classification tree, and each node 
gives the number of instances of each class at that node. The aim is to come up with 
a tree in which the leaf nodes are as pure as possible. Initially, there is only one 
node, the root, which contains all the data. Switch to the Data Visualizer to create 
a split. This shows the same two-dimensional plot that we saw in Figure 11.6(b) for 
the iris dataset and in Figure 11.13 for the CPU performance data. The attributes to 
use for X and Y are selected as before, and the goal here is to find a combination 
that separates the classes as cleanly as possible. Figure 11.14(a) shows a good 
choice: region-centroid-row for X and intensity-mean for Y.

Having found a good separation, you must specify a region in the graph. Four 
tools for this appear in the pull-down menu below the y-axis selector. Select Instance 
identifies a particular instance. Rectangle (shown in Figure 11.14(a)) allows you to 
drag out a rectangle on the graph. With Polygon and Polyline you build a free-form 
polygon or draw a free-form polyline (left-click to add a vertex and right-click to 
complete the operation). Once an area has been selected, it turns gray. In Figure 
11.14(a) the user has defined a rectangle. The Submit button creates two new nodes 
in the tree, one holding the selected instances and the other holding all the rest.  
Clear clears the selection; Save saves the instances in the current tree node as an 
ARFF file.

At this point, the Tree Visualizer shows the tree in Figure 11.14(b). There is a 
pure node for the sky class, but the other node is mixed and should be split further. 
Clicking on different nodes determines which subset of data is shown by the Data 
Visualizer. Continue adding nodes until you are satisfied with the result—that is, 
until the leaf nodes are mostly pure. Then right-click on any blank space in the Tree 
Visualizer and choose Accept the Tree. Weka evaluates your tree on the test set and 
outputs performance statistics (90% is a good score on this problem).

Building trees manually is very tedious. But Weka can complete the task for you 
by building a subtree under any node: Just right-click the node.

Using a Metalearner
Metalearners (see Chapter 8) take simple classifiers and turn them into more power-
ful learners. For example, to boost decision stumps in the Explorer, go to the Classify 
panel and choose the classifier AdaboostM1 from the meta section of the hierarchical 
menu. When you configure this classifier by clicking it, the object editor shown in 
Figure 11.15 appears. This has its own classifier field, which we set to Decision-
Stump (as shown). This method could itself be configured by clicking (except that 
DecisionStump happens to have no editable properties). Click OK to return to the 
main Classify panel and Start to try out boosting decision stumps up to 10 times. It 
turns out that this mislabels only 7 of the 150 instances in the iris data—good per-
formance considering the rudimentary nature of decision stumps and the rather small 
number of boosting iterations.
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FIGURE 11.14 

Working on segment-challenge data with the User Classifier: (a) data and (b) tree visualizers. 

(a)

(b)



Clustering and Association Rules
Use the Cluster and Associate panels to invoke clustering algorithms (see Section 
6.8, page 272) and methods for finding association rules (see Section 4.5, page 116). 
When clustering, Weka shows the number of clusters and how many instances each 
cluster contains. For some algorithms the number of clusters can be specified by 
setting a parameter in the object editor. For probabilistic clustering methods, Weka 
measures the log-likelihood of the clusters on the training data: The larger this 
quantity, the better the model fits the data. Increasing the number of clusters normally 
increases the likelihood, but may overfit.

The controls on the Cluster panel are similar to those for Classify. You can 
specify some of the same evaluation methods—use training set, supplied test set, 
and percentage split (the last two are used with the log-likelihood). A further method, 
classes to clusters evaluation, compares how well the chosen clusters match a pre
assigned class in the data. You select an attribute (which must be nominal) that 
represents the “true” class. Having clustered the data, Weka determines the majority 
class in each cluster and prints a confusion matrix showing how many errors there 
would be if the clusters were used instead of the true class. If your dataset has a 
class attribute, you can ignore it during clustering by selecting it from a pull-down 
list of attributes and see how well the clusters correspond to actual class values. 
Finally, you can choose whether or not to store the clusters for visualization. The 
only reason not to do so is to conserve space. As with classifiers, you visualize the 
results by right-clicking on the result list, which allows you to view two-dimensional 
scatter plots like the one in Figure 11.6(b). If you have chosen classes to clusters 
evaluation, the class assignment errors are shown. For the Cobweb clustering scheme, 
you can also visualize the tree.

FIGURE 11.15 

Configuring a metalearner for boosting decision stumps. 
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FIGURE 11.16 

Output from the Apriori program for association rules. 

1. outlook=overcast 4 ==> play=yes 4    conf:(1) 
2. temperature=cool 4 ==> humidity=normal 4    conf:(1) 
3. humidity=normal windy=FALSE 4 ==> play=yes 4    conf:(1) 
4. outlook=sunny play=no 3 ==> humidity=high 3    conf:(1) 
5. outlook=sunny humidity=high 3 ==> play=no 3    conf:(1) 
6. outlook=rainy play=yes 3 ==> windy=FALSE 3    conf:(1) 
7. outlook=rainy windy=FALSE 3 ==> play=yes 3    conf:(1) 
8. temperature=cool play=yes 3 ==> humidity=normal 3    conf:(1) 
9. outlook=sunny temperature=hot 2 ==> humidity=high 2    conf:(1) 
10. temperature=hot play=no 2 ==> outlook=sunny 2    conf:(1) 

The Associate panel is simpler than Classify or Cluster. Weka contains six algo-
rithms for determining association rules and no methods for evaluating such rules. 
Figure 11.16 shows the output from the Apriori program for association rules 
(described in Section 4.5) on the nominal version of the weather data. Despite the 
simplicity of the data, several rules are found. The number before the arrow is  
the number of instances for which the antecedent is true; that after the arrow is the 
number of instances for which the consequent is true also; the confidence (in paren-
theses) is the ratio between the two. Ten rules are found by default: You can ask for 
more by using the object editor to change numRules.

Attribute Selection
The Select attributes panel gives access to several methods for attribute selection. 
As explained in Section 7.1 (page 307), this involves an attribute evaluator and a 
search method. Both are chosen in the usual way and configured with the object 
editor. You must also decide which attribute to use as the class. Attribute selection 
can be performed using the full training set or using cross-validation. In the latter 
case it is done separately for each fold, and the output shows how many times—that 
is, in how many of the folds—each attribute was selected. The results are stored in 
the history list. When you right-click an entry here you can visualize the dataset in 
terms of the selected attributes (choose Visualize reduced data).

Visualization
The Visualize panel helps you visualize a dataset—not the result of a classification 
or clustering model, but the dataset itself. It displays a matrix of two-dimensional 
scatter plots of every pair of attributes. Figure 11.17(a) shows the iris dataset. You 
can select an attribute—normally the class—for coloring the data points using the 
controls at the bottom. If it is nominal, the coloring is discrete; if it is numeric, the 
color spectrum ranges continuously from blue (low values) to orange (high values). 
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FIGURE 11.17 

Visualizing the iris dataset. 

(a)

(b)
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Data points with no class value are shown in black. You can change the size of each 
plot, the size of the points, and the amount of jitter, which is a random displacement 
applied to X and Y values to separate points that lie on top of one another. Without 
jitter, a thousand instances at the same data point would look just the same as one 
instance. You can reduce the size of the matrix of plots by selecting certain attributes, 
and you can subsample the data for efficiency. Changes in the controls do not take 
effect until the Update button is clicked.

Click one of the plots in the matrix to enlarge it. For example, clicking on the 
top left plot brings up the panel in Figure 11.17(b). You can zoom in on any area of 
this panel by choosing Rectangle from the menu near the top right and dragging out 
a rectangle on the viewing area like that shown. The Submit button near the top left 
rescales the rectangle into the viewing area.

11.3  FILTERING ALGORITHMS
Now we take a detailed look at the filtering algorithms implemented within Weka. 
These are accessible from the Explorer and from the Knowledge Flow and Experi-
menter interfaces described in Chapters 12 and 13. All filters transform the input 
dataset in some way. When a filter is selected using the Choose button, its name 
appears in the line beside that button. Click that line to get a generic object editor 
to specify its properties. What appears in the line is the command-line version of 
the filter, and the parameters are specified with minus signs. This is a good way of 
learning how to use the Weka commands directly.

There are two kinds of filter: unsupervised and supervised (see Section 7.2, 
page 316). This seemingly innocuous distinction masks an issue that is rather 
fundamental. Filters are often applied to a training dataset and then also applied 
to the test file. If the filter is supervised—for example, if it uses class values to 
derive good intervals for discretization—applying it to the test data will bias the 
results. It is the discretization intervals derived from the training data that must be 
applied to the test data. When using supervised filters, you must to be careful to 
ensure that the results are evaluated fairly, which is an issue that does not arise 
with unsupervised filters.

We treat Weka’s unsupervised and supervised filtering methods separately. 
Within each type there is a further distinction between attribute filters, which work 
on the attributes in the datasets, and instance filters, which work on the instances. 
To learn more about a particular filter, select it in the Weka Explorer and look at its 
associated object editor, which defines what the filter does and the parameters it 
takes.

Unsupervised Attribute Filters
Table 11.1 lists Weka’s unsupervised attribute filters. Many of the operations were 
introduced in Chapter 7.
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Table 11.1  Unsupervised Attribute Filters

Name Function

Add Add a new attribute, the values of which are all 
marked as missing

AddCluster Add a new nominal attribute representing the 
cluster assigned to each instance by a given 
clustering algorithm

AddExpression Create a new attribute by applying a specified 
mathematical function to existing attributes

AddID Add an attribute that contains a unique ID for each 
instance in the dataset

AddNoise Change a percentage of a given nominal attribute’s 
values

AddValues Add the labels from a user-supplied list to an 
attribute if they are missing. The labels can be 
optionally sorted.

Center Center all numeric attributes in the given dataset to 
have zero mean (apart from the class attribute,  
if set)

ChangeDateFormat Change the string used to format a date attribute
ClassAssigner Set or unset the class attribute
ClusterMembership Use a cluster to generate cluster membership 

values, which then form new attributes
Copy Copy a range of attributes in the dataset
Discretize Convert numeric attributes to nominal: Specify 

which attributes, number of bins, whether to 
optimize the number of bins, output binary 
attributes, use equal-width (default) or  
equal-frequency binning

FirstOrder Apply a first-order differencing operator to a range 
of numeric attributes

InterquartileRange Create new attributes to indicate outliers and 
extreme values. Interquartile ranges are used to 
define what constitutes an outlier or an extreme 
value.

KernelFilter Produce a kernel matrix for a dataset. The new 
dataset contains one attribute and one instance for 
every instance in the source dataset. Attribute 
values for a particular instance in the new dataset 
hold the result of evaluating a kernel function on the 
instance in question and the original instance 
corresponding to each attribute.

Continued
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Name Function

MakeIndicator Replace a nominal attribute by a Boolean attribute. 
Assign value 1 to instances with a particular range 
of attribute values, else 0. By default, the Boolean 
attribute is coded as numeric.

MathExpression Similar to AddExpression, but modifies existing 
attributes in situ rather than creating a new 
attribute

MergeTwoValues Merge two values of a given attribute: Specify the 
index of the two values to be merged

MultiInstanceToPropositional Convert a multi-instance dataset into a  
single-instance one by giving each instance its 
bag’s class value and optionally setting its 
weight

NominalToBinary Change a nominal attribute to several binary ones, 
one for each value

NominalToString Convert nominal attributes into string attributes
Normalize Scale all numeric values in the dataset to lie within 

the interval [0,1]
NumericCleaner Replace values of numeric attributes that are too 

small, too large, or too close to a particular value 
with user-supplied default values

NumericToBinary Convert all numeric attributes into binary ones: 
Nonzero values become 1

NumericToNominal Convert numeric attributes to nominal by simply 
adding all observed values for a numeric attribute 
into the list of nominal values

NumericTransform Transform a numeric attribute using any Java 
function

Obfuscate Obfuscate the dataset by renaming the relation, all 
attribute names, and nominal and string attribute 
values

PartitionedMultiFilter A meta filter that applies a set of filters to a 
corresponding set of attribute ranges and 
assembles the output into a new dataset

PKIDiscretize Discretize numeric attributes using equal-frequency 
binning, where the number of bins is equal to the 
square root of the number of values (excluding 
missing values)

Table 11.1  Unsupervised Attribute Filters Continued
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Name Function

PrincipalComponents Perform a principal components analysis and 
transformation of the input data

PropositionalToMultiInstance Convert a single-instance dataset (with a bag ID 
attribute) to multi-instance format using relational 
attributes

RandomProjection Project the data onto a lower-dimensional subspace 
using a random matrix

RandomSubset Create a new dataset that includes a percentage 
of the original number of attributes chosen at 
random

RELAGGS Use the RELAGGS algorithm to convert multi-
instance data to single-instance format

Remove Remove attributes
RemoveType Remove attributes of a given type (nominal, 

numeric, string, or date)
RemoveUseless Remove constant attributes, along with nominal 

attributes that vary too much
Reorder Change the order of the attributes
ReplaceMissingValues Replace all missing values for nominal and numeric 

attributes with the modes and means of the training 
data

Standardize Standardize all numeric attributes to have zero 
mean and unit variance

StringToNominal Convert a string attribute to nominal
StringToWordVector Convert a string attribute to a vector that 

represents word occurrence frequencies; you can 
choose the delimiter(s)—and there are many more 
options

SwapValues Swap two values of an attribute
TimeSeriesDelta Replace attribute values in the current instance 

with the difference between the current value 
and the value in some previous (or future) 
instance

TimeSeriesTranslate Replace attribute values in the current instance with 
the equivalent value in some previous (or future) 
instance

Wavelet Perform a Haar wavelet transformation

Table 11.1  Continued
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Adding and Removing Attributes
Add inserts an attribute at a given position, the value of which is declared to be 
missing for all instances. Use the generic object editor to specify the attribute’s name, 
where it will appear in the list of attributes, and its possible values (for nominal 
attributes); for data attributes you can also specify the date format. Copy copies 
existing attributes so that you can preserve them when experimenting with filters 
that overwrite attribute values. Several attributes can be copied together using an 
expression such as 1–3 for the first three attributes, or first-3,5,9-last for attributes 
1, 2, 3, 5, 9, 10, 11, 12, …. The selection can be inverted, affecting all attributes 
except those specified. These features are shared by many filters.

AddID inserts a numeric identifier attribute at the user-specified index in the list 
of attributes. An identifier attribute is useful for keeping track of individual instances 
after a dataset has been processed in various ways, such as being transformed by 
other filters or having the order of the instances randomized.

Remove has already been described. Similar filters are RemoveType, which 
deletes all attributes of a given type (nominal, numeric, string, date, or relational), 
and RemoveUseless, which deletes constant attributes and nominal attributes of 
which the values are different for almost all instances. You can decide how much 
variation is tolerated before an attribute is deleted by specifying the number of 
distinct values as a percentage of the total number of values. Note that some unsu-
pervised attribute filters behave differently if the menu in the Preprocess panel has 
been used to set a class attribute (by default, the last attribute is the class attribute). 
For example, RemoveType and RemoveUseless both skip the class attribute.

InterquartileRange adds new attributes that indicate whether the values of 
instances can be considered outliers or extreme values. The definitions of outlier 
and extreme value are based on the difference between the 25th and 75th quartile 
of an attribute’s values. Values are flagged as extreme if they exceed the 75th quartile 
(or fall below the 25th quartile) by the product of the user-specified extreme value 
factor and the interquartile range. Values that are not extreme values but exceed the 
75th quartile (or fall below the 25th quartile) by the product of the outlier factor 
and the interquartile range are flagged as outliers. The filter can be configured to 
flag an instance as an outlier or extreme if any of its attribute values are deemed 
outliers or extreme, or to generate an outlier–extreme indicator pair for each attri-
bute. It is also possible to flag all extreme values as outliers and to output attributes 
that indicate by how many interquartile ranges an attribute’s value deviates from 
the median.

AddCluster applies a clustering algorithm to the data before filtering it. You use 
the object editor to choose the clustering algorithm. Clusterers are configured just 
as filters are (see Section 11.6). The AddCluster object editor contains its own 
Choose button for the clusterer, and you configure the clusterer by clicking its line 
and getting another object editor panel, which must be filled in before returning to 
the AddCluster object editor. This is probably easier to understand when you do it 
in practice than when you read about it in a book! At any rate, once you have chosen 
a clusterer, AddCluster uses it to assign a cluster number to each instance, as a new 
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attribute. The object editor also allows you to ignore certain attributes when cluster-
ing, specified as described previously for Copy. ClusterMembership uses a clusterer, 
again specified in the filter’s object editor, to generate membership values. A new 
version of each instance is created of which the attributes are these values. The class 
attribute, if set, is ignored during clustering.

AddExpression creates a new attribute by applying a mathematical function to 
numeric attributes. The expression can contain attribute references and constants; 
arithmetic operators +, –, *, /, and ∧; the functions log and exp, abs and sqrt, floor, 
ceil and rint,1 sin, cos, and tan; and parentheses. Attributes are specified by the prefix 
a—for example, a7 is the seventh attribute. An example expression is

a a a1 2 5 7 4 0^ log( . )∗ ∗

There is a debug option that replaces the new attribute’s value with a postfix parse 
of the supplied expression.

MathExpression is similar to AddExpression but can be applied to multiple attri-
butes. Rather than creating a new attribute, it replaces the original values with the 
result of the expression in situ; because of this, the expression cannot reference the 
value of other attributes. All the operators that apply to AddExpression can be used, 
as well as the minimum, maximum, mean, sum, sum-squared, and standard deviation 
of the attribute being processed. Furthermore, simple if–then–else expressions 
involving the operators and functions can be applied as well.

Whereas AddExpression and MathExpression apply mathematical functions 
specified in textual form, NumericTransform performs an arbitrary transformation 
by applying a given Java function to selected numeric attributes. The function can 
be anything that takes a double as its argument and returns another double—for 
example, sqrt() in java.lang.Math. One parameter is the name of the Java class that 
implements the function (which must be a fully qualified name); another is the name 
of the transformation method itself.

Normalize scales all numeric values in the dataset to lie between 0 and 1. The 
normalized values can be further scaled and translated with user-supplied constants. 
Center and Standardize transform them to have zero mean; Standardize gives them 
unit variance too. All three skip the class attribute, if set. RandomSubset randomly 
selects a subset of the attributes to include in the output; the user specifies how many 
(as a percentage of the number of attributes). The class attribute, if set, is always 
included.

PartitionedMultiFilter is a special filter that applies a set of filters to a corre-
sponding set of attribute ranges in the input dataset. The user supplies and configures 
each filter, and defines the range of attributes for them to work with. There is an 
option to delete attributes that are not covered by any of the ranges. Only filters that 
operate on attributes are allowed. The output of the individual filters is assembled 

1The rint function rounds to the closest integer.
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into a new dataset. Reorder alters the order of the attributes in the data; the new 
order is specified by supplying a list of attribute indices. By omitting or duplicating 
indices it is possible to delete attributes or make several copies of them.

Changing Values
SwapValues swaps the positions of two values of a nominal attribute. The order of 
values is entirely cosmetic—it does not affect learning at all—but if the class is 
selected, changing the order affects the layout of the confusion matrix. Merge
TwoValues merges values of a nominal attribute into a single category. The new value’s 
name is a concatenation of the two original ones, and every occurrence of either of 
the original values is replaced by the new one. The index of the new value is the 
smaller of the original indices. For example, if you merge the first two values of the 
outlook attribute in the weather data—in which there are five sunny, four overcast, 
and five rainy instances—the new outlook attribute will have values sunny_overcast 
and rainy; there will be nine sunny_overcast instances and the original five rainy ones.

One way of dealing with missing values is to replace them globally before apply-
ing a learning scheme. ReplaceMissingValues replaces each missing value by the 
mean for numeric attributes and the mode for nominal ones. If a class is set, missing 
values of that attribute are not replaced by default, but this can be changed.

NumericCleaner replaces the values of numeric attributes that are too small, too 
large, or too close to a particular value with default values. A different default can 
be specified for each case, along with thresholds for what is considered to be too 
large or small and a tolerance value for defining too close.

AddValues adds any values that are not already present in a nominal attribute 
from a user-supplied list. The labels can optionally be sorted. ClassAssigner can be 
used to set or unset a dataset’s class attribute. The user supplies the index of the new 
class attribute; a value of 0 unsets the existing class attribute.

Conversions
Many filters convert attributes from one form to another. Discretize uses equal-width 
or equal-frequency binning (see Section 7.2, page 316) to discretize a range of 
numeric attributes, specified in the usual way. For the former method the number of 
bins can be specified or chosen automatically by maximizing the likelihood using 
leave-one-out cross-validation. It is also possible to create several binary attributes 
instead of one multivalued one. For equal-frequency discretization, the desired 
number of instances per interval can be changed. PKIDiscretize discretizes numeric 
attributes using equal-frequency binning; the number of bins is the square root of 
the number of values (excluding missing values). Both these filters skip the class 
attribute by default.

MakeIndicator converts a nominal attribute into a binary indicator attribute and 
can be used to transform a multiclass dataset into several two-class ones. It substi-
tutes a binary attribute for the chosen nominal one, of which the values for each 
instance are 1 if a particular original value was present and 0 otherwise. The new 
attribute is declared to be numeric by default, but it can be made nominal if desired.
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For some learning schemes, such as support vector machines, multivalued 
nominal attributes must be converted to binary ones. The NominalToBinary filter 
transforms all specified multivalued nominal attributes in a dataset into binary ones, 
replacing each attribute with k values by k binary attributes using a simple one-
per-value encoding. The new attributes will be numeric by default. Attributes that 
are already binary are left untouched. NumericToBinary converts all numeric attri-
butes into nominal binary ones (except the class, if set). If the value of the numeric 
attribute is exactly 0, the new attribute will be 0, and if it is missing, the new attribute 
will be missing; otherwise, the value of the new attribute will be 1. These filters also 
skip the class attribute. NumericToNominal converts numeric attributes to nominal 
ones by simply adding every distinct numeric value to the list of nominal values. 
This can be a useful filter to apply after importing a .csv file—Weka’s csv import 
facility creates a numeric attribute for any data column with values that can all be 
parsed as numbers, but it might make sense to interpret the values of an integer 
attribute as discrete instead.

FirstOrder takes a range of N numeric attributes and replaces them with N – 1 
numeric attributes with values that are the differences between consecutive attribute 
values from the original instances. For example, if the original attribute values were 
3, 2, and 1, the new ones will be –1 and –1.

KernelFilter converts the data to a kernel matrix: It outputs a new dataset, 
containing the same number of instances as before, in which each value is the 
result of evaluating a kernel function on a pair of original instances. By default, 
all values are transformed to center them around 0, although they are not rescaled 
to unit variance. However, different filters can be specified.

PrincipalComponents performs a principal components transformation on the 
dataset. First, any multivalued nominal attributes are converted to binary, and 
missing values are replaced by means. The data is standardized (by default). The 
number of components is normally determined based on the user-specified propor-
tion of variance to be covered, but it is also possible to specify the number of 
components explicitly.

The Wavelet filter applies a Haar wavelet transformation to the data. A Multi-
Filter are used to replace missing values with means and modes, and to normalize 
the data. The user can adjust the configuration of MultiFilter in order to modify 
the preprocessing that is done.

String Conversion
A string attribute has an unspecified number of values. StringToNominal converts it 
to nominal with a set number of values. You should ensure that all string values that 
will appear in potential test data are represented in the dataset. NominalToString 
converts the other way.

StringToWordVector produces numeric attributes that represent the frequency of 
words in the value of a string attribute. The set of words—that is, the new attribute 
set—is determined from the full set of values in the string attribute. The new 
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attributes can be named with a user-determined prefix to keep attributes derived from 
different string attributes distinct.

There are many options that affect tokenization. Words can be formed from con-
tiguous alphabetic sequences or separated by a given set of delimiter characters. In 
the latter case, they can be further split into n-grams (with user-supplied minimum 
and maximum length), or they can be processed by a stemming algorithm. They can 
be converted to lowercase before being added to the dictionary, or all words on a 
supplied list of stopwords can be ignored. Words that are not among the top k words 
ranked by frequency can be discarded (slightly more than k words will be retained if 
there are ties at the kth position). If a class attribute has been assigned, the top k words 
for each class will be kept (this can be turned off by the user). The value of each word 
attribute reflects its presence or absence in the string, but this can be changed. A count 
of the number of times the word appears in the string can be used instead. Word fre-
quencies can be normalized to give each document’s attribute vector the same Euclid-
ean length—the length chosen is not 1 to avoid the very small numbers that would 
entail, but is the average length of all documents that appear as values of the original 
string attribute. Alternatively, the frequencies fij for word i in document j can be 
transformed using log (1 + fij) or the TF × IDF measure (see Section 7.3, page 329).

ChangeDateFormat alters the formatting string that is used to parse date attri-
butes. Any format supported by Java’s SimpleDateFormat class can be specified.

Multi-Instance Data
There are two filters that convert multi-instance data into single-instance format. 
MultiInstanceToPropositional takes the “aggregating the output” approach (see 
Section 4.9, page 142), converting multi-instance data involving a single relational 
attribute to single-instance format by assigning to each instance in a bag the bag’s 
class value. There are several options for setting the weight of the new instances in 
order to adjust for bags of different sizes. RELAGGS implements the “aggregating 
the input” approach by computing summary statistics (e.g., mean, minimum, and 
maximum) for the attribute values in each bag. It has an option to avoid computing 
statistics for nominal attributes with more than a user-specified maximum number 
of values, effectively removing them from the data.

PropositionalToMultiInstance is a simple filter for converting in the other 
direction—that is, from single- to multi-instance format involving a single relational 
attribute. It assumes that the first attribute in the data is an ID that indicates the bag 
to which the instance belongs.

Time Series
Two filters work with time series data. TimeSeriesTranslate replaces the values of 
an attribute (or attributes) in the current instance with the equivalent value in some 
other (previous or future) instance. TimeSeriesDelta replaces attribute values in the 
current instance with the difference between the current value and the value in some 
other instance. In both cases, instances in which the time-shifted value is unknown 
may be removed or missing values used.
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Randomizing
Other attribute filters degrade the data. AddNoise takes a nominal attribute and 
changes a given percentage of its values. Missing values can be retained or changed 
along with the rest. Obfuscate anonymizes data by renaming the relation, the attribute 
names, and the nominal and string attribute values. RandomProjection projects the 
dataset onto a lower-dimensional subspace using a random matrix with columns of 
unit length (see Section 7.3, page 326). The class attribute is not included in the 
projection.

Unsupervised Instance Filters
Weka’s instance filters, listed in Table 11.2, affect all instances in a dataset rather 
than all values of a particular attribute or attributes.

Table 11.2  Unsupervised Instance Filters

Name Function

NonSparseToSparse Convert all incoming instances to sparse 
format (see Section 2.4, page 56)

Normalize Treat numeric attributes as a vector and 
normalize the vector to a given length

Randomize Randomize the order of instances in a 
dataset

RemoveFolds Output a specified cross-validation fold for 
the dataset

RemoveFrequentValues Remove instances containing the n most 
frequent or infrequent values of a nominal 
attribute

RemoveMisclassified Remove instances that are incorrectly 
classified according to a specified 
classifier—useful for removing outliers

RemovePercentage Remove a given percentage of a dataset
RemoveRange Remove a given range of instances from a 

dataset
RemoveWithValues Filter out instances with certain attribute 

values
Resample Produce a random subsample of a 

dataset, sampling with replacement
ReservoirSample Uniformly sample n instances from a 

dataset read incrementally
SparseToNonSparse Convert all incoming sparse instances into 

nonsparse format
SubsetByExpression Retain instances according to the 

evaluation of a logical expression involving 
mathematical and logical operators 
applied to attribute values
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Randomizing and Subsampling
You can Randomize the order of instances in the dataset. Normalize treats all numeric 
attributes (excluding the class) as a vector and normalizes it to a given length. You 
can specify the vector length and the norm to be used.

There are various ways of generating subsets of the data. Use Resample to 
produce a random sample by sampling with or without replacement, or RemoveFolds 
to split it into a given number of cross-validation folds and reduce it to just one of 
them. If a random number seed is provided, the dataset will be shuffled before the 
subset is extracted. ReservoirSample uses the reservoir sampling algorithm described 
in Section 7.4 (page 330) to produce a random sample (without replacement) from 
a dataset. When used from the Knowledge Flow interface (see Chapter 12) or from 
the command-line interface (see Chapter 14), the dataset is read incrementally so 
that datasets that exceed main memory can be sampled.

RemovePercentage removes a given percentage of instances, and RemoveRange 
removes a certain range of instance numbers. To remove all instances that have 
certain values for nominal attributes, or numeric values above or below a certain 
threshold, use RemoveWithValues. By default, all instances are deleted that exhibit 
one of a given set of nominal attribute values (if the specified attribute is nominal) 
or a numeric value below a given threshold (if it is numeric). However, the matching 
criterion can be inverted. The attribute information is normally left unchanged, but 
this can be altered so that corresponding values of a nominal attribute are deleted 
from its definition.

RemoveFrequentValues can be used to remove those instances containing the 
most- or least-frequent values of a particular nominal attribute; the user can specify 
how many frequent or infrequent values to remove.

SubsetByExpression selects all instances that satisfy a user-supplied logical 
expression. The expression can involve mathematical operators and functions, such 
as those used by AddExpression and MathExpression, and logical operators (e.g., 
and, or, and not) applied to attribute values. For example, the expression

CLASS is mammal and ATT‘ ’( ) >( )14 2

selects only those instances of which the class attribute has the value mammal and 
the 14th attribute exceeds 2.

You can remove outliers by applying a classification method to the dataset (speci-
fying it just as the clustering method was specified previously for AddCluster) and 
use RemoveMisclassified to delete the instances that it misclassifies. The process is 
normally repeated until the data is fully cleansed, but a maximum number of itera-
tions can be specified instead. Cross-validation can be used rather than evaluation on 
the training data, and for numeric classes an error threshold can be specified.

Sparse Instances
The NonSparseToSparse and SparseToNonSparse filters convert between the regular 
representation of a dataset and its sparse representation (see Section 2.4, page 56).
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Supervised Filters
Supervised filters are available from the Explorer’s Preprocess panel, just as unsu-
pervised ones are. You need to be careful with them because, despite appearances, 
they are not really preprocessing operations. We noted this earlier with regard to 
discretization—the test data splits must not use the test data’s class values because 
these are supposed to be unknown—and it is true for supervised filters in general.

Because of popular demand, Weka allows you to invoke supervised filters as a 
preprocessing operation, just like unsupervised filters. However, if you intend to use 
them for classification, you should adopt a different methodology. A metalearner is 
provided that invokes a filter in a way that wraps the learning algorithm into the 
filtering mechanism. This filters the test data using the filter that has been created 
by the training data. It is also useful for some unsupervised filters. For example, in 
StringToWordVector the dictionary will be created from the training data alone: 
Words that are novel in the test data will be discarded. To use a supervised filter in 
this way, invoke the FilteredClassifier metalearning scheme from the meta section 
of the menu displayed by the Classify panel’s Choose button. Figure 11.18(a) shows 
the object editor for this metalearning scheme. With it, you choose a classifier and 
a filter. Figure 11.18(b) shows the menu of filters.

Supervised filters, like unsupervised ones, are divided into attribute and instance 
filters, listed in Tables 11.3 and 11.4.

Supervised Attribute Filters
Discretize, highlighted in Figure 11.18, uses the MDL method of supervised dis-
cretization (see Section 7.2). You can specify a range of attributes or force the 

FIGURE 11.18 

Using Weka’s metalearner for discretization: (a) configuring FilteredClassifier and (b) the 
menu of filters. 

(a) (b)
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discretized attribute to be binary. The class must be nominal. By default Fayyad and 
Irani’s (1993) criterion is used, but Kononenko’s method (1995) is an option.

There is a supervised version of the NominalToBinary filter that transforms all 
multivalued nominal attributes to binary ones. In this version, the transformation 
depends on whether the class is nominal or numeric. If nominal, the same method 
as before is used: An attribute with k values is transformed into k binary attributes. 
If the class is numeric, however, the method described in Section 6.6 (page 253) is 
applied. In either case the class itself is not transformed.

ClassOrder changes the ordering of the class values. The user determines whether 
the new ordering is random or in ascending or descending class frequency. This filter 
must not be used with the FilteredClassifier metalearning scheme! AttributeSelection 
can be used for automatic attribute selection and provides the same functionality as 
the Explorer’s Select attributes panel (described later).

Table 11.3  Supervised Attribute Filters

Name Function

AddClassification Add predictions from a classifier (class labels or 
probability distributions) as new attributes

AttributeSelection Provides access to the same attribute selection 
methods as the Select attributes panel

ClassOrder Randomize, or otherwise alter, the ordering of class 
values

Discretize Convert numeric attributes to nominal
NominalToBinary Convert nominal attributes to binary, using a 

supervised method if the class is numeric
PLSFilter Compute partial least-squares directions from the 

input data and transform it into partial least-squares 
space

Table 11.4  Supervised Instance Filters

Name Function

Resample Produce a random subsample of a dataset, 
sampling with replacement

SMOTE Resample a dataset by applying the Synthetic 
Minority Oversampling Technique

SpreadSubsample Produce a random subsample with a given spread 
between class frequencies, sampling with 
replacement

StratifiedRemoveFolds Output a specified stratified cross-validation fold for 
the dataset
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AddClassification adds to the data the predictions of a given classifier, which can 
be either trained on the input dataset or loaded from a file as a serialized object. 
New attributes can be added that hold the predicted class value, the predicted prob-
ability distribution (if the class is nominal), or a flag that indicates misclassified 
instances (or, for numeric classes, the difference between the predicted and actual 
class values).

PLSFilter computes the partial least-squares directions for the input data and 
uses them to transform it into partial least-squares space. The result is the same as 
that produced by the method described in Section 7.3 (page 326). (Two different 
algorithms are implemented; they yield the same result modulo a constant factor.) 
The number of directions to compute can be specified, and it is possible to retain 
the original class attribute in the new dataset or to replace it with predictions. 
Missing values are replaced by defaults, and the input data can be either centered 
or standardized before computing the partial least squares. The dataset must be 
entirely numeric: If it contains nominal attributes, the user must remove them or 
transform them to numeric ones.

Supervised Instance Filters
There are four supervised instance filters. Resample is like the eponymous unsuper-
vised instance filter except that it maintains the class distribution in the subsample. 
Alternatively, it can be configured to bias the class distribution toward a uniform 
one. Sampling can be performed with (default) or without replacement. SpreadSub-
sample also produces a random subsample, but the frequency difference between 
the rarest and the most common class can be controlled—for example, you can 
specify at most a 2:1 difference in class frequencies. You can also limit the number 
of instances in any class by specifying an explicit maximum count.

SMOTE is another filter that samples the data and alters the class distribution 
(Chawla et al., 2002). Like SpreadSubsample, it can be used to adjust the relative 
frequency between minority and majority classes in the data—but it takes care not 
to undersample majority classes and it oversamples the minority class by creating 
synthetic instances using a k-nearest-neighbor approach. The user can specify the 
oversampling percentage and the number of neighbors to use when creating synthetic 
instances.

Like the unsupervised instance filter RemoveFolds, StratifiedRemoveFolds out
puts a specified cross-validation fold for the dataset, except that this time the fold 
is stratified.

11.4  LEARNING ALGORITHMS
On the Classify panel, when you select a learning algorithm using the Choose button 
the command-line version of the classifier appears in the line beside the button, includ-
ing the parameters specified with minus signs. To change the parameters, click that  
line to get an appropriate object editor. Table 11.5 lists Weka’s classifiers. They are 
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divided into Bayesian classifiers, trees, rules, functions, lazy classifiers, multi-instance 
classifiers, and a final miscellaneous category. We describe them briefly here, along 
with their parameters. To learn more, choose one in the Weka Explorer interface and 
examine its object editor. A further kind of classifier, the Metalearner, is described in 
the next section.

Bayesian Classifiers
NaiveBayes implements the probabilistic Naïve Bayes classifier (see Section 4.2, 
page 93). NaiveBayesSimple uses the normal distribution to model numeric attri-
butes. NaiveBayes can use kernel density estimators, which improve performance if 
the normality assumption is grossly incorrect; it can also handle numeric attributes 
using supervised discretization.

Figure 11.19 shows the output of NaiveBayes on the weather data. The salient 
difference between this and the output in Figure 11.5 of J48 on the same data is that 
instead of a tree in textual form, here the parameters of the Naïve Bayes model are 
presented in a table. The first column shows attributes and the other two show class 
values; entries are either frequency counts of nominal values or parameters of normal 
distributions for numeric attributes. For example, Figure 11.19 shows that the mean 
temperature value for instances of class yes is 72.9697, while for instances for which 
windy = yes the values true and false occur 4 and 7 times, respectively. The grand 
total of the yes and no counts for windy is, surprisingly, 18—more than the 14 
instances in the weather data (the situation for outlook is even worse, totaling 20). 
The reason is that NaiveBayes avoids zero frequencies by applying the Laplace cor-
rection, which involves initializing each count to 1 rather than to 0.

NaiveBayesUpdateable is an incremental version that processes one instance 
at a time; it can use a kernel estimator but not discretization. NaiveBayesMulti-
nomial implements the multinomial Bayes’ classifier (see Section 4.2, page 97); 
NaiveBayesMultinomialUpdateable is an incremental version. ComplementNaive-
Bayes builds a Complement Naïve Bayes classifier as described by Rennie et  al. 
(2003) (the TF × IDF and length normalization transforms used in this paper can 
be performed using the StringToWordVector filter).

AODE is the averaged one-dependence estimator discussed in Section 6.7 (page 
268). WAODE is a version of AODE that creates a weighted ensemble of one-
dependence estimators rather than a simple average (Jiang and Zhang, 2006). The 
weight for each ensemble member is proportional to the mutual information between 
its superparent and the class attribute. AODEsr is a version of AODE that incorpo-
rates the lazy elimination of highly related attribute values at classification time 
(Zheng and Webb, 2006). HNB learns a hidden Naïve Bayes model—a kind of 
simple Bayesian network where each attribute has the class as a parent node and 
another special “hidden” parent node that combines the influences of all the other 
attributes (Zhang et al., 2005). Each attribute’s hidden node is constructed from the 
average of weighted one-dependence estimators, the weights of which are computed 
using conditional mutual information.



452 FIGURE 11.19 

Output of NaiveBayes on the weather data. 

=== Run information === 
 
Scheme:       weka.classifiers.bayes.NaiveBayes  
Relation:     weather 
Instances:    14 
Attributes:   5 
              outlook 
              temperature 
              humidity 
              windy 
              play 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
Naive Bayes Classifier 
 
                 Class 
Attribute          yes      no 
                (0.63)  (0.38) 
=============================== 
outlook 
  sunny             3.0     4.0 
  overcast          5.0     1.0 
  rainy             4.0     3.0 
  [total]          12.0     8.0 
 
temperature 
  mean          72.9697 74.8364 
  std. dev.      5.2304   7.384 
  weight sum          9       5 
  precision      1.9091  1.9091 
 
humidity 
  mean          78.8395 86.1111 
  std. dev.      9.8023  9.2424 
  weight sum          9       5 
  precision      3.4444  3.4444 
 
windy 
  TRUE              4.0     4.0 
  FALSE             7.0     3.0 
  [total]          11.0     7.0 
 
Time taken to build model: 0 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances           9               64.2857 % 
Incorrectly Classified Instances         5               35.7143 % 
Kappa statistic                          0.1026 
Mean absolute error                      0.4649 
Root mean squared error                  0.543  
Relative absolute error                 97.6254 % 
Root relative squared error            110.051  % 
Total Number of Instances               14      

=== Detailed Accuracy By Class === 
 
           TP Rate  FP Rate Precision  Recall  F-Measure  ROC Area  Class

             0.889   0.8      0.667    0.889    0.762      0.444     yes 
             0.2     0.111    0.5      0.2      0.286      0.444     no 
Weighted     0.643   0.554    0.607    0.643    0.592      0.444 
 

=== Confusion Matrix === 
 
 a b   <-- classified as 
 8 1 | a = yes 
 4 1 | b = no 

Avg.
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Another Naïve Bayes scheme for text classification is DMNBtext (Su et  al., 
2008). This learns a multinomial Naïve Bayes classifier in a combined generative 
and discriminative fashion. The parameters of a Bayesian network are traditionally 
learned in generative fashion, calculating frequency counts for the conditional 
probability tables from the training data—thereby maximizing the likelihood of 
the data given the model. In contrast, parameter values that maximize the gen-
eralization accuracy (or conditional likelihood) are desirable in classification set-
tings. DMNBText injects a discriminative element into parameter learning by 
considering the current classifier’s prediction for a training instance before updat-
ing frequency counts. When processing a given training instance, the counts are 
incremented by one minus the predicted probability for the instance’s class value. 
DMNBText allows users to specify how many iterations over the training data the 
algorithm will make, and whether word frequency information should be ignored—
in which case, the method learns a standard Naïve Bayes model rather than a 
multinomial one.

BayesianLogisticRegression takes a Bayesian approach to learning a binomial 
logistic regression function by allowing the user to place a prior distribution 
on the values for the model’s coefficients. Zero-mean Gaussian and Laplace 
distributions can be used for the prior. Both favor sparseness in the coefficients, 
Laplace more so than Gaussian, which makes this approach suitable for learn-
ing logistic regression models for high-dimensional problems—for example, text  
classification (Genkin et  al., 2007). The user can opt to set the variance of  
the prior to a specific value or have it chosen, within a specified range, through 
the use of cross-validation.

BayesNet learns Bayesian nets under the assumptions made in Section 6.7: 
nominal attributes (numeric ones are prediscretized) and no missing values (any 
such values are replaced globally). There are four different algorithms for estimating 
the conditional probability tables of the network. Search is done using K2 or the 
TAN algorithm (see Section 6.7, page 267) or more sophisticated methods based 
on hill-climbing, simulated annealing, tabu search, and genetic algorithms. Option-
ally, search speed can be improved using AD-trees (see Section 6.7, page 269). 
There are also two algorithms that use conditional independence tests to learn the 
structure of the network; alternatively, the network structure can be loaded from an 
XML (eXtensible Markup Language) file. More details on the implementation of 
Bayesian networks in Weka can be found in Bouckaert (2004).

You can observe the network structure by right-clicking the history item and 
selecting Visualize graph. Figure 11.20(a) shows the graph for the nominal version 
of the weather data, which in fact corresponds to the Naïve Bayes result with all 
probabilities conditioned on the class value. This is because the search algorithm 
defaults to K2 with the maximum number of parents of a node set to one. Recon-
figuring this to three by clicking on K2 in the configuration panel yields the more 
interesting network in Figure 11.20(b). Clicking on a node shows its probability 
distribution—Figure 11.20(c) is obtained by clicking on the windy node in Figure 
11.20(b).
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FIGURE 11.20 

Visualizing a Bayesian network for the weather data (nominal version): (a) default output, 
(b) with the maximum number of parents set to three in the search algorithm, and  
(c) the probability distribution table for the windy node in (b). 

(a) (b)

(c)

Trees
Of the tree classifiers in Table 11.5 we have already encountered the UserClassifier 
(see Section 11.2). We have also seen how to use J4.8, which reimplements C4.5 
(see Section 6.1, page 201). To see the options, click the line beside the Choose 
button in Figure 11.4(b) to bring up the object editor in Figure 11.21. You can build 
a binary tree instead of one with multiway branches. You can set the confidence 
threshold for pruning (default 0.25) and the minimum number of instances permis-
sible at a leaf (default 2). Instead of standard C4.5 pruning you can choose reduced-
error pruning (see Section 6.2, page 206). The numFolds parameter (default 3) 
determines the size of the pruning set: The data is divided equally into that number 
of parts and the last one used for pruning. When visualizing the tree it is nice to be 



	 11.4  Learning Algorithms� 455

able to consult the original data points, which you can do if saveInstanceData has 
been turned on (it is off, or False, by default to reduce memory requirements). You 
can suppress subtree raising, yielding a more efficient algorithm; force the algorithm 
to use the unpruned tree instead of the pruned one; or use Laplace smoothing for 
predicted probabilities (see Section 4.2, page 93).

Table 11.5 shows many other decision tree methods. Id3 implements the basic 
algorithm explained in Chapter 4. DecisionStump, designed for use with the boosting 
methods described later, builds one-level binary decision trees for datasets with a 
categorical or numeric class, dealing with missing values by treating them as a sepa-
rate value and extending a third branch from the stump. Trees built by RandomTree 
test a given number of random features at each node, performing no pruning. Ran-
domForest constructs random forests by bagging ensembles of random trees (see 
Section 8.3, page 356).

J48graft is an extended version of J48 that considers grafting additional branches 
onto the tree in a postprocessing phase (Webb, 1999). The grafting process attempts 
to achieve some of the power of ensemble methods such as bagged and boosted trees 
while maintaining a single interpretable structure. It identifies regions of the instance 
space that are either empty or contain only misclassified examples and explores 
alternative classifications by considering different tests that could have been selected 
at nodes above the leaf containing the region in question.

FIGURE 11.21 

Changing the parameters for J4.8. 
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REPTree builds a decision or regression tree using information gain/variance 
reduction and prunes it using reduced-error pruning (see Section 6.2, page 206). 
Optimized for speed, it only sorts values for numeric attributes once (see Section 
6.1, page 192). It deals with missing values by splitting instances into pieces, as 
C4.5 does. You can set the minimum number of instances per leaf, maximum tree 
depth (useful when boosting trees), minimum proportion of training set variance for 
a split (numeric classes only), and number of folds for pruning.

BFTree constructs a decision tree using a best-first expansion of nodes rather 
than the depth-first expansion used by standard decision tree learners (such as C4.5). 
Pre- and postpruning options are available that are based on finding the best number 
of expansions to use via cross-validation on the training data. While fully grown 
trees are the same for best-first and depth-first algorithms, the pruning mechanism 
used by BFTree will yield a different pruned tree structure than that produced by 
depth-first methods.

SimpleCart is a decision tree learner for classification that employs the minimal 
cost-complexity pruning strategy (see Section 6.1, page 202). Though named after 
the CART (classification and regression tree) learner that pioneered this strategy 
(Breiman et al., 1984), the similarity ends here: It provides none of CART’s other 
features. You can set the minimum number of instances per leaf, the percentage of 
training data used to construct the tree, and the number of cross-validation folds 
used in the pruning procedure.

NBTree is a hybrid between decision trees and Naïve Bayes. It creates trees with 
leaves that are Naïve Bayes classifiers for the instances that reach the leaf. When 
constructing the tree, cross-validation is used to decide whether a node should be 
split further or a Naïve Bayes model used instead (Kohavi, 1996).

M5P is the model tree learner described in Section 6.6 (page 251).
LMT builds logistic model trees (see Section 8.6, page 368). It can deal with 

binary and multiclass target variables, numeric and nominal attributes, and missing 
values. When fitting the logistic regression functions at a node using the LogitBoost 
algorithm, it uses cross-validation to determine how many iterations to run just once, 
and employs the same number throughout the tree instead of cross-validating at 
every node. This heuristic (which you can switch off) improves the runtime consider-
ably, with little effect on accuracy. Alternatively, you can set the number of boosting 
iterations to be used throughout the tree manually, or use a fast heuristic based on 
the Akaike Information Criterion instead of cross-validation. Weight trimming can 
be used to further improve runtime. Normally, it is the misclassification error that 
cross-validation minimizes, but the root mean-squared error of the probabilities can 
be chosen instead. The splitting criterion can be based on C4.5’s information gain 
(the default) or on the LogitBoost residuals, striving to improve the purity of the 
residuals. LMT employs the minimal cost-complexity pruning mechanism (see 
Section 6.1, page 202) to produce a compact tree structure.

FT builds functional trees (Gama, 2004)—that is, trees for classification with 
linear functions at the leaves and, optionally, at interior nodes as well. It builds on 
the LMT implementation and expands the choice of attributes to split on at interior 
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nodes by creating synthetic attributes that hold the class probabilities predicted by 
that node’s logistic regression model. Like LMT, C4.5’s splitting criterion is used to 
select an attribute to split on. If a synthetic attribute is chosen, the split is oblique, 
not axis-parallel. Unlike LMT, FT uses standard C4.5 pruning rather than minimal 
cost-complexity pruning. The user has the option of having the algorithm build trees 
with functions only at the leaves (in which case, FT behaves like LMT, but with 
C4.5 pruning), only at the interior nodes, or at both.

ADTree builds an alternating decision tree for two-class problems using boosting 
(see Section 8.6, page 270). The number of boosting iterations is a parameter that 
can be tuned to suit the dataset and the desired complexity–accuracy tradeoff. Each 
iteration adds three nodes to the tree (one split node and two prediction nodes) unless 
nodes can be merged. The default search method is the exhaustive search (Expand 
all paths); the others are heuristics and are much faster. You can determine whether 
to save instance data for visualization. LADTree is an alternating decision tree algo-
rithm that can handle multiclass problems based on the LogitBoost algorithm (Holmes 
et al., 2002). Like ADTree, the number of boosting iterations is a parameter that can 
be tuned for the data at hand and determines the size of the tree constructed.

Rules
Table 11.5 earlier in the chapter shows many methods for generating rules.

DecisionTable builds a decision table majority classifier (see Section 7.1, page 
314). It evaluates feature subsets using best-first search and can use cross-validation 
for evaluation (Kohavi, 1995b). An option uses the nearest-neighbor method to 
determine the class for each instance that is not covered by a decision table entry, 
instead of the table’s global majority, based on the same set of features.

DTNB is a hybrid classifier that combines a decision table with Naïve Bayes 
(Hall and Frank, 2008). The algorithm divides the attributes into two distinct subsets, 
one modeled by Naïve Bayes and the other by the decision table. A greedy search, 
guided by leave-one-out cross-validation and starting with all attributes modeled by 
the decision table, is used to decide which attributes should be modeled by Naïve 
Bayes; consideration is also given to dropping an attribute entirely from the model. 
The predictions produced by the two methods are combined into an overall predic-
tion using Bayes’ rule. Users can select the evaluation measure used for cross-
validation: Options for classification problems include accuracy, root mean-squared 
error on the class probabilities, mean absolute error on the class probabilities, and 
area under the ROC curve. For numeric classes root mean-squared error is used.

OneR is the 1R classifier (see Section 4.1, page 86) with one parameter—the 
minimum bucket size for discretization. Figure 11.22 shows its output for the labor 
negotiations data. The Classifier model part shows that wage-increase-first-year has 
been identified as the basis of the rule produced, with a split at the value 2.9 dividing 
bad outcomes from good ones (the class is also good if the value of that attribute is 
missing). Beneath the rule the fraction of training instances correctly classified by 
the rule is given in parentheses.
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FIGURE 11.22 

Output of OneR on the labor negotiations data. 

=== Run information === 
 
Scheme:       weka.classifiers.rules.OneR -B 6 
Relation:     labor-neg-data 
Instances:    57 
Attributes:   17 
              duration 
              wage-increase-first-year 
              wage-increase-second-year 
              wage-increase-third-year 
              cost-of-living-adjustment 
              working-hours 
              pension 
              standby-pay 
              shift-differential 
              education-allowance 
              statutory-holidays 
              vacation 
              longterm-disability-assistance 
              contribution-to-dental-plan 
              bereavement-assistance 
              contribution-to-health-plan 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
wage-increase-first-year: 
        < 2.9   -> bad 
        >= 2.9  -> good 
        ?       -> good 
(48/57 instances correct) 
 
Time taken to build model: 0.01 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances          43               75.4386 % 
Incorrectly Classified Instances        14               24.5614 % 
Kappa statistic                          0.4063 
Mean absolute error                      0.2456 
Root mean squared error                  0.4956 
Relative absolute error                 53.6925 % 
Root relative squared error            103.7961 % 
Total Number of Instances               57      
 
=== Detailed Accuracy By Class === 
 
            TP Rate  FP Rate  Precision  Recall  F-Measure  ROC Area  Class 
              0.45    0.081    0.75     0.45    0.563     0.684     bad 
              0.919   0.55     0.756    0.919   0.829     0.684     good 
Weighted Avg. 0.754   0.385    0.754    0.754   0.736     0.684 
 
=== Confusion Matrix === 
 
  a  b   <-- classified as 
  9 11 |  a = bad 
  3 34 |  b = good 
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ConjunctiveRule learns a single rule that predicts either a numeric or a nominal 
class value. Uncovered test instances are assigned the default class value (or distri-
bution) of the uncovered training instances. The information gain (nominal class) or 
variance reduction (numeric class) of each antecedent is computed, and rules are 
pruned using reduced-error pruning. ZeroR is even simpler: It predicts the test data’s 
majority class (if nominal) or average value (if numeric). Prism implements the 
elementary covering algorithm for rules (see Section 4.4, page 108).

PART obtains rules from partial decision trees (see Section 6.2, page 208). It 
builds the tree using C4.5’s heuristics with the same user-defined parameters as J4.8. 
Figure 11.23 shows the output of PART for the labor negotiations data. Three rules 
are found and are intended to be processed in order, the prediction generated for any 
test instance being the outcome of the first rule that fires. The last, “catch-all” rule 
will always fire. As with J48, the numbers in parentheses that follow each rule give 
the number of instances that are covered by the rule followed by the number that 
are misclassified (if any).

M5Rules obtains regression rules from model trees built using M5′ (see Section 
6.2). Ridor learns rules with exceptions (see Section 6.2, page 212) by generating 
the default rule, using incremental reduced-error pruning to find exceptions with the 
smallest error rate, finding the best exceptions for each exception, and iterating.

JRip implements RIPPER (see Section 6.2, page 208), including heuristic global 
optimization of the rule set (Cohen, 1995). NNge is a nearest-neighbor method for 
generating rules using non-nested generalized exemplars (see Section 6.5, page 246).

Functions
The functions category of Table 11.5 includes an assorted group of classifiers that 
can be written down as mathematical equations in a reasonably natural way. Other 
methods, such as decision trees and rules, cannot (there are exceptions: Naïve Bayes 
has a simple mathematical formulation). Four of them implement linear regression 
(see Section 4.6, page 124). SimpleLinearRegression learns a linear regression model 
based on a single attribute—it chooses the one that yields the smallest squared error. 
Missing values and nonnumeric attributes are not allowed. Figure 11.24 shows the 
output of SimpleLinearRegression for the CPU performance data. The attribute that 
has the smallest squared error in this case is MMAX.

LinearRegression performs standard least-squares multiple linear regression and 
can optionally perform attribute selection, either greedily using backward elimina-
tion (see Section 7.1, page 311) or by building a full model from all attributes and 
dropping the terms one by one, in decreasing order of their standardized coefficients, 
until a stopping criteria is reached (this method was described in a slightly different 
context in Section 6.6 under Pruning the Tree). Both methods use a version of the 
AIC termination criterion discussed in Section 6.7 (page 266). The implementation 
has two further refinements: a heuristic mechanism for detecting collinear attributes 
(which can be turned off) and a ridge parameter that stabilizes degenerate 
cases and can reduce overfitting by penalizing large coefficients. Technically,  
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=== Run information === 
 
Scheme:       weka.classifiers.rules.PART -M 2 -C 0.25 -Q 1 
Relation:     labor-neg-data 
Instances:    57 
Attributes:   17 
              duration 
              wage-increase-first-year 
              wage-increase-second-year 
              wage-increase-third-year 
              cost-of-living-adjustment 
              working-hours 
              pension 
              standby-pay 
              shift-differential 
              education-allowance 
              statutory-holidays 
              vacation 
              longterm-disability-assistance 
              contribution-to-dental-plan 
              bereavement-assistance 
              contribution-to-health-plan 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
PART decision list 
------------------ 
 
wage-increase-first-year > 2.5 AND 
longterm-disability-assistance = yes AND 
statutory-holidays > 10: good (25.67) 
 
wage-increase-first-year <= 4 AND 
working-hours > 36: bad (19.4/1.58) 
 
: good (11.93/2.18) 
 
Number of Rules  :      3 
 
Time taken to build model: 0.07 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances          45               78.9474 % 
Incorrectly Classified Instances        12               21.0526 % 
Kappa statistic                          0.5378 
Mean absolute error                      0.2884 
Root mean squared error                  0.4339 
Relative absolute error                 63.0507 % 
Root relative squared error             90.8836 % 
Total Number of Instances               57      

FIGURE 11.23 

Output of PART for the labor negotiations data. 
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=== Detailed Accuracy By Class === 
 
            TP Rate  FP Rate  Precision  Recall  F-Measure  ROC Area  Class 
              0.7     0.162    0.7      0.7      0.7      0.726     bad 
              0.838   0.3      0.838    0.838    0.838    0.726     good 
Weighted Avg. 0.789   0.252    0.789    0.789    0.789    0.726 
 
=== Confusion Matrix === 
 
  a  b   <-- classified as 
 14  6 |  a = bad 
  6 31 |  b = good 

FIGURE 11.24 

Output of SimpleLinearRegression for the CPU performance data. 

=== Run information === 
 
Scheme:       weka.classifiers.functions.SimpleLinearRegression
Relation:     cpu 
Instances:    209 
Attributes:   7 
              MYCT 
              MMIN 
              MMAX 
              CACH 
              CHMIN 
              CHMAX 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
Linear regression on MMAX 
 
0.01 * MMAX - 34 
 
Time taken to build model: 0 seconds 
 
=== Cross-validation === 
=== Summary === 
 
Correlation coefficient                  0.7844 
Mean absolute error                     53.8054 
Root mean squared error                 99.5674 
Relative absolute error                 55.908  % 
Root relative squared error             61.8997 % 
Total Number of Instances              209 

FIGURE 11.23, cont’d
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LinearRegression implements ridge regression, which is described in standard 
statistics texts.

LeastMedSq is a robust linear regression method that minimizes the median 
(rather than the mean) of the squares of divergences from the regression line (see 
Section 7.5, page 333) (Rousseeuw and Leroy, 1987). It repeatedly applies standard 
linear regression to subsamples of the data and outputs the solution that has the 
smallest median-squared error.

PaceRegression builds linear regression models using the technique of Pace 
regression (Wang and Witten, 2002). When there are many attributes, Pace regres-
sion is particularly good at determining which ones to discard—indeed, under certain 
regularity conditions it is provably optimal as the number of attributes tends to 
infinity.

IsotonicRegression implements the method for learning an isotonic regression 
function based on the pair-adjacent violators approach (see Section 7.7, page 345). 
PLSClassifier learns a partial least-squares regression model (see Section 7.3, page 
328). It uses the PLSFilter to transform the training data into partial least-squares 
space and then learns a linear regression from the transformed data. All the options 
of the PLSFilter are available to the user in the object editor for the PLSClassifier.

SMO implements the sequential minimal-optimization algorithm for training a 
support vector classifier (see Section 6.4), using kernel functions such as polynomial 
or Gaussian kernels (Platt, 1998; Keerthi et al., 2001). Missing values are replaced 
globally, nominal attributes are transformed into binary ones, and attributes are 
normalized by default—note that the coefficients in the output are based on the 
normalized data. Normalization can be turned off, or the input standardized to zero 
mean and unit variance. Pairwise classification is used for multiclass problems. 
Logistic regression models can be fitted to the support vector machine output to 
obtain probability estimates. In the multiclass case, the predicted probabilities will 
be coupled pairwise (Hastie and Tibshirani, 1998). When working with sparse 
instances, turn normalization off for faster operation.

Figure 11.25 shows the output of SMO on the iris data. A polynomial kernel 
with an exponent of 1 has been used, making the model a linear support vector 
machine. Since the iris data contains three class values, three binary SMO models 
have been output—one hyperplane to separate each of the possible pair of class 
values. Furthermore, since the machine is linear, the hyperplanes are expressed 
as functions of the attribute values in the original (albeit normalized) space. Figure 
11.26 shows the result when the exponent of the polynomial kernel is set to 2, 
making the support vector machine nonlinear. There are three binary SMO models 
as before, but this time the hyperplanes are expressed as functions of the support 
vectors (see Section 6.4, page 225). Each of the support vectors is shown enclosed 
in angle brackets, along with the value of its coefficient α. The value of the 
offset parameter, β (which is the same as α0), is shown as the last component 
of each function.

SMOreg implements the sequential minimal-optimization algorithm for learning 
a support vector regression model (Smola and Schölkopf, 2004).



463

=== Run information === 
 
Scheme:  weka.classifiers.functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 

0 -V -1 -W 1 -K "weka.classifiers.functions.supportVector.PolyKernel -C

Relation:     iris 
Instances:    150 
Attributes:   5 
              sepallength 
              sepalwidth 
              petallength 
              petalwidth 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
SMO 
 
Kernel used:  Linear Kernel: K(x,y) = <x,y> 
 
Classifier for classes: Iris-setosa, Iris-versicolor 
 
BinarySMO 
 
Machine linear: showing attribute weights, not support vectors. 
 
         0.6829 * (normalized) sepallength  +  -1.523  * (normalized)

 +       2.2034 * (normalized) petallength  +  1.9272 * (normalized)

 -       0.7091 
 
Number of kernel evaluations: 352 (70.32% cached) 
 
Classifier for classes: Iris-setosa, Iris-virginica 
 
BinarySMO 
 
Machine linear: showing attribute weights, not support vectors. 
 
         0.5886 * (normalized) sepallength  +  -0.5782 * (normalized)

 +       1.6429 * (normalized) petallength  +  1.4777 * (normalized)

 -       1.1668 
 
Number of kernel evaluations: 284 (68.996% cached) 
 
Classifier for classes: Iris-versicolor, Iris-virginica 
 
BinarySMO 
 
Machine linear: showing attribute weights, not support vectors. 
 
         0.3176 * (normalized) sepallength  +  -0.863  * (normalized)

 +       3.0543 * (normalized) petallength  +  4.0815 * (normalized) 

 -       4.5924 
 
Number of kernel evaluations: 453 (61.381% cached) 
 
Time taken to build model: 0.13 seconds 
 

250007 -E 1.0" efd

sepalwidth 

petalwidth 

sepalwidth 

petalwidth 

sepalwidth 

petalwidth

FIGURE 11.25 

Output of SMO on the iris data. 

Continued
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SPegasos (Shalev-Shwartz et al., 2007) learns a linear support vector machine 
for two-class problems using stochastic gradient descent (see Section 6.4, page 240). 
Nominal attributes are converted to binary ones automatically. By default, missing 
values are replaced with means/modes and attributes are normalized. The user can 
specify the number of epochs (iterations over the training data) to perform and the 
value of “lambda,” the regularization constant for controlling the closeness of fit. 
Two loss functions are provided: the hinge loss (the default setting) for learning a 
support vector machine, and the log loss, which results in a logistic regression rather 
than a support vector machine. SPegasos can be trained in batch mode or incremen-
tally, one instance at a time. If trained incrementally, the epochs’ parameter has no 
effect because each instance is processed just once.

VotedPerceptron is the voted perceptron algorithm (see Section 6.4, page 232). 
Winnow (see Section 4.6, page 129) modifies the basic perceptron to use multiplica-
tive updates. The implementation allows for a second multiplier β—different from 
1/α—to be used in place of the divisions in Figure 4.11, and also provides the bal-
anced version of the algorithm.

GaussianProcesses implements the Bayesian Gaussian process technique for 
nonlinear regression. Users can specify the kernel function, along with a “noise” 
regularization parameter for controlling the closeness of fit. They can choose to 
have the training data normalized or standardized before learning the regression. 
For point estimates, this method is equivalent to kernel ridge regression (see 
Section 6.4, page 229).

=== Detailed Accuracy By Class === 
 

 TP Rate  FP Rate Precision Recall F-Measure ROC Area  Class 
   1       0       1        1        1        1        Iris-setosa 
   0.98    0.05    0.907    0.98     0.942    0.965    Iris-versicolor 
   0.9     0.01    0.978    0.9      0.938    0.97     Iris-virginica 

Weighted    0.96    0.02    0.962    0.96     0.96     0.978 

 
=== Confusion Matrix === 
 
  a  b  c   <-- classified as 
 50  0  0 |  a = Iris-setosa 
  0 49  1 |  b = Iris-versicolor 
  0  5 45 |  c = Iris-virginica 

=== Stratified cross-validation === 
=== Summary ===  
Correctly Classified Instances         144               96      % 
Incorrectly Classified Instances         6                4      % 
Kappa statistic                          0.94   
Mean absolute error                      0.2311 
Root mean squared error                  0.288  
Relative absolute error                 52      % 
Root relative squared error             61.101  % 
Total Number of Instances              150      
 

Avg.   

FIGURE 11.25, cont’d
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=== Run information === 
 
Scheme:  weka.classifiers.functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N  

0 -V -1 -W 1 -K "weka.classifiers.functions.supportVector.PolyKernel

Relation:     iris 
Instances:    150 
Attributes:   5 
              sepallength 
              sepalwidth 
              petallength 
              petalwidth 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
SMO 
 
Kernel used: 
  Poly Kernel: K(x,y) = <x,y>^2.0 
 
Classifier for classes: Iris-setosa, Iris-versicolor 
BinarySMO 
 
      1      * <0.333333 0.166667 0.457627 0.375 > * X] 
 -       1      * <0.222222 0.541667 0.118644 0.166667 > * X] 
 -       1      * <0.138889 0.416667 0.067797 0.083333 > * X] 
 -       1      * <0.166667 0.416667 0.067797 0.041667 > * X] 
 +       1      * <0.222222 0.208333 0.338983 0.416667 > * X] 
 -       1      * <0.055556 0.125 0.050847 0.083333 > * X] 
 -       1      * <0.027778 0.375 0.067797 0.041667 > * X] 
 +       1      * <0.166667 0.166667 0.389831 0.375 > * X] 
 +       1      * <0.361111 0.208333 0.491525 0.416667 > * X] 
 +       1      * <0.194444 0 0.423729 0.375 > * X] 
 -       1      * <0.194444 0.416667 0.101695 0.041667 > * X] 
 -       1      * <0.138889 0.458333 0.101695 0.041667 > * X] 
 +       1      * <0.194444 0.125 0.389831 0.375 > * X] 
 +       0.3697 * <0.361111 0.375 0.440678 0.5 > * X] 
 -       0.4599 * <0.138889 0.416667 0.067797 0 > * X] 
 -       0.9098 * <0.194444 0.625 0.101695 0.208333 > * X] 
 +       1      * <0.333333 0.166667 0.474576 0.416667 > * X] 
 +       1      * <0.388889 0.25 0.423729 0.375 > * X] 
 -       0.8085 
 
Number of support vectors: 18 
 
Number of kernel evaluations: 2416 (72.564% cached) 
 
Classifier for classes: Iris-setosa, Iris-virginica 
 
BinarySMO 
 
      1      * <0.166667 0.208333 0.59322 0.666667 > * X] 
 -       0.856  * <0.055556 0.125 0.050847 0.083333 > * X] 
 +       0.1315 * <0.555556 0.333333 0.694915 0.583333 > * X] 
 -       1      * <0.222222 0.541667 0.118644 0.166667 > * X] 
 +       1      * <0.472222 0.083333 0.677966 0.583333 > * X] 
 -       0.2756 * <0.194444 0.625 0.101695 0.208333 > * X] 
 -       1.0183 
 
Number of support vectors: 6 
 
Number of kernel evaluations: 1364 (60.726% cached) 
Classifier for classes: Iris-versicolor, Iris-virginica 

-C 250007 -E 2.0" 

FIGURE 11.26 

Output of SMO with a nonlinear kernel on the iris data. 

Continued
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 -       1      * <0.5 0.375 0.627119 0.541667 > * X] 
 -       1      * <0.722222 0.458333 0.661017 0.583333 > * X] 
 +       1      * <0.472222 0.083333 0.677966 0.583333 > * X] 
 +       1      * <0.583333 0.458333 0.762712 0.708333 > * X] 
 +       1      * <0.611111 0.5 0.694915 0.791667 > * X] 
 +       1      * <0.5 0.416667 0.661017 0.708333 > * X] 
 -       1      * <0.694444 0.333333 0.644068 0.541667 > * X] 
 -       1      * <0.5 0.416667 0.610169 0.541667 > * X] 
 +       1      * <0.416667 0.291667 0.694915 0.75 > * X] 
 +       1      * <0.527778 0.333333 0.644068 0.708333 > * X] 
 -       1      * <0.444444 0.5 0.644068 0.708333 > * X] 
 +       1      * <0.5 0.25 0.779661 0.541667 > * X] 
 +       1      * <0.555556 0.291667 0.661017 0.708333 > * X] 
 +       1      * <0.361111 0.333333 0.661017 0.791667 > * X] 
 -       1      * <0.555556 0.208333 0.661017 0.583333 > * X] 
 -       0.4559 * <0.555556 0.125 0.576271 0.5 > * X] 
 +       1      * <0.555556 0.333333 0.694915 0.583333 > * X] 
 +       1      * <0.166667 0.208333 0.59322 0.666667 > * X] 
 +       1      * <0.805556 0.416667 0.813559 0.625 > * X] 
 -       1      * <0.555556 0.541667 0.627119 0.625 > * X] 
 +       1      * <0.472222 0.416667 0.644068 0.708333 > * X] 
 -       1      * <0.361111 0.416667 0.59322 0.583333 > * X] 
 -       1      * <0.583333 0.5 0.59322 0.583333 > * X] 
 -       1      * <0.472222 0.375 0.59322 0.583333 > * X] 
 -       1      * <0.611111 0.333333 0.610169 0.583333 > * X] 
 -       3.5378 
 
Number of support vectors: 36 
 
Number of kernel evaluations: 3524 (66.711% cached) 
 
Time taken to build model: 0.06 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         144               96      % 
Incorrectly Classified Instances         6                4      % 
Kappa statistic                          0.94   
Mean absolute error                      0.2311 
Root mean squared error                  0.288  
Relative absolute error                 52      % 
Root relative squared error             61.101  % 
Total Number of Instances              150      
 

 
BinarySMO 
 
      1      * <0.555556 0.208333 0.677966 0.75 > * X] 
 -       1      * <0.305556 0.416667 0.59322 0.583333 > * X] 
 -       1      * <0.666667 0.458333 0.627119 0.583333 > * X] 
 -       1      * <0.472222 0.583333 0.59322 0.625 > * X] 
 +       1      * <0.444444 0.416667 0.694915 0.708333 > * X] 
 -       1      * <0.527778 0.083333 0.59322 0.583333 > * X] 
 +       1      * <0.416667 0.291667 0.694915 0.75 > * X] 
 -       1      * <0.472222 0.291667 0.694915 0.625 > * X] 
 +       0.4559 * <0.555556 0.375 0.779661 0.708333 > * X] 
 -       1      * <0.666667 0.416667 0.677966 0.666667 > * X] 
 +       1      * <0.611111 0.416667 0.762712 0.708333 > * X] 

FIGURE 11.26, cont’d
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SimpleLogistic builds logistic regression models (see Section 4.6, page 126), 
fitting them using LogitBoost with simple regression functions as base learners and 
determining how many iterations to perform using cross-validation, which supports 
automatic attribute selection (Landwehr et al., 2005). SimpleLogistic generates a 
degenerate logistic model tree comprising a single node, and supports the options 
given earlier for LMT.

=== Detailed Accuracy By Class === 
 

TP Rate  FP Rate Precision Recall F-Measure  ROC Area  Class 
   1       0       1        1      1         1        Iris-setosa 
   0.94    0.03    0.94     0.94   0.94      0.955     Iris-versicolor 
   0.94    0.03    0.94     0.94   0.94      0.972     Iris-virginica 

Weighted   0.96    0.02    0.96     0.96   0.96      0.976  

=== Confusion Matrix === 
 
  a  b  c   <-- classified as 
 50  0  0 |  a = Iris-setosa 
  0 47  3 |  b = Iris-versicolor 
  0  3 47 |  c = Iris-virginica 

Avg.

Logistic is an alternative implementation for building and using a multinomial logistic 
regression model with a ridge estimator to guard against overfitting by penalizing large 
coefficients, based on work by le Cessie and van Houwelingen (1992). Figure 11.27 
shows its output on the iris data. The coefficients of the regression functions are shown in 
tabular form, one for each class value except for the last class. Given m input attributes 
and k classes, the probability predicted for class j (with the exception of the last class) is 
given by
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FIGURE 11.26, cont’d

Beneath the table of regression coefficients is a second table giving an estimate 
of the odds ratio for each input attribute and class value. For a given attribute, this 
value gives an indication of its influence on the class when the values of the other 
attributes are held fixed.

RBFNetwork implements a Gaussian radial basis function network (see Section 
6.4, page 239), deriving the centers and widths of hidden units using k-means and 
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FIGURE 11.27 

Output of Logistic on the iris data. 

Scheme:       weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 
Relation:     iris 
Instances:    150 
Attributes:   5 
              sepallength 
              sepalwidth 
              petallength 
              petalwidth 
              class 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
Logistic Regression with ridge parameter of 1.0E-8 
Coefficients... 
                         Class 
Variable           Iris-setosa  Iris-versicolor 
=============================================== 
sepallength            21.8065           2.4652 
sepalwidth              4.5648           6.6809 
petallength           -26.3083          -9.4293 
petalwidth             -43.887         -18.2859 
Intercept               8.1743           42.637 
 
Odds Ratios... 
                         Class 
Variable           Iris-setosa  Iris-versicolor 
=============================================== 
sepallength    2954196662.0161          11.7653 
sepalwidth             96.0426         797.0304 
petallength                  0           0.0001 
petalwidth                   0                0 
 
Time taken to build model: 0.02 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         144               96      % 
Incorrectly Classified Instances         6                4      % 
Kappa statistic                          0.94   
Mean absolute error                      0.0287 
Root mean squared error                  0.1424 
Relative absolute error                  6.456  % 
Root relative squared error             30.2139 % 
Total Number of Instances              150      
 
=== Detailed Accuracy By Class === 
 

TP Rate  FP Rate Precision Recall F-Measure  ROC Area  Class 
   1      0       1        1        1         1       Iris-setosa 
   0.92   0.02    0.958    0.92     0.939     0.97    Iris-versicolor 
   0.96   0.04    0.923    0.96     0.941     0.975   Iris-virginica 

Weighted    0.96   0.02    0.96     0.96     0.96      0.982 

 
=== Confusion Matrix === 
 
  a  b  c   <-- classified as 
 50  0  0 |  a = Iris-setosa 
  0 46  4 |  b = Iris-versicolor 
  0  2 48 |  c = Iris-virginica 

Avg.   
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combining the outputs obtained from the hidden layer using logistic regression if 
the class is nominal and linear regression if it is numeric. The activations of the basis 
functions are normalized to sum to 1 before they are fed into the linear models. You 
can specify k, the number of clusters; the maximum number of logistic regression 
iterations for nominal-class problems; the minimum standard deviation for the clus-
ters; and the ridge value for regression. If the class is nominal, k-means is applied 
separately to each class to derive k clusters for each class.

LibSVM and LibLINEAR are both wrapper classifiers that allow third-party 
implementations of support vector machines and logistic regression to be used in 
Weka. To use them, the jar file for the library in question must be in the class path 
for the Java virtual machine. The former gives access to the LIBSVM library of 
support vector classification and regression algorithms (Chang and Lin, 2001), 
which provides several types of support vector machines for multiclass classifica-
tion, regression, and one-class problems, and gives a choice of linear, polynomial, 
radial-basis, and sigmoid kernels. The latter gives access to the LIBLINEAR library 
(Fan et al., 2008), which includes fast implementations of linear support vector 
machines for classification and logistic regression.

Neural Networks
MultilayerPerceptron is a neural network that trains using backpropagation (see 
Section 6.4, page 235). Although listed under functions in Table 11.5, it differs 
from the other schemes because it has its own user interface. If you load up the 
numeric version of the weather data, invoke MultilayerPerceptron, set GUI to True 
in its object editor, and run the network by clicking Start on the Classify panel, 
the diagram in Figure 11.28 appears in a separate window. This network has three 
layers: an input layer on the left with one rectangular box for each attribute (colored 
green); a hidden layer next to it (red) to which all the input nodes are connected; 
and an output layer at the right (orange). The labels at the far right show the classes 
that the output nodes represent. Output nodes for numeric classes are automatically 
converted to unthresholded linear units.

Before clicking Start to run the network, you can alter its structure by adding 
nodes and connections. Nodes can be selected or deselected. All six nodes in the 
hidden and output layers in Figure 11.28(a) are deselected, indicated by the gray 
color of their center. To select a node, simply click on it. This changes the color of its 
center from gray to bright yellow. To deselect a node, right-click in an empty space. 
To add a node, ensure that none is selected and left-click anywhere in the panel; the 
new node will be selected automatically. In Figure 11.28(a), new node has been 
added at the lower center. To connect two nodes, select the start node and then click 
on the end one. If several start nodes are selected, they are all connected to the end 
node. If you click in empty space instead, a new node is created as the end node. 
Notice that connections are directional (although the directions are not shown). The 
start nodes remain selected; thus, you can add an entire hidden layer with just a few 
clicks, as shown in Figure 11.28(b). To remove a node, ensure that no nodes are 
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FIGURE 11.28 

Using Weka’s neural-network graphical user interface: (a) beginning the process of 
editing the network to add a second hidden layer and (b) the finished network with two 
hidden layers. 

(a)

(b)
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selected and right-click it; this also removes all connections to it. To remove a single 
connection, select one node and right-click the node at the other end.

As well as configuring the structure of the network, you can control the learning 
rate, the momentum (see Section 6.4, page 238), and the number of passes that will 
be taken through the data, called epochs. The network begins to train when you click 
Start, and a running indication of the epoch and the error for that epoch is shown at 
the lower left of the panels in Figure 11.28. Note that the error is based on a network 
that changes as the value is computed. For numeric classes the error value depends 
on whether the class is normalized. The network stops when the specified number 
of epochs is reached, at which point you can accept the result or increase the desired 
number of epochs and press Start again to continue training.

MultilayerPerceptron need not be run through the graphical interface. Several 
parameters can be set from the object editor to control its operation. If you are using 
the graphical interface, they govern the initial network structure, which you can 
override interactively. With autoBuild set, hidden layers are added and connected 
up. The default is to have the one hidden layer shown in Figure 11.28(a); however, 
without autoBuild this would not appear and there would be no connections. The 
hiddenLayers parameter defines what hidden layers are present and how many nodes 
each one contains. Figure 11.28(a) is generated by a value of 4 (one hidden layer 
with four nodes), and although Figure 11.28(b) was created by adding nodes inter-
actively, it could have been generated by setting hiddenLayers to 4,5 (one hidden 
layer with four nodes and another with five). The value is a comma-separated list 
of integers; 0 gives no hidden layers. Furthermore, there are predefined values that 
can be used instead of integers: i is the number of attributes, o the number of class 
values, a the average of the two, and t their sum. The default, a, was used to generate 
Figure 11.28(a).

The parameters learningRate and momentum set values for these variables, which 
can be overridden in the graphical interface. A decay parameter causes the learning 
rate to decrease with time: It divides the starting value by the epoch number to obtain 
the current rate. This sometimes improves performance and may stop the network 
from diverging. The reset parameter automatically resets the network with a lower 
learning rate and begins training again if it is diverging from the answer (this option 
is only available if the graphical interface is not used).

The trainingTime parameter sets the number of training epochs. Alternatively, a 
percentage of the data can be set aside for validation (using validationSetSize): Then 
training continues until performance on the validation set starts to deteriorate con-
sistently, or until the specified number of epochs is reached. If the percentage is set 
to 0, no validation set is used. The validationThreshold parameter determines how 
many consecutive times the validation set error can deteriorate before training is 
stopped.

The NominalToBinaryFilter filter is specified in the MultilayerPerceptron 
object editor by default; turning it off may improve performance on data in 
which the nominal attributes are actually ordinal. The attributes can be normal-
ized (with normalizeAttributes); in addition, a numeric class can be normalized 
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(with normalizeNumericClass). Both may improve performance; these options 
are turned on by default.

Lazy Classifiers
Lazy learners store the training instances and do no real work until classification 
time. IB1 is a basic instance-based learner (see Section 4.7, page 131) that finds the 
training instance closest in Euclidean distance to the given test instance and predicts 
the same class as this training instance. If several instances qualify as the closest, 
the first one found is used.

IBk is a k-nearest-neighbor classifier. A variety of different search algorithms can 
be used to speed up the task of finding the nearest neighbors. A linear search is the 
default, but other options include kD-trees, ball trees, and so-called “cover trees” 
(Beygelzimer et al., 2006). The distance function used is a parameter of the search 
method. The default is the same as for IB1—that is, the Euclidean distance; other 
options include Chebyshev, Manhattan, and Minkowski distances. The number of 
nearest neighbors (default k = 1) can be specified explicitly in the object editor or 
determined automatically using leave-one-out cross-validation, subject to an upper 
limit given by the specified value. Predictions from more than one neighbor can be 
weighted according to their distance from the test instance, and two different for-
mulas are implemented for converting the distance into a weight. The number of 
training instances kept by the classifier can be restricted by setting the window size 
option. As new training instances are added, the oldest ones are removed to maintain 
the number of training instances at this size.

KStar is a nearest-neighbor method with a generalized distance function based 
on transformations (see Section 6.5, page 248).

LBR (for Lazy Bayesian Rules) is a Bayesian classifier that defers all processing 
to classification time. For each test instance it selects a set of attributes for which 
the independence assumption should not be made; the others are treated as indepen-
dent of one another given the class and the selected set of attributes. It works well, 
but is computationally quite expensive (Zheng and Webb, 2000). Attributes need to 
be discretized before applying this classifier.

LWL is a general algorithm for locally weighted learning. It assigns weights using 
an instance-based method and builds a classifier from the weighted instances. The 
classifier is selected in LWL’s object editor: A good choice is Naïve Bayes for clas-
sification problems and linear regression for regression problems (see Section 6.6, 
page 258). You can set the number of neighbors used, which determines the kernel 
bandwidth, and the kernel shape to use for weighting—linear, inverse, or Gaussian. 
Attribute normalization is turned on by default.

Multi-Instance Classifiers
Classifiers in the MI category handle multi-instance data. MIDD, MIEMDD, and 
MDD are all variants of the diverse-density algorithm described in Section 6.10 
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(page 301). MIDD is the standard version; it maximizes the bag-level likelihood 
using the noisy-or model. The data can be normalized or standardized first. MIEMDD 
combines the diverse-density algorithm with an EM-style iterative approach. As well 
as the option to normalize or standardize the data, the user can specify a random seed 
to initialize the iterative process. MIDD and MIEMDD operate on the standard multi-
instance assumption that a bag is positive if and only if it contains at least one posi-
tive instance. MDD, on the other hand, makes the “collective” assumption that all 
individual instances in a bag contribute equally and independently to its class label.

MILR is an adaptation of standard single-instance logistic regression to the multi-
instance setting (see Section 6.10, page 299). It has one mode of operation based on 
the standard multi-instance assumption and two based on the collective assumption. 
As in single-instance logistic regression, a ridge parameter can be used to guard 
against overfitting.

MISMO and MISVM both upgrade support vector machines to the multi-instance 
setting (see Section 6.10). The former uses the SMO algorithm in conjunction with 
a kernel function designed for multi-instance data. The user can select between a 
multi-instance polynomial or radial-basis function kernel. Alternatively, the bag-
level data can be summarized by the maximum and minimum attribute values—in 
which case the multi-instance kernels degenerate to their single-instance equivalents 
and the standard SMO options apply. MISVM implements an alternative support 
vector machine method using a single-instance classifier in the iterative fashion 
described in Section 6.10 (page 300).

Three multi-instance classifiers use distance-based approaches. Given a target 
bag to be classified, CitationKNN (see Section 6.10) considers not only its nearest 
neighbors—the “references”—but also those bags in the training set for which the 
target bag is the nearest one—the “citers.” There is an option for setting how many 
of each to use, and also an option for setting the rank of the Hausdorff distance—
that is, use the nth largest distance instead of the largest. MINND represents each 
bag by a normal distribution with a diagonal covariance matrix and finds nearest 
neighbors using the Kullback-Leibler distance. MIOptimalBall classifies unknown 
bags based on the distance of their instances to a reference point (see Section 6.10, 
page 300). Because of its simplicity, this is a good base classifier for use with a 
boosting algorithm such as AdaBoostM1 (Section 11.5).

SimpleMI and MIWrapper apply standard single-instance learners to multi-
instance data using the methods of aggregating the input and output, respectively (see 
Section 4.9, page 142). The former can aggregate bag-level data using the coordinate-
wise geometric average, arithmetic average, or minimum and maximum values. The 
latter allows users to specify whether to aggregate the instance-level probability 
estimates from the single-instance model using the average, geometric average, or 
maximum. Users can also specify whether each instance in a bag receives a weight 
of 1, or whether weights are normalized to give each bag the same weight. MIBoost 
is a boosting algorithm inspired by AdaBoost that builds a series of weak classifiers 
using a single-instance learner (Xu and Frank, 2004). Probability estimates for  
individual instances are combined using the geometric mean to form bag-level 
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probability estimates. The single-instance base learner and the number of iterations 
to perform are configurable options.

Miscellaneous Classifiers
The “Misc.” category in Table 11.5 includes three classifiers, two of which were 
mentioned at the end of Section 4.7 (page 138). HyperPipes, for discrete classi-
fication problems, records the range of values observed in the training data for 
each attribute and category and works out which ranges contain the attribute values 
of a test instance, choosing the category with the largest number of correct ranges. 
VFI (voting feature intervals) constructs intervals around each class by discretizing 
numeric attributes and using point intervals for nominal ones, records class counts 
for each interval on each attribute, and classifies test instances by voting (Demiroz 
and Guvenir, 1997). A simple attribute weighting scheme assigns higher weight 
to more confident intervals, where confidence is a function of entropy. VFI is 
faster than Naïve Bayes but slower than HyperPipes. Neither method can handle 
missing values. SerializedClassifier loads a model that has been serialized to a 
file and uses it for prediction. Providing a new training dataset has no effect 
because it encapsulates a static model. Similarly, performing cross-validation using 
SerializedClassifier makes little sense.

11.5  METALEARNING ALGORITHMS
Metalearning algorithms, listed in Table 11.6, take classifiers and turn them into 
more powerful learners. One parameter specifies the base classifier; others specify 
the number of iterations for iterative schemes such as bagging and boosting and an 
initial seed for the random-number generator. We already met FilteredClassifier in 
Section 11.3: It runs a classifier on data that has been passed through a filter, which 
is a parameter. The filter’s own parameters are based exclusively on the training 
data, which is the appropriate way to apply a supervised filter to test data.

Bagging and Randomization
Bagging bags a classifier to reduce variance (see Section 8.2, page 352). This imple-
mentation works for both classification and regression, depending on the base 
learner. In the case of classification, predictions are generated by averaging probabil-
ity estimates, not by voting. One parameter is the size of the bags as a percentage 
of the training set. Another is whether to calculate the out-of-bag error, which gives 
the average error of the ensemble members (Breiman, 2001).

Dagging is similar to Bagging, but as input to each member of the ensemble it 
uses disjoint stratified folds of the training data instead of bootstrap samples (Ting 
and Witten, 1997b). This can be useful when building an ensemble of classifiers that 
have poor time complexity in terms of the number of instances. The number of folds 
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is a parameter that controls not only the size of the training set presented to each 
base classifier but also the number of classifiers in the ensemble.

RandomCommittee is even simpler: It builds an ensemble of base classifiers and 
averages their predictions. Each one is based on the same data but uses a different 
random-number seed (see Section 8.3, page 356). This only makes sense if the base 
classifier is randomized; otherwise, all classifiers would be the same.

RandomSubSpace builds an ensemble of classifiers, each trained using a ran-
domly selected subset of the input attributes (see Section 8.3). Aside from the 
number of iterations and random seed to use, it provides a parameter to control the 
size of the attribute subsets. RotationForest implements the rotation forest ensemble 
learner described in Section 8.3 (page 357). Although the classic paper on rotation 
forests (Rodriguez et al., 2006) uses random subspaces and principal components to 
create an ensemble of decision trees, Weka’s implementation allows the base clas-
sifier to be any classification or regression scheme. The principal components trans-
formation is performed by Weka’s filter of the same name. RotationForest can be 
configured to use other projections such as random projections or partial least 
squares. Other parameters control the size of the subspaces and the number of 
instances that are input to the projection filter.

Boosting
AdaBoostM1 implements the algorithm described in Section 8.4 (Figure 8.2). It can 
be accelerated by specifying a threshold for weight pruning. AdaBoostM1 resamples 
if the base classifier cannot handle weighted instances (you can force resampling 
anyway). MultiBoostAB combines boosting with a variant of bagging to prevent 
overfitting (Webb, 2000).

Whereas boosting only applies to nominal classes, AdditiveRegression enhances 
the performance of a regression learner (see Section 8.5, page 362). There are two 
parameters: shrinkage, which governs the learning rate, and the maximum number 
of models to generate. If the latter is infinite, work continues until the error stops 
decreasing.

Decorate builds ensembles of diverse classifiers by using specially constructed 
artificial training examples (Melville and Mooney, 2005).2 One parameter is the 
number of artificial examples to use as a proportion of the training data. Another is 
the desired number of classifiers in the ensemble, although execution may terminate 
prematurely because the number of iterations can also be capped. Larger ensembles 
usually produce more accurate models but have greater training time and model 
complexity.

LogitBoost performs additive logistic regression (see Section 8.5, page 364). Like 
AdaBoostM1, it can be accelerated by specifying a threshold for weight pruning. The 

2The random forest scheme was mentioned on page 357, 455. It is really a metalearner, but Weka 
includes it among the decision tree methods because it is hardwired to a particular classifier, 
RandomTree.
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appropriate number of iterations can be determined using internal cross-validation; 
there is a shrinkage parameter that can be tuned to prevent overfitting; also, you can 
choose resampling instead of reweighting. RacedIncrementalLogitBoost learns by 
racing LogitBoosted committees, and operates incrementally by processing the data 
in batches, making it useful for large datasets (Frank et al., 2002). Each committee 
member is learned from a different batch. The batch size starts at a given minimum 
and repeatedly doubles until it reaches a preset maximum. Resampling is used if the 
base classifier cannot handle weighted instances (you can force resampling anyway). 
Log-likelihood pruning can be used within each committee: This discards new com-
mittee members if they decrease the log-likelihood based on the validation data. It 
is up to you to determine how many instances to hold out for validation. The valida-
tion data is also used to determine which committee to retain when training 
terminates.

Combining Classifiers
Vote provides a baseline method for combining classifiers. The default scheme is to 
average their probability estimates or numeric predictions, for classification and 
regression, respectively. Other combination schemes are available—for example, 
using majority voting for classification. MultiScheme selects the best classifier from 
a set of candidates using cross-validation of percentage accuracy or mean-squared 
error for classification and regression, respectively. The number of folds is a param-
eter. Performance on training data can be used instead.

Stacking combines classifiers using stacking (see Section 8.7, page 369) for 
both classification and regression problems. You specify the base classifiers, the 
metalearner, and the number of cross-validation folds. StackingC implements a 
more efficient variant for which the metalearner must be a numeric prediction 
scheme (Seewald, 2002). In Grading, the inputs to the metalearner are base-
level predictions that have been marked (i.e., “graded”) as correct or incorrect. 
For each base classifier, a metalearner is learned that predicts when the base 
classifier will err. Just as stacking may be viewed as a generalization of voting, 
grading generalizes selection by cross-validation (Seewald and Fürnkranz, 
2001).

Cost-Sensitive Learning
There are two metalearners for cost-sensitive learning (see Section 5.7, page 167). 
The cost matrix can be supplied as a parameter or loaded from a file in the directory 
set by the onDemandDirectory property, named by the relation name and with the 
extension cost. CostSensitiveClassifier either reweights training instances according 
to the total cost assigned to each class (cost-sensitive learning, page 167) or predicts 
the class with the least expected misclassification cost rather than the most likely one 
(cost-sensitive classification, page 166). MetaCost generates a single cost-sensitive 
classifier from the base learner (see Section 8.2, page 356). This implementation uses 
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all bagging iterations when reclassifying training data (Domingos, 1999, reports a 
marginal improvement when using only those iterations containing each training 
instance to reclassify it). You can specify each bag’s size and the number of bagging 
iterations.

Optimizing Performance
Four metalearners use the wrapper technique to optimize the base classifier’s per-
formance. AttributeSelectedClassifier selects attributes, reducing the data’s dimen-
sionality before passing it to the classifier (see Section 7.1, page 308). You can 
choose the attribute evaluator and the search method as in the Select attributes panel 
described in Section 11.2. CVParameterSelection optimizes performance by using 
cross-validation to select parameters. For each parameter you give a string contain-
ing its lower and upper bounds and the desired number of increments. For example, 
to vary parameter –P from 1 to 10 in increments of 1, use

P 1 10 10

The number of cross-validation folds can be specified.
GridSearch is similar to CVParameterSelection, but is limited to optimizing 

two parameters by searching a two-dimensional grid. However, it offers the ability 
to optimize parameters of a classifier, a preprocessing filter, or one parameter 
from each. The user can choose to optimize accuracy, root mean-squared error, 
root relative-squared error, mean absolute error, relative absolute error, correlation 
coefficient, kappa or a linear combination of correlation coefficient, root relative-
squared error, and relative absolute error (whereas CVParameterSelection can only 
optimize accuracy or root mean-squared error for classification and regression, 
respectively).

Like CVParameterSelection, GridSearch allows users to specify the lower and 
upper bounds for each parameter, and the desired number of increments. It also 
allows the value of each target parameter to be set using a mathematical expression 
involving the same operators and functions as for the MathExpressionFilter, and 
parameters that include arbitrary constants, the value of one of the bounds, the step 
size, or the current iteration number. It performs a quick initial evaluation of the grid 
using twofold cross-validation on the training data. Following this, the best grid 
point—according to the chosen evaluation metric—is explored more closely using 
a hill-climbing search that considers adjacent parameter pairs in the grid. For this 
phase, tenfold cross-validation is used. If one of the adjacent points proves to be 
superior, it becomes the new center and another tenfold cross-validation is per-
formed. This process continues until no better point is found, or the best point is on 
the boundary of the grid. In the latter case the user has the option of allowing Grid-
Search to automatically extend the grid and continue the search. The maximum 
number of times the grid can be extended in this fashion is another user-definable 
option.
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The fourth metalearner, ThresholdSelector, optimizes one of a number of dif-
ferent evaluation metrics, including F-measure, precision, recall, accuracy, and true 
positive rate (see Section 5.7, page 163), by selecting a probability threshold on 
the classifier’s output. Performance can measured on the training data, on a holdout 
set, or by cross-validation. The probabilities returned by the base learner can be 
rescaled into the full range [0,1], which is useful if the scheme’s probabilities are 
restricted to a narrow subrange. The metalearner can be applied to multiclass prob-
lems by specifying the class value for which the optimization is performed as

1.	 The first class value.
2.	 The second class value.
3.	 Whichever value is least frequent.
4.	 Whichever value is most frequent.
5.	 The first class named yes, pos(itive), or 1.

Retargeting Classifiers for Different Tasks
Six metalearners adapt learners designed for one kind of task to another. Classifi-
cationViaRegression performs classification using a regression method by binarizing 
the class and building a regression model for each value. RegressionByDiscretiza-
tion is a regression scheme that discretizes the class attribute into a specified 
number of bins using equal-width discretization and then employs a classifier. The 
predictions are the weighted average of the mean class value for each discretized 
interval, with weights based on the predicted probabilities for the intervals. Classi
ficationViaClustering performs classification using a clustering algorithm; the major-
ity class in each cluster is used for making predictions. OrdinalClassClassifier 
applies standard classification algorithms to ordinal-class problems (Frank and Hall, 
2001).

MultiClassClassifier handles multiclass problems with two-class classifiers using 
any of these methods:

1.	 One versus all the rest.
2.	 Pairwise classification using voting to predict.
3.	 Exhaustive error-correcting codes (see Section 7.6, page 341).
4.	 Randomly selected error-correcting codes.

Random code vectors are known to have good error-correcting properties: A param-
eter specifies the length of the code vector (in bits). For pairwise classification, 
pairwise coupling of probability estimates can be turned on. END implements the 
ensembles of nested dichotomies method (see Section 7.6) for handling multiclass 
problems with two-class classifiers. Several types of nested dichotomies can be 
used, including two that are balanced with respect to the data or to classes in  
the data.
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11.6  CLUSTERING ALGORITHMS
Table 11.7 lists Weka’s clustering algorithms. Cobweb, EM, SimpleKMeans, and 
HierarchicalClusterer were described in Section 6.8 (page 272). For the EM imple-
mentation you can specify how many clusters to generate, or the algorithm can 
decide using cross-validation—in which case, the number of folds is fixed at 10 
(unless there are fewer than 10 training instances). You can specify the maximum 
number of iterations and set the minimum allowable standard deviation for the 
normal-density calculation. Clusters are Gaussian distributions with diagonal covari-
ance matrices. SimpleKMeans clusters data using k-means; the number of clusters 
is specified by a parameter. The user can choose between the Euclidean and Manhat-
tan distance metrics. In the latter case the algorithm is actually k-medians instead of 
k-means, and the centroids are based on medians rather than means in order to mini-
mize the within-cluster distance function.

Figure 11.29 shows the output of SimpleKMeans for the weather data, with 
default options: two clusters and Euclidean distance. The result of clustering is 
shown as a table with rows that are attribute names and columns that correspond to 
the cluster centroids; an additional cluster at the beginning shows the entire dataset. 
The number of instances in each cluster appears in parentheses at the top of its 
column. Each table entry is either the mean (numeric attribute) or mode (nominal 

Table 11.7  Clustering Algorithms

Name Function

CLOPE Fast clustering of transactional data
Cobweb Implements the Cobweb and Classit 

clustering algorithms
DBScan Nearest-neighbor-based clustering that 

automatically determines the number of 
clusters

EM Cluster using expectation maximization
FarthestFirst Cluster using the farthest first traversal 

algorithm
FilteredClusterer Runs a clusterer on filtered data
HierarchicalClusterer Agglomerative hierarchical clustering
MakeDensityBasedCluster Wrap a clusterer to make it return distribution 

and density
OPTICS Extension of DBScan to hierarchical 

clustering
sIB Cluster using the sequential information 

bottleneck algorithm
SimpleKMeans Cluster using the k-means method
XMeans Extension of k-means
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attribute) of the corresponding attribute for the cluster in that column; users can 
choose to show standard deviations (numeric attributes) and frequency counts 
(nominal attributes) as well. The bottom of the output shows the result of applying 
the learned clustering model. In this case, it assigned each training instance to one 
of the clusters, showing the same result as the parenthetical numbers at the top of 
each column. An alternative is to use a separate test set or a percentage split of the 
training data, in which case the figures would be different.

Figure 11.30 shows the output of EM for the same data, with the number of 
clusters set to two. Although there is no notion of the number of instances in each 
cluster, the columns are again headed by its prior probability in parentheses. The 
table entries show the parameters of normal distributions for numeric attributes or 
frequency counts for the values of nominal attributes—and here the fractional count 

FIGURE 11.29 

Output of SimpleKMeans on the weather data. 

=== Run information === 
 
Scheme:       weka.clusterers.SimpleKMeans -N 2 -A "weka.core.

EuclideanDistance - R first-last" -I 500 -S 10 
Relation:     weather 
Instances:    14 
Attributes:   5 
              outlook 
              temperature 
              humidity 
              windy 
              play 
Test mode:    evaluate on training data 
 
=== Model and evaluation on training set === 
 
kMeans 
====== 
 
Number of iterations: 3 
Within cluster sum of squared errors: 16.237456311387238 
Missing values globally replaced with mean/mode 
 
Cluster centroids: 
                           Cluster# 
Attribute      Full Data          0          1 
                    (14)        (9)        (5) 
============================================== 
outlook            sunny      sunny   overcast 
temperature      73.5714    75.8889       69.4 
humidity         81.6429    84.1111       77.2 
windy              FALSE      FALSE       TRUE 
play                 yes        yes        yes 
 
Clustered Instances 
 
0       9 ( 64%) 
1       5 ( 36%) 
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FIGURE 11.30 

Output of EM on the weather data. 

=== Run information === 
 
Scheme:       weka.clusterers.EM -I 100 -N 2 -M 1.0E-6 -S 100 
Relation:     weather 
Instances:    14 
Attributes:   5 
              outlook 
              temperature 
              humidity 
              windy 
              play 
Test mode:    evaluate on training data 
 
=== Model and evaluation on training set === 
 
EM 
== 
 
Number of clusters: 2 
 
              Cluster 
Attribute           0       1 
               (0.36)  (0.64) 
============================== 
outlook 
  sunny         3.8801  3.1199 
  overcast      1.8886  4.1114 
  rainy         2.1706  4.8294 
  [total]       7.9392 12.0608 
temperature 
  mean         76.9298 71.7407 
  std. dev.     5.8179  5.8319  
humidity 
  mean         90.0868 77.0398 
  std. dev.     3.7298  9.1727  
windy 
  TRUE          3.2249  4.7751 
  FALSE         3.7144  6.2856 
  [total]       6.9392 11.0608 
play 
  yes           2.2053  8.7947 
  no            4.7339  2.2661 
  [total]       6.9392 11.0608 
Clustered Instances 
 
0       5 ( 36%) 
1       9 ( 64%) 
 
Log likelihood: -9.13099 
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values reveal the “soft” nature of the clusters produced by the EM algorithm, in that 
any instance can be split between several clusters. At the bottom, the log-likelihood 
of the model (again with respect to the training data) is shown, as well as the number 
of instances assigned to each cluster when the learned model is applied to the data 
as a classifier.

XMeans implements an extended version of k-means by Moore and Pelleg 
(2000). It uses a Bayesian information criterion for selecting the number of clusters 
(see Section 6.8, page 292), and can use kD-trees for speed (see Section 4.7, page 
132). The user can specify the distance function to use, the minimum and maximum 
number of clusters to consider, and the maximum number of iterations to perform.

Cobweb implements both the Cobweb algorithm for nominal attributes and the 
Classit algorithm for numeric attributes. The ordering and priority of the merging 
and splitting operators differ between the original Cobweb and Classit papers (where 
they are somewhat ambiguous). This implementation always compares four different 
ways of treating a new instance and chooses the best: adding it to the best host, 
making it into a new leaf, merging the two best hosts and adding it to the merged 
node, and splitting the best host and adding it to one of the splits. Acuity and cutoff 
are parameters.

HierarchicalClusterer implements agglomerative (bottom-up) generation of hier
archical clusters (see Section 6.8, page 273). Several different link types, which are 
ways of measuring the distance between clusters, are available as options.

FilteredClusterer allows the data to be passed through a filter before it reaches 
a clusterer. Both the filter and the base clusterer are options that the user can 
configure.

FarthestFirst implements the farthest-first traversal algorithm of Hochbaum and 
Shmoys (1985), cited by Sanjoy Dasgupta (2002); it is a fast, simple, approximate 
clusterer modeled on k-means. MakeDensityBasedClusterer is a metaclusterer that 
wraps a clustering algorithm to make it return a probability distribution and density. 
To each cluster and attribute it fits a discrete distribution or a symmetric normal 
distribution (of which the minimum standard deviation is a parameter).

CLOPE implements a fast clustering technique for market basket–type data 
(Yang et al., 2002). It uses a cluster-quality heuristic based on histograms—that is, 
the number of distinct items and the count of each item computed from the item sets 
in a cluster. A good cluster is one where the number of items shared among the item 
sets in a cluster is high compared to the number of distinct items. The overall good-
ness of a set of clusters is the sum of the goodness of the individual clusters. The 
degree of intracluster similarity (i.e., the preference for common items between item 
sets in a cluster) can be controlled with a “repulsion” parameter.

DBScan uses the Euclidean distance metric to determine which instances belong 
together in a cluster (Ester et al., 1996), but, unlike k-means, it can determine the 
number of clusters automatically, find arbitrarily shaped clusters, and incorporate  
a notion of outlier. A cluster is defined as containing at least a minimum number of 
points, every pair of points of which either lies within a user-specified distance (ε) 
of each other or is connected by a series of points in the cluster that each lie within 
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a distance ε of the next point in the chain. Smaller values of ε yield denser clusters 
because instances must be closer to one another to belong to the same cluster. 
Depending on the value of ε and the minimum cluster size, it is possible that some 
instances will not belong to any cluster. These are considered outliers.

Figure 11.31 shows the clusters formed by DBScan on the iris data (without the 
class attribute) using ε = 0.2 and a minimum cluster size of 5. Two clusters have 
been found—the Iris setosas in one and the Iris viginicas and versicolors in the 
other. Three instances are deemed outliers (denoted by M in the plot), one setosa 
(lower left) and two virginicas (upper right). In the two-dimensional space that is 
being used to visualize the results (sepal width versus petal width), they do indeed 
appear to lie outside both clusters. If the minimum cluster size were reduced to 2, 
then the two outlying virginicas would form a third cluster because they lie within 
ε = 0.2 of each other.

OPTICS is an extension of DBScan to hierarchical clustering (Ankerst et al., 
1999). It imposes an ordering on the instances, which, along with two-dimensional 
visualization, exposes the hierarchical structure of the clusters. The ordering process 
places instances that are closest to one another, according to the distance metric, 
beside one another in the list. Furthermore, it annotates each adjacent pair of 
instances with the “reachability distance,” which is the minimum value of ε that 
allows the pair to belong to the same cluster. The clusters become apparent when 
ordering is plotted against reachability distance. Because instances in a cluster have 

FIGURE 11.31 

Clusters formed by DBScan on the iris data. 
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low reachability distance to their nearest neighbors, the clusters appear as valleys in 
the visualization. The deeper the valley, the denser the cluster.

Figure 11.32 shows an OPTICS visualization for the iris data, using the same 
values for ε and minimum cluster size as for DBScan. The two clusters found by 
DBScan using these parameter settings correspond to the two main valleys between 
the three high peaks in the plot. Various clusterings can be obtained by setting a 
threshold on the reachability value—that is, by drawing a horizontal line at a given 
reachability value through the plot. The valley on either side of a peak intersected 
by the line is a cluster of its own.

sIB is an algorithm designed for document clustering that uses an information-
theoretic distance metric (Slonim et al., 2002). The number of clusters to find and 
the maximum number of iterations to perform can be specified by the user.

11.7  ASSOCIATION-RULE LEARNERS
Weka has six association-rule learners, listed in Table 11.8. Apriori implements the 
Apriori algorithm (see Section 4.5). It starts with a minimum support of 100% of 
the data items and decreases this in steps of 5% until there are at least 10 rules with 

FIGURE 11.32 

OPTICS visualization for the iris data. 
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the required minimum confidence of 0.9 or until the support has reached a lower 
bound of 10%, whichever occurs first. (These default values can be changed.) There 
are four alternative metrics for ranking rules: Confidence, which is the proportion 
of the examples covered by the premise that are also covered by the consequent 
(called accuracy in Section 4.5); Lift, which is determined by dividing the confidence 
by the support (called coverage in Section 4.5, page 116); Leverage, which is the 
proportion of additional examples covered by both the premise and the consequent 
beyond those expected if the premise and consequent were statistically independent; 
and Conviction, a measure defined by Brin et al. (1997). You can also specify a 
significance level, and rules will be tested for significance at this level. Apriori has 
an option to limit the rules found to those that contain just the value of a single 
attribute in the consequence of the rule. Such rules are called “class” association 
rules—that is, classification rules.

In order to process market basket data with Apriori, where we are interested in 
knowing (from the items present in shoppers’ baskets) which items are purchased 
together, it is necessary to encode the input ARFF data in a specific way. In particu-
lar, since we are not interested in co-occurrence of items not present in shopping 
baskets, the attributes corresponding to items should be declared as single-valued 
nominal ones in the ARFF file. Missing values can be used to indicate the absence 
of an item from a shopping basket.

FPGrowth implements the frequent-pattern tree mining algorithm described in 
Section 6.3 (page 216). Being designed for market basket data, Apriori’s special 
encoding for this type of data is not implemented here. All attributes are expected to be 
binary nominal ones, and the user can specify which of the two values is to be treated 
as positive—that is, which one indicates presence in the basket (the default is to use the 
second value). FPGrowth can operate on either standard or sparse instances. Most of 
its options are the same as for Apriori. It finds the requested number of rules in the 
same way—by iteratively decreasing the minimum support. Optionally, the user can 
have FPGrowth find all the rules that meet the lower bound for the minimum support 

Table 11.8  Association-Rule Learners

Name Function

Apriori Find association rules using the Apriori 
algorithm

FilteredAssociator Run an associator on filtered data
FPGrowth Association rule mining using frequent pattern 

trees
GeneralizedSequentialPatterns Find large item sets in sequential data
PredictiveApriori Find association rules sorted by predictive 

accuracy
Tertius Confirmation-guided discovery of association 

or classification rules
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and the minimum value set for the ranking metric (confidence, lift, leverage, or 
conviction).

FilteredAssociator allows the data to be passed through a filter before it reaches 
an associator. Both the filter and the base associator are options that the user can 
configure.

GeneralizedSequentialPatterns implements a version of Srikant and Agrawal’s 
(1996) GSP algorithm for finding large item sets that occur sequentially over time. 
The input data must contain a special nominal attribute that groups transactions 
(instances) together in time. All instances with the same nominal sequence identifier 
are grouped together, defining a time window from which sequential patterns can 
be extracted—for example, the identifier might group transactions according to the 
day on which they occur. The instances within each group are treated as occurring 
sequentially, in the order in which they appear in the data. Sequential large item sets, 
consisting of item combinations that occur across transactions sequentially within a 
group, are found that meet a user-supplied minimum-support threshold. The output 
can be optionally filtered to show only those sequential patterns that contain specific 
items the user is interested in.

PredictiveApriori combines confidence and support into a single measure of 
predictive accuracy (Scheffer, 2001) and finds the best n association rules in order. 
Internally, the algorithm successively increases the support threshold because the 
value of predictive accuracy depends on it. Tertius finds rules according to a confir-
mation measure (Flach and Lachiche, 1999), seeking rules with multiple conditions 
in the consequent, like Apriori—but differing in that these conditions are ORed 
together, not ANDed. It can be set to find rules that predict a single condition or a 
predetermined attribute (i.e., classification rules). One parameter determines whether 
negation is allowed in the antecedent, the consequent, or both; others give the 
number of rules sought, minimum degree of confirmation, minimum coverage, 
maximum proportion of counterinstances, and maximum rule size. Missing values 
can match any value, never match, or be significant and possibly appear in rules.

11.8  ATTRIBUTE SELECTION
Figure 11.33 shows that part of Weka’s attribute selection panel where you specify 
the attribute evaluator and search method; Tables 11.9 and 11.10 list the choices. 
Attribute selection is normally done by searching the space of attribute subsets, evalu-
ating each one (see Section 7.1, page 307). This is achieved by combining 1 of the 6 
attribute subset evaluators in Table 11.9 with 1 of the 10 search methods in Table 
11.10. A potentially faster but less accurate approach is to evaluate the attributes 
individually and sort them, discarding attributes that fall below a chosen cutoff point. 
This is achieved by selecting one of the 11 single-attribute evaluators in Table 11.9 
and using the ranking method in Table 11.10. The Weka interface allows both pos-
sibilities by letting the user choose a selection method from Table 11.9 and a search 
method from Table 11.10, producing an error message if you select an inappropriate 
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combination. The status line refers you to the error log for the message (see the end 
of Section 11.1).

Attribute Subset Evaluators
Subset evaluators take a subset of attributes and return a numerical measure that 
guides the search. They are configured like any other Weka object. CfsSubsetEval 
assesses the predictive ability of each attribute individually and the degree of 
redundancy among them, preferring sets of attributes that are highly correlated 
with the class but with low intercorrelation (see Section 7.1, page 310). An option 
iteratively adds attributes that have the highest correlation with the class, provided 
that the set does not already contain an attribute whose correlation with the 
attribute in question is even higher. Missing can be treated as a separate value, 
or its counts can be distributed among other values in proportion to their fre-
quency. ConsistencySubsetEval evaluates attribute sets by the degree of consistency 
in class values when the training instances are projected onto the set. The con-
sistency of any subset of attributes can never improve on that of the full set, so 
this evaluator is usually used in conjunction with a random or exhaustive search 
that seeks the smallest subset with a consistency that is the same as that of the 
full attribute set.

Whereas the previously mentioned subset evaluators are filter methods of attri-
bute selection (see Section 7.1, page 309), ClassifierSubsetEval and WrapperSub-
setEval are wrapper methods. ClassifierSubsetEval uses a classifier, specified in the 
object editor as a parameter, to evaluate sets of attributes on the training data or on 
a separate holdout set. WrapperSubsetEval also uses a classifier to evaluate attribute 
sets, but it employs cross-validation to estimate the accuracy of the learning scheme 
for each set.

The remaining two subset evaluators are meta-evaluators—that is, they augment 
a base subset evaluator with preprocessing options. CostSensitiveSubsetEval takes 
a base subset evaluator and makes it cost sensitive by weighting or resampling 
the training data according to a supplied cost matrix. FilteredSubsetEval applies 
a filter to the training data before attribute selection is performed. Selecting a 
filter that alters the number or ordering of the original attributes generates an 
error message.

FIGURE 11.33 

Attribute selection: specifying an evaluator and a search method. 
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Table 11.9  Attribute Evaluation Methods for Attribute Selection

Name Function

Attribute Subset 
Evaluator

CfsSubsetEval Consider predictive value of 
each attribute individually, 
along with the degree of 
redundancy among them

ClassifierSubsetEval Use a classifier to evaluate 
the attribute set

ConsistencySubsetEval Project training set onto 
attribute set and measure 
consistency in class values

CostSensitiveSubsetEval Makes its base subset 
evaluator cost sensitive

FilteredSubsetEval Apply a subset evaluator to 
filtered data

WrapperSubsetEval Use a classifier plus 
cross-validation

Single-Attribute 
Evaluator

ChiSquaredAttributeEval Compute the chi-squared 
statistic of each attribute with 
respect to the class

CostSensitiveAttributeEval Make its base attribute 
evaluator cost sensitive

FilteredAttributeEval Apply an attribute evaluator 
to filtered data

GainRatioAttributeEval Evaluate attribute based on 
gain ratio

InfoGainAttributeEval Evaluate attribute based on 
information gain

LatentSemanticAnalysis Perform a latent semantic 
analysis and transformation

OneRAttributeEval Use OneR’s methodology to 
evaluate attributes

PrincipalComponents Perform principal 
components analysis and 
transformation

ReliefFAttributeEval Instance-based attribute 
evaluator

SVMAttributeEval Use a linear support vector 
machine to determine the 
value of attributes

SymmetricalUncertAttributeEval Evaluate attribute based on 
symmetrical uncertainty
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Table 11.10  Search Methods for Attribute Selection

Name Function

Search Method BestFirst Greedy hill climbing with 
backtracking

ExhaustiveSearch Search exhaustively

GeneticSearch Search using a simple genetic 
algorithm

GreedyStepwise Greedy hill climbing without 
backtracking; optionally 
generate ranked list of 
attributes

LinearForwardSelection Extension of BestFirst that 
considers a restricted 
number of the remaining 
attributes when expanding 
the current point in the 
search

RaceSearch Use race search methodology

RandomSearch Search randomly

RankSearch Sort the attributes and rank 
promising subsets using an 
attribute subset evaluator

ScatterSearchV1 Search using an evolutionary 
scatter search algorithm

SubsetSizeForwardSelection Extension of 
LinearForwardSelection that 
performs an internal  
cross-validation in order to 
determine the optimal subset 
size

Ranking Method Ranker Rank individual attributes (not 
subsets) according to their 
evaluation

Single-Attribute Evaluators
Single-attribute evaluators are used with the Ranker search method to generate a 
ranked list from which Ranker discards a given number (explained in the next section). 
They can also be used in the RankSearch method. ReliefFAttributeEval is instance-
based: It samples instances randomly and checks neighboring instances of the same 
and different classes (see Section 7.1, page 310). It operates on discrete and continu-
ous class data. Parameters specify the number of instances to sample, the number  
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of neighbors to check, whether to weight neighbors by distance, and an exponential 
function that governs how rapidly weights decay with distance.

InfoGainAttributeEval evaluates attributes by measuring their information gain 
with respect to the class. It discretizes numeric attributes first using the MDL-based 
discretization method (it can be set to binarize them instead). This method, along 
with the next three, can treat missing as a separate value or distribute the counts 
among other values in proportion to their frequency. ChiSquaredAttributeEval evalu-
ates attributes by computing the chi-squared statistic with respect to the class. Gain-
RatioAttributeEval evaluates attributes by measuring their gain ratio with respect to 
the class. SymmetricalUncertAttributeEval evaluates an attribute by measuring its 
symmetrical uncertainty with respect to the class (see Section 7.1, page 310).

OneRAttributeEval uses the simple accuracy measure adopted by the OneR clas-
sifier. It can use the training data for evaluation, as OneR does, or it can apply internal 
cross-validation: The number of folds is a parameter. It adopts OneR’s simple dis-
cretization method: The minimum bucket size is a parameter.

SVMAttributeEval evaluates attributes using recursive feature elimination with a 
linear support vector machine (see Section 7.1, page 309). Attributes are selected 
one by one based on the size of their coefficients, relearning after each one. To speed 
things up a fixed number (or proportion) of attributes can be removed at each stage. 
Indeed, a proportion can be used until a certain number of attributes remain, there-
upon switching to the fixed-number method—rapidly eliminating many attributes 
and then considering each remaining one more intensively. Various parameters are 
passed on to the support vector machine: complexity, epsilon, tolerance, and the 
filtering method used.

Unlike other single-attribute evaluators, PrincipalComponents and Latent
SemanticAnalysis transform the set of attributes. In the case of PrincipalCompo-
nents, the new attributes are ranked in order of their eigenvalues (see Section 7.3, 
page 324). Optionally, a subset is selected by choosing sufficient eigenvectors to 
account for a given proportion of the variance (95% by default). Finally, the reduced 
data can be transformed back to the original space.

LatentSemanticAnalysis applies a singular value decomposition to the training 
data. Singular value decomposition is related to principal components analysis—
both produce directions that are linear combinations of the original attribute values—
but differs in that it is computed from a matrix containing the original data values 
rather than the attribute correlation or covariance matrix. Selecting the k directions 
with the highest singular values gives a rank k approximation to the original data 
matrix. Latent semantic analysis is so named because of its application to text 
mining, where instances represent documents and attributes represent the terms that 
occur in them. In some sense, the directions that the technique produces can be 
thought of as merging terms with similar meaning. LatentSemanticAnalysis allows 
the user to specify the number of directions to extract (i.e., the rank) and whether 
or not the data is normalized before the analysis is performed.

The remaining two attribute evaluators, CostSensitiveAttributeEval and Filtered
AttributeEval, are meta-evaluators: They are the single-attribute versions of their 
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subset-based counterparts described earlier. The former augments a base evaluator 
by weighting or resampling the training data according to a cost matrix; the latter 
applies a filter to the training data before the base evaluator is applied.

Search methods
Search methods traverse the attribute space to find a good subset. Quality is mea-
sured by the chosen attribute subset evaluator. Each search method can be configured 
with Weka’s object editor. BestFirst performs greedy hill climbing with backtrack-
ing; you can specify how many consecutive nonimproving nodes must be encoun-
tered before the system backtracks. It can search forward from the empty set of 
attributes, backward from the full set, or start at an intermediate point (specified by 
a list of attribute indexes) and search in both directions by considering all possible 
single-attribute additions and deletions. Subsets that have been evaluated are cached 
for efficiency; the cache size is a parameter.

GreedyStepwise searches greedily through the space of attribute subsets. Like 
BestFirst, it may progress forward from the empty set or backward from the full set. 
Unlike BestFirst, it does not backtrack but terminates as soon as adding or deleting 
the best remaining attribute decreases the evaluation metric. In an alternative mode, 
it ranks attributes by traversing the space from empty to full (or vice versa) and 
recording the order in which attributes are selected. You can specify the number of 
attributes to retain or set a threshold below which attributes are discarded.

LinearForwardSelection and SubsetSizeForwardSelection are extensions of 
BestFirst aimed at, respectively, reducing the number of evaluations performed 
during the search and producing a compact final subset (Gutlein et  al., 2009). 
LinearForwardSelection limits the number of attribute expansions in each forward 
selection step. There are two modes of operation; both begin by ranking the 
attributes individually using a specified subset evaluator. In the first mode, called 
fixed set, a forward best-first search is performed on just the k top-ranked attri-
butes. In the second mode, called fixed width, the search considers expanding 
the best subset at each step by selecting an attribute from the k top-ranked 
attributes. However, rather than shrinking the available pool of attributes after 
every expansion, it is held at a constant size k by adding further attributes from 
the initial ranked list (so long as any remain). The mode of operation and the 
value of k are parameters. Like BestFirst, you can set the degree of backtrack-
ing, the size of the lookup cache, and a list of attributes to begin the search. 
As well as the standard forward search, LinearForwardSelection offers an option 
to perform a floating forward search, which considers a number of consecutive 
single-attribute elimination steps after each forward step—so long as this results 
in an improvement.

SubsetSizeForwardSelection extends LinearForwardSelection with a process to 
determine the optimal subset size. This is achieved by performing an m-fold cross-
validation on the training data. LinearForwardSelection is applied m times—once 
for each training set in the cross-validation. A given test fold is used to evaluate each 



	 11.8  Attribute Selection� 493

size of subset explored by LinearForwardSelection in its corresponding training set. 
The performance for each size of subset is then averaged over the folds. Finally, 
LinearForwardSelection is performed on all the data to find a subset of that optimal 
size. As well as the options provided by LinearForwardSelection, the evaluator to 
use in determining the optimal subset size can be specified, along with the number 
of folds.

When paired with wrapper-based evaluation, both LinearForwardSelection and 
SubsetSizeForwardSelection have been shown to combat the overfitting that can 
occur when standard forward selection or best-first searches are used with wrappers. 
Moreover, both select smaller final subsets than standard forward selection and best-
first, while maintaining comparable accuracy (provided k is chosen to be sufficiently 
large). LinearForwardSelection is faster than standard forward selection and best-
first selection.

RaceSearch, used with ClassifierSubsetEval, calculates the cross-validation error 
of competing attribute subsets using race search (see Section 7.1). The four different 
searches described on page 313 are implemented: forward selection, backward 
elimination, schemata search, and rank racing. In the last case, a separate attribute 
evaluator (which can also be specified) is used to generate an initial ranking. Using 
forward selection, it is also possible to generate a ranked list of attributes by continu-
ing racing until all attributes have been selected: The ranking is set to the order in 
which they are added. As with GreedyStepwise, you can specify the number of 
attributes to retain or set a threshold below which attributes are discarded.

GeneticSearch uses a simple genetic algorithm (Goldberg, 1989). Parameters 
include population size, number of generations, and probabilities of crossover and 
mutation. You can specify a list of attribute indexes as the starting point, which 
becomes a member of the initial population. Progress reports can be generated every 
so many generations. RandomSearch randomly searches the space of attribute 
subsets. If an initial set is supplied, it searches for subsets that improve on (or equal) 
the starting point and have fewer (or the same number of) attributes. Otherwise, it 
starts from a random point and reports the best subset found. Placing all attributes 
in the initial set yields Liu and Setiono’s (1996) probabilistic feature-selection algo-
rithm. You can determine the fraction of the search space to explore. Exhaustive
Search searches through the space of attribute subsets, starting from the empty set, 
and reports the best subset found. If an initial set is supplied, it searches backward 
from this starting point and reports the smallest subset with a better (or equal) 
evaluation.

RankSearch sorts attributes using a single-attribute evaluator and then ranks 
promising subsets using an attribute subset evaluator. The latter was specified earlier 
in the top box of Figure 11.33, as usual; the attribute evaluator is specified as a 
property in RankSearch’s object editor. It starts by sorting the attributes with the 
single-attribute evaluator and then evaluates subsets of increasing size using the 
subset evaluator—the best attribute, the best attribute plus the next best one, and so 
on—reporting the best subset. This procedure has low computational complexity: 
The number of times both evaluators are called is linear in the number of attributes. 
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Using a simple single-attribute evaluator (e.g., GainRatioAttributeEval), the selec-
tion procedure is very fast.

ScatterSearchV1 uses an evolution-based scatter search algorithm (Laguna and 
Marti, 2003). Parameters include the population, size, random number seed, and 
strategy used to generate new population members from existing ones.

Finally, we describe Ranker, which as noted earlier is not a search method for 
attribute subsets but a ranking scheme for individual attributes. It sorts attributes by 
their individual evaluations and must be used in conjunction with one of the single-
attribute evaluators in the lower part of Table 11.9—not an attribute subset evaluator. 
Ranker not only ranks attributes but also performs attribute selection by removing 
the lower-ranking ones. You can set a cutoff threshold below which attributes are 
discarded, or specify how many attributes to retain. You can specify certain attributes 
that must be retained regardless of their rank.
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CHAPTER 

12 

The Knowledge  
Flow Interface

With the Knowledge Flow interface, users select Weka components from a tool bar, 
place them on a layout canvas, and connect them into a directed graph that processes 
and analyzes data. It provides an alternative to the Explorer for those who like think-
ing in terms of how data flows through the system. It also allows the design and 
execution of configurations for streamed data processing, which the Explorer cannot 
do. You invoke the Knowledge Flow interface by selecting KnowledgeFlow from 
the choices in the right panel shown in Figure 11.3(a).

12.1  GETTING STARTED
Here is a step-by-step example that loads an ARFF file and performs a cross-
validation using J4.8. We describe how to build up the final configuration shown in 
Figure 12.1. First, create a source of data by clicking on the DataSources tab (left-
most entry in the bar at the top) and selecting ARFFLoader from the toolbar. The 
mouse cursor changes to crosshairs to signal that you should next place the compo-
nent. Do this by clicking anywhere on the canvas, whereupon a copy of the ARFF 
loader icon appears there. To connect it to an ARFF file, right-click it to bring up 
the pop-up menu shown in Figure 12.2(a). Click Configure to get the file browser 
in Figure 12.2(b), from which you select the desired ARFF file (alternatively, double-
clicking on a component’s icon is a short-cut for selecting Configure from the pop-up 
menu).

Now we specify which attribute is the class using a ClassAssigner object. This 
is on the Evaluation panel, so click the Evaluation tab, select the ClassAssigner, 
and place it on the canvas. To connect the data source to the class assigner, right-
click the data source icon and select dataSet from the menu, as shown in Figure 
12.2(a). A rubber-band line appears. Move the mouse over the class assigner com-
ponent and left-click. A red line labeled dataSet appears, joining the two compo-
nents. Having connected the class assigner, choose the class by right-clicking it, 
selecting Configure, and entering the location of the class attribute.

We will perform cross-validation on the J48 classifier. In the data flow model, 
we first connect the CrossValidationFoldMaker to create the folds on which 
the classifier will run, and then pass its output to an object representing J48. 
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CrossValidationFoldMaker is on the Evaluation panel. Select it, place it on the 
canvas, and connect it to the class assigner by right-clicking the latter and selecting 
dataSet from the menu (which is similar to that in Figure 12.2(a)). Next, select J48 
from the Classifiers panel and place a J48 component on the canvas; there are so 
many different classifiers that you have to scroll along the toolbar to find it. Connect 
J48 to the cross-validation fold maker in the usual way, but make the connection 
twice by first choosing trainingSet and then testSet from the pop-up menu for the 
cross-validation fold maker. The next step is to select a ClassifierPerformanceEvalu-
ator from the Evaluation panel and connect J48 to it by selecting the batchClassifier 
entry from the pop-up menu for J48. Finally, from the Visualization toolbar place a 
TextViewer component on the canvas. Connect the classifier performance evaluator 
to it by selecting the text entry from the pop-up menu for the performance 
evaluator.

At this stage the configuration is as shown in Figure 12.1 except that there is as 
yet no graph viewer. Start the flow of execution by selecting Start loading from the 
pop-up menu for the ARFF loader, shown in Figure 12.2(a). For a small dataset 

FIGURE 12.1 

The Knowledge Flow interface.
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things happen quickly. Progress information appears in the status area at the bottom 
of the interface. The entries in the status area show the progress of each step in the 
flow, along with their parameter settings (for learning schemes) and elapsed time. 
Any errors that occur in a processing step are shown in the status area by highlight-
ing the corresponding row in red. Figure 12.3 shows the status area after executing 
the configuration shown in Figure 12.1. Choosing Show results from the text view-
er’s pop-up menu brings up the results of cross-validation in a separate window, in 
the same form as for the Explorer.

FIGURE 12.2 

Configuring a data source: (a) right-click menu and (b) file browser obtained from the 
Configure menu item.

(a) (b)

Edit:
Delete
Set name
Configure...
Connections:
instance
dataSet
Actions:
Start loading

FIGURE 12.3 

Status area after executing the configuration shown in Figure 12.1.
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To complete the example, add a GraphViewer and connect it to J48’s graph 
output to see a graphical representation of the trees produced for each fold of the 
cross-validation. Once you have redone the cross-validation with this extra compo-
nent in place, selecting Show results from its pop-up menu produces a list of trees, 
one for each cross-validation fold. By creating cross-validation folds and passing 
them to the classifier, the Knowledge Flow model provides a way to hook into the 
results for each fold. The Explorer cannot do this: It treats cross-validation as an 
evaluation method that is applied to the output of a classifier.

12.2  COMPONENTS
Most of the Knowledge Flow components will be familiar from the Explorer. The 
Classifiers panel contains all of Weka’s classifiers, the Filters panel contains the 
filters, the Clusterers panel holds the clusterers, and the Associations panel holds 
the association rule learners. Classifiers in the Knowledge Flow have the option 
of processing cross-validation training sets in parallel. In fact, since dual-core 
processors are the norm these days, the default is to process two cross-validation 
training folds in parallel. The option that controls this is called Execution slots 
and is available from the object editor that appears when Configure is selected 
after right-clicking on a Classifiers component.

Possible data sources are ARFF files, XML ARFF files, CSV files exported from 
spreadsheets, the C4.5 file format, databases, serialized instances, LibSVM and 
SVMLight data formats, and a special loader (TextDirectoryLoader) to load a 
directory of plaintext files into a single set of instances. There is a data sink that 
corresponds to each data source, with the exception of the TextDirectoryLoader.

The components for visualization and evaluation, which are listed in Table 
12.1, have not all been encountered yet. Under Visualization, the DataVisualizer 
pops up a panel for visualizing data in a two-dimensional scatter plot, as in Figure 
11.6(b), in which you can select the attributes you would like to see. ScatterPlot-
Matrix pops up a matrix of two-dimensional scatter plots for every pair of attributes, 
shown in Figure 11.17(a). AttributeSummarizer gives a matrix of histograms, one 
for each attribute, like that in the lower right corner of Figure 11.3(b). Model
PerformanceChart draws ROC curves and other threshold curves. CostBenefit
Analysis allows interactive exploration of the tradeoffs in cost or benefit arising 
from different cost matrices (see Section 5.7, page 166). GraphViewer, used earlier, 
pops up a panel for visualizing tree-based models, as in Figure 11.6(a). As before, 
you can zoom, pan, and visualize the instance data at a node (if it has been saved 
by the learning algorithm).

StripChart is a new visualization component designed for use with incremental 
learning. In conjunction with the IncrementalClassifierEvaluator described next, it 
displays a learning curve that plots accuracy—both the percentage accuracy and the 
root mean-squared probability error—against time. It shows a fixed-size time 
window that scrolls horizontally to reveal the latest results.
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Table 12.1  Visualization and Evaluation Components

Name Function

Visualization DataVisualizer Visualize data in a two-
dimensional scatter plot

ScatterPlotMatrix Matrix of scatter plots

AttributeSummarizer Set of histograms, one for each 
attribute

ModelPerformanceChart Draw ROC and other threshold 
curves

CostBenefitAnalysis Visualize cost or benefit 
tradeoffs

TextViewer Visualize data or models as text

GraphViewer Visualize tree-based models
StripChart Display a scrolling plot of data

Evaluation TrainingSetMaker Make dataset into a training set
TestSetMaker Make dataset into a test set
CrossValidationFoldMaker Split dataset into folds
TrainTestSplitMaker Split dataset into training and 

test sets
InstanceStreamToBatchMaker Collect instances from a stream 

and assemble them into a 
batch dataset

ClassAssigner Assign one of the attributes to 
be the class

ClassValuePicker Choose a value for the positive 
class

ClassifierPerformanceEvaluator Collect evaluation statistics for 
batch evaluation

IncrementalClassifierEvaluator Collect evaluation statistics for 
incremental evaluation

ClustererPerformanceEvaluator Collect evaluation statistics for 
clusterers

PredictionAppender Append a classifier’s 
predictions to a dataset

SerializedModelSaver Save trained models as 
serialized Java objects

The Evaluation panel has the components listed in the lower part of Table 12.1. 
TrainingSetMaker and TestSetMaker make a dataset into the corresponding kind of 
set. CrossValidationFoldMaker constructs cross-validation folds from a dataset; 
TrainTestSplitMaker splits it into training and test sets by holding part of the data 
out for the test set. InstanceStreamToBatchMaker collects instances arriving in 
a stream from an incoming “instance” connection and produces a batch dataset  
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when the last instance has arrived. ClassAssigner allows you to decide which attri-
bute is the class. With ClassValuePicker you choose a value that is treated as the 
positive class when generating ROC and other threshold curves. ClassifierPerfor-
manceEvaluator collects evaluation statistics: It can send the textual evaluation to 
a text viewer and the threshold curves to a performance chart. IncrementalClassifi-
erEvaluator performs the same function for incremental classifiers: It computes 
running squared errors and so on. There is also ClustererPerformanceEvaluator, 
which is similar to ClassifierPerformanceEvaluator. PredictionAppender takes a 
classifier and a dataset and appends the classifier’s predictions to the dataset.  
SerializedModelSaver takes a classifier or clusterer and saves the model out to 
a file as a serialized Java object.

12.3  CONFIGURING AND CONNECTING THE COMPONENTS
You establish the knowledge flow by configuring individual components and 
connecting them. Figure 12.4 shows typical operations that are available by right-
clicking the various component types. These menus shown have up to three 
sections: Edit, Connections, and Actions. The Edit operations delete components 
and open up their configuration panel. You can give a component a name by 
choosing Set name from the pop-up menu. Classifiers and filters are configured 
just as in the Explorer. Data sources are configured by opening a file (as we 

FIGURE 12.4 

Operations on the Knowledge Flow components.

Data source Filter Classifier Data sink Visualization Evaluation
crossValidationFoldMaker

ClassifierPerformance-
Evaluator
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saw previously) or by setting a database connection, and evaluation components 
are configured by setting parameters such as the number of folds for cross-
validation. The Actions operations are specific to the type of component, such 
as starting to load data from a data source or opening a window to show the 
results of visualization. The Connections operations are used to connect compo-
nents together by selecting the type of connection from the source component 
and then clicking on the target object. Not all of the targets are suitable;  
applicable ones are highlighted. Items on the Connections menu are disabled 
(grayed out) until the component receives other connections that render them 
applicable.

There are two kinds of connections from data sources: dataSet connections 
and instance connections. The former are for batch operations such as classifiers 
like J48; the latter are for stream operations such as NaiveBayesUpdateable. A 
data source component cannot provide both types of connection: Once one is 
selected, the other is disabled. When a dataSet connection is made to a batch 
classifier, the classifier needs to know whether it is intended to serve as a train-
ing set or a test set. To do this, you first make the data source into a test or 
training set using the TestSetMaker or TrainingSetMaker components from the 
Evaluation panel.

On the other hand, an instance connection to an incremental classifier is 
made directly: There is no distinction between training and testing because the 
instances that flow update the classifier incrementally. In this case a prediction 
is made for each incoming instance and incorporated into the test results; then 
the classifier is trained on that instance. If you make an instance connection 
to a batch classifier, it will be used as a test instance because training cannot 
possibly be incremental whereas testing always can be. Conversely, it is quite 
possible to test an incremental classifier in batch mode using a dataSet 
connection.

Connections from a filter component are enabled when the component receives 
input from a data source, whereupon follow-on dataSet or instance connections can 
be made. Instance connections cannot be made to supervised filters or to unsuper-
vised filters that cannot handle data incrementally (e.g., Discretize). To get a test or 
training set out of a filter, you need to put the appropriate kind in.

The classifier menu has two types of connection. The first type, namely 
graph and text connections, provides graphical and textual representations of 
the classifier’s learned state, and it is only activated when it receives a training 
set input. The other type, batchClassifier and incrementalClassifier, makes data 
available to a performance evaluator, and it is activated only when a test set 
input is present too. Which one is activated depends on the type of the 
classifier.

Evaluation components are a mixed bag. TrainingSetMaker and TestSetMaker 
turn a dataset into a training or test set. CrossValidationFoldMaker turns a dataset 
into both a training set and a test set. ClassifierPerformanceEvaluator (used in the 
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example in Section 12.1) generates textual and graphical output for visualization 
components. Other evaluation components operate like filters: They enable follow-on 
dataSet, instance, trainingSet, or testSet connections depending on the input 
(e.g., ClassAssigner assigns a class to a dataset). InstanceStreamToBatchMaker 
takes an incoming stream of instances and assembles them into a batch dataset.  
This is particularly useful when placed after a reservoir sampling filter—it  
allows the instances output by reservoir sampling to be used to train batch learning 
schemes.

Visualization components do not have connections, although some have actions 
such as Show results and Clear results.

12.4  INCREMENTAL LEARNING
In most respects the Knowledge Flow interface is functionally similar to the Explorer: 
You can do similar things with both. It does provide some additional flexibility—for 
example, you can see the tree that J48 makes for each cross-validation fold. But its 
real strength is the potential for incremental operation.

Weka has several classifiers that can handle data incrementally: AODE, a version 
of Naïve Bayes (NaiveBayesUpdateable), Winnow, instance-based learners (IB1, IBk, 
KStar, LWL), DMNBText, NaiveBayesMultinomialUpdateable, and NNge. The meta-
learner RacedIncrementalLogitBoost operates incrementally (see Section 11.1, page 
477). All filters that work instance by instance are incremental: Add, AddExpression, 
AddValues, ChangeDateFormat, ClassAssigner, Copy, FirstOrder, MakeIndicator, 
MergeTwoValues, NonSparseToSparse, NumericToBinary, NumericTransform, 
NumericCleaner, Obfuscate, RandomSubset, Remove, RemoveType, RemoveWith
Values, Reorder, ReservoirSample, SparseToNonSparse, and SwapValues.

If all components connected up in the Knowledge Flow interface operate incre-
mentally, so does the resulting learning system. It does not read in the dataset before 
learning starts, as the Explorer does. Instead, the data source component reads the 
input instance by instance and passes it through the Knowledge Flow chain.

Figure 12.5(a) shows a configuration that works incrementally. An instance 
connection is made from the loader to a class assigner component, which, in turn, 
is connected to the updatable Naïve Bayes classifier. The classifier’s text output is 
taken to a viewer that gives a textual description of the model. Also, an incremen-
talClassifier connection is made to the corresponding performance evaluator. This 
produces an output of type chart, which is piped to a strip chart visualization 
component to generate a scrolling data plot.

Figure 12.5(b) shows the strip chart output. It plots both accuracy and the root 
mean-squared probability error against time. As time passes, the whole plot (includ-
ing the axes) moves leftward to make room for new data at the right. When the 
vertical axis representing time 0 can move left no farther, it stops and the time 
origin starts to increase from 0 to keep pace with the data coming in at the right. 
Thus, when the chart is full it shows a window of the most recent time units. 
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FIGURE 12.5 

A Knowledge Flow that operates incrementally: (a) the configuration and (b) strip chart 
output.

(a)

(b)

The strip chart can be configured to alter the number of instances shown on the 
x-axis.

This particular Knowledge Flow configuration can process input files of any size, 
even ones that do not fit into the computer’s main memory. However, it all depends 
on how the classifier operates internally. For example, although they are incremental, 
many instance-based learners store the entire dataset internally.



This page intentionally left blank



505Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

CHAPTER 

13 

The Experimenter

The Explorer and Knowledge Flow environments help you determine how well 
machine learning schemes perform on given datasets. But serious investigative 
work involves substantial experiments—typically running several learning schemes 
on different datasets, often with various parameter settings—and these interfaces 
are not really suitable for this. The Experimenter enables you to set up large-scale 
experiments, start them running, leave them and come back when they have fin-
ished, and then analyze the performance statistics that have been collected. They 
automate the experimental process. The statistics can be stored in ARFF format, 
and can themselves be the subject of further data mining. You invoke this interface 
by selecting Experimenter from the choices in the right panel in Figure 11.3(a).

Whereas the Knowledge Flow transcends limitations of space by allowing 
machine learning runs that do not load in the whole dataset at once, the Experimenter 
transcends limitations of time. It contains facilities for advanced users to distribute 
the computing load across multiple machines using Java RMI. You can set up big 
experiments and just leave them to run.

13.1  GETTING STARTED
As an example, we will compare the J48 decision tree method with the baseline 
methods OneR and ZeroR on the iris dataset. The Experimenter has three panels: 
Setup, Run, and Analyze. Figure 13.1(a) shows the first: You select the others from 
the tabs at the top. Here, the experiment has already been set up. To do this, first 
click New (toward the right at the top) to start a new experiment (the other two 
buttons in that row save an experiment and open a previously saved one). Then, on 
the line below, select the destination for the results—in this case the file Experiment1—
and choose CSV file. Underneath, select the datasets—we have only one, the iris 
data. To the right of the datasets, select the algorithms to be tested—we have three. 
Click Add new to get a standard Weka object editor from which you can choose and 
configure a classifier. Repeat this operation to add the three classifiers. Now the 
experiment is ready.

The other settings in Figure 13.1(a) are all default values. If you want to recon-
figure a classifier that is already in the list, you can use the Edit selected button. You 
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(a)

FIGURE 13.1 

An experiment: (a) setting it up, (b) results file, and (c) spreadsheet with results. 

can also save the options for a particular classifier in XML format for later reuse. 
You can right-click on an entry to copy the configuration to the clipboard, and add 
or enter a configuration from the clipboard.

Running an Experiment
To run the experiment, click the Run tab, which brings up a panel that contains a 
Start button (and little else); click it. A brief report is displayed when the operation 
is finished. The file Experiment1.csv contains the results. The first two lines are 
shown in Figure 13.1(b): They are in CSV format and can be read directly into a 
spreadsheet, the first part of which appears in Figure 13.1(c). Each row represents 
one fold of a tenfold cross-validation (see the Fold column). The cross-validation is 
run 10 times (the Run column) for each classifier (the Scheme column). Thus, the 
file contains 100 rows for each classifier, which makes 300 rows in all (plus the 
header row). Each row contains plenty of information, including the options supplied 
to the machine learning scheme; the number of training and test instances; the 
number (and percentage) of correct, incorrect, and unclassified instances; the mean 
absolute error and the root mean-squared error; and much more.

There is a great deal of information in the spreadsheet, but it is hard to digest. 
In particular, it is not easy to answer the question posed previously: How does J48 
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FIGURE 13.2 

Statistical test results for the experiment of Figure 13.1. 

compare with the baseline methods OneR and ZeroR on this dataset? For that we 
need the Analyze panel.

Analyzing the Results
The reason that we generated the output in CSV format was to show the spreadsheet 
in Figure 13.1(c). The Experimenter normally produces its output in ARFF format. 
You can also leave the file name blank, in which case the Experimenter stores the 
results in a temporary file.

The Analyze panel is shown in Figure 13.2. To analyze the experiment that has 
just been performed, click the Experiment button at the top right; otherwise, supply 
a file that contains the results of another experiment. Then click Perform test (near 
the bottom left). The result of a statistical significance test of the performance of the 
first learning scheme (J48) versus the other two (OneR and ZeroR) will be displayed 
in the large panel on the right.

We are comparing the percent correct statistic: This is selected by default as the 
comparison field shown toward the left in Figure 13.2. The three methods are 
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displayed horizontally, numbered (1), (2), and (3), as the heading of a little table. 
The labels for the columns are repeated at the bottom—trees.J48, rules.OneR, and 
rules.ZeroR—in case there is insufficient space for them in the heading. The inscru-
table integers beside the scheme names identify which version of the scheme is being 
used. They are present by default to avoid confusion among results generated using 
different versions of the algorithms. The value in brackets at the beginning of  
the iris row (100) is the number of experimental runs: 10 times tenfold 
cross-validation.

The percentage correct for the three schemes is shown in Figure 13.2: 94.73% 
for method 1, 93.53% for method 2, and 33.33% for method 3. The symbol placed 
beside a result indicates that it is statistically better (v) or worse (*) than the baseline 
scheme—in this case J48—at the specified significance level (0.05, or 5%). The 
corrected resampled t-test from Section 5.5 (page 159) is used here. As shown, 
method 3 is significantly worse than method 1 because its success rate is followed 
by an asterisk. At the bottom of columns 2 and 3 are counts (x/y/z) of the number 
of times the scheme was better than (x), the same as (y), or worse than (z) the baseline 
scheme on the datasets used in the experiment. In this case there is only one dataset; 
method 2 was equivalent to method 1 (the baseline) once, and method 3 was worse 
than it once. (The annotation (v/ /*) is placed at the bottom of column 1 to help you 
remember the meanings of the three counts (x/y/z).

13.2  SIMPLE SETUP
In the Setup panel of Figure 13.1(a) we left most options at their default values. The 
experiment type is a tenfold cross-validation repeated 10 times. You can alter the 
number of folds in the box at center left and the number of repetitions in the box at 
center right. The experiment type is classification; you can specify regression instead. 
You can choose several datasets, in which case each algorithm is applied to each 
dataset, and change the order of iteration using the Data sets first and Algorithm first 
buttons. The alternative to cross-validation is the holdout method. There are two 
variants depending on whether the order of the dataset is preserved or the data is 
randomized. You can specify the percentage split (the default is two-thirds training 
set and one-third test set).

Experimental setups can be saved and reopened. You can make notes about the 
setup by pressing the Notes button, which brings up an editor window. Serious Weka 
users soon find the need to open up an experiment and rerun it with some modifica-
tions, perhaps with a new dataset or a new learning algorithm. It would be nice to 
avoid having to recalculate all the results that have already been obtained! If the 
results have been placed in a database rather than an ARFF or CSV file, this is 
exactly what happens. You can choose JDBC database in the results destination 
selector and connect to any database that has a JDBC driver. You need to specify 
the database’s URL and enter a username and password. To make this work with 
your database you may need to modify the weka/experiment/DatabaseUtils.props 
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FIGURE 13.3 

Setting up an experiment in advanced mode. 

file in the Weka distribution. If you alter an experiment that uses a database, Weka 
will reuse previously computed results whenever they are available. This greatly 
simplifies the kind of iterative experimentation that typically characterizes data 
mining research.

13.3  ADVANCED SETUP
The Experimenter has an advanced mode. Click near the top of the panel shown in 
Figure 13.1(a) to obtain the more formidable version of the panel shown in Figure 
13.3. This enlarges the options available for controlling the experiment, including, 
for example, the ability to generate learning curves. However, the advanced mode 
is hard to use, and the simple version suffices for most purposes. For example, in 
the advanced mode you can set up an iteration to test an algorithm with a succession 
of different parameter values, but the same effect can be achieved in simple mode 
by putting the algorithm into the list several times with different parameter values.

One thing you can do in advanced mode but not in simple mode is run experi-
ments using clustering algorithms. Here, experiments are limited to those clusterers 
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that can compute probability or density estimates, and the main evaluation measure 
for comparison purposes is the log-likelihood. To set this up quickly, first click the 
Result generator to bring up an object editor for the CrossValidationResultProducer. 
Then click the Choose button for the split evaluator and select DensityBasedClus-
tererSplitEvaluator from the list. At this point the panel on the lower right that 
contained the list of classifiers goes blank and the Generator properties dropdown 
box displays Disabled. Reenable this, and a new window appears with a list of 
properties (Figure 13.4(a)). Expand the splitEvaluator entry, select clusterer (as 
shown in the figure), and click the Select button. Now the active list will reappear 
in the bottom right panel, along with the ability to add clustering schemes, just as 
we did with classifiers.

Figure 13.4(b) shows a setup with two clustering schemes configured: EM and 
MakeDensityBasedClusterer wrapped around SimpleKMeans. After running this 
experiment, these two can be compared in the Analyze panel. The comparison field 
is not set up with a meaningful default, so choose Log_likelihood from the dropdown 
box before pressing the Perform test button. Figure 13.4(c) shows the results for 
these clustering algorithms.

Another thing you may need the advanced mode for is to set up distributed 
experiments, which we describe in Section 13.5 (page 515).

13.4  THE ANALYZE PANEL
Our walkthrough used the Analyze panel to perform a statistical significance test of 
one learning scheme (J48) versus two others (OneR and ZeroR). The test was on the 
error rate—the Comparison field in Figure 13.2. Other statistics can be selected from 
the dropdown menu instead: percentage incorrect, percentage unclassified, root 
mean-squared error, the remaining error measures from Table 5.8, and various 
entropy figures. Moreover, you can see the standard deviation of the attribute being 
evaluated by ticking the Show std deviations checkbox.

Use the Test base menu to change the baseline scheme from J48 to one of the 
other learning schemes. For example, selecting OneR causes the others to be com-
pared with this scheme. In fact, that would show that there is a statistically significant 
difference between OneR and ZeroR but not between OneR and J48. Apart from the 
learning schemes, there are two other choices in the Select base menu: Summary 
and Ranking. The former compares each learning scheme with every other scheme 
and prints a matrix with cells that contain the number of datasets on which one is 
significantly better than the other. The latter ranks the schemes according to the total 
number of datasets that represent wins (>) and losses (<) and prints a league table. 
The first column in the output gives the difference between the number of wins and 
the number of losses.

The Row and Column fields determine the dimensions of the comparison matrix. 
Clicking Select brings up a list of all the features that have been measured in the 
experiment—in other words, the column labels of the spreadsheet in Figure 13.1(c). 



	 13.4  The Analyze Panel� 513

FIGURE 13.4 

An experiment in clustering: (a) generator properties, (b) two clustering schemes, and  
(c) result panel. 

(a) (b)

(c)
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FIGURE 13.5 

Rows and columns of Figure 13.2: (a) row field, (b) column field, (c) result of swapping 
the row and column selections, and (d) substituting Run for Dataset as the rows. 

(a) (b)

(c) (d)

You can select which to use as the rows and columns of the matrix. (The selection 
does not appear in the Select box because more than one parameter can be chosen 
simultaneously.) Figure 13.5 shows which items are selected for the rows and 
columns of Figure 13.2. The two lists show the experimental parameters (the columns 
of the spreadsheet). Dataset is selected for the rows (and there is only one in this 
case, the iris dataset), and Scheme, Scheme options, and Scheme_version_ID are 
selected for the column (the usual convention of shift-clicking selects multiple 
entries). All three can be seen in Figure 13.2—in fact, they are more easily legible 
in the key at the bottom.

If the row and column selections were swapped and the Perform test button 
pressed again, the matrix would be transposed, giving the result in Figure 13.5(c). 
There are now three rows, one for each algorithm, and one column, for the single 
dataset. If instead the row of Dataset were replaced by Run and the test were per-
formed again, the result would be as in Figure 13.5(d). Run refers to the runs of the 
cross-validation, of which there are 10, so there are now 10 rows. The number in 
parentheses after each row label (100 in Figure 13.5(c) and 10 in Figure 13.5(d)) is 
the number of results corresponding to that row—in other words, the number of 
measurements that participate in the averages displayed by the cells in that row.

There is a button that allows you to select a subset of columns to display (the 
baseline column is always included) and another that allows you to select the output 



	 13.5  Distributing Processing over Several Machines� 515

format: plaintext (default), output for the LaTeX typesetting system, CSV format, 
HTML, data and script suitable for input to the GNUPlot graph plotting software, 
and just the significance symbols in plaintext format. It is also possible to show 
averages and abbreviate filter class names in the output.

There is an option for choosing whether to use the paired corrected t-test or 
the standard t-test for computing significance. The way that the rows are sorted in 
the results table can be changed by choosing the Sorting (asc.) by option from the 
dropdown box. The default is to use natural ordering, presenting the rows in the 
order in which the user entered the dataset names in the Setup panel. Alternatively, 
the rows can be sorted according to any of the measures that are available in the 
Comparison field.

13.5  DISTRIBUTING PROCESSING OVER 
SEVERAL MACHINES
A remarkable feature of the Experimenter is that it can split up an experiment and 
distribute it across several processors. This is for advanced Weka users and is only 
available from the advanced version of the Setup panel. Some users avoid working 
with this panel by setting up the experiment on the simple version and switching to 
the advanced version to distribute it, because the experiment’s structure is preserved 
when you switch. However, distributing an experiment is an advanced feature and 
is often difficult. For example, file and directory permissions can be tricky to set up.

Distributing an experiment works best when the results are all sent to a central 
database by selecting JDBC database as the results destination in Figure 13.1(a). 
It uses the RMI facility and works with any database that has a JDBC driver. It 
has been tested on several freely available databases. Alternatively, you could 
instruct each host to save its results to a different ARFF file and merge the files 
afterwards.

To distribute an experiment, each host must (1) have Java installed, (2) have 
access to whatever datasets you are using, and (3) be running the weka.experiment.
RemoteEngine experiment server. If results are sent to a central database, the appro-
priate JDBC drivers must be installed on each host. Getting all this right is the dif-
ficult part of running distributed experiments.

To initiate a remote engine experiment server on a host machine, first copy 
remoteExperimentServer.jar from the Weka distribution to a directory on the host. 
Unpack it with

jar –xvf remoteExperimentServer.jar

It expands to three files: remoteEngine.jar, an executable jar file that contains the 
experiment server; remote.policy; and remote.policy.example.

The remote.policy file grants the remote engine permission to perform certain 
operations, such as connecting to ports or accessing a directory. It needs to be edited 
to specify correct paths in some of the permissions; this is self-explanatory when 
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you examine the file. By default, it specifies that code can be downloaded on HTTP 
port 80 from anywhere on the Web, but the remote engines can also load code from 
a file URL instead. To arrange this, either uncomment the example in remote.policy 
or tailor remote.policy.example to suit your needs. The latter file contains a complete 
example for a fictitious user (johndoe) under a Linux operating system. The remote 
engines also need to be able to access the datasets used in an experiment (see the 
first entry in remote.policy). The paths to the datasets are specified in the Experi-
menter (i.e., the client), and the same paths must be applicable in the context of the 
remote engines. To facilitate this, it may be necessary to specify relative path names 
by selecting the Use relative paths tick box shown in the Setup panel of the 
Experimenter.

To start the remote engine server, type

java -classpath remoteEngine.jar:<path_to_any_jdbc_drivers>
-Djava.security.policy=remote.policy weka.experiment.RemoteEngine

from the directory containing remoteEngine.jar. If everything is going well, you will 
see this message (or something like it):

user@ml:remote_engine>Host name : ml.cs.waikato.ac.nz
Attempting to start RMI registry on port 1099 …
RemoteEngine bound in RMI registry

This indicates that the remote engine has started the RMI registry on port 1099 and 
is running successfully. You can run more than one remote engine on a given 
machine, and it makes sense to do so if the machine in question has multiple proces-
sors or a multicore processor. To do so, start each remote engine as before, but 
instead of the default port (1099), specify a different one using a command-line 
option (–p) to the remote engine. Repeat the process for all hosts.

Now start the Experimenter by typing

java -Djava.rmi.server.codebase=<URL_for_weka_code> weka.gui.
experiment.Experimenter

The URL specifies where the remote engines can find the code to be executed. If it 
denotes a directory (i.e., one that contains the Weka directory) rather than a jar file, 
it must end with a path separator (e.g., /).

The Experimenter’s advanced Setup panel shown earlier in Figure 13.3 contains 
a small pane at center left; it determines whether an experiment will be distributed 
or not. This is normally inactive. To distribute the experiment click the checkbox, 
which will activate the Hosts button; a window will pop up asking for the machines 
over which to distribute the experiment. Host names should be fully qualified 
(e.g., ml.cs.waikato.ac.nz).

If a host is running more than one remote engine, enter its name into the window 
multiple times, along with the port number if it is not the default. For example:

ml.cs.waikato.ac.nz
ml.cs.waikato.ac.nz:5050



This tells the Experimenter that the host ml.cs.waikato.ac.nz is running two remote 
engines, one at the default port of 1099 and a second at port 5050.

Having entered the hosts, configure the rest of the experiment in the usual way 
(better still, configure it before switching to the advanced setup mode). When the 
experiment is started using the Run panel, the progress of the subexperiments on the 
various hosts is displayed, along with any error messages.

Distributing an experiment involves splitting it into subexperiments that RMI 
sends to the hosts for execution. By default, experiments are partitioned by dataset, 
in which case there can be no more hosts than there are datasets. Then each subex-
periment is self-contained: It applies all schemes to a single dataset. An experiment 
with only a few datasets can be partitioned by run instead. For example, a 10 times 
tenfold cross-validation would be split into 10 subexperiments, 1 per run.

	 13.5  Distributing Processing over Several Machines� 517



This page intentionally left blank



519Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

CHAPTER 

14 

The Command-Line  
Interface

Lurking behind Weka’s interactive interfaces—the Explorer, the Knowledge Flow, 
and the Experimenter—lies its basic functionality. This can be accessed more directly 
through a command-line interface. Select Simple CLI from the interface choices at 
the right of Figure 11.3(a) to bring up a plain textual panel with a line at the bottom 
on which you enter commands. Alternatively, use the operating system’s command-
line interface to run the classes in weka.jar, in which case you must first set the 
CLASSPATH environment variable as explained in Weka’s README file.

14.1  GETTING STARTED
At the beginning of Section 11.1 (page 410) we used the Explorer to invoke the J4.8 
learner on the weather data. To do the same thing in the command-line interface, 
type the following into the line at the bottom of the text panel:

java weka.classifiers.trees.J48 -t data/weather.arff

This incantation calls the Java virtual machine (in the Simple CLI, Java is already 
loaded) and instructs it to execute J4.8. Weka is organized in packages that corre-
spond to a directory hierarchy. The program to be executed is called J48 and resides 
in the trees package, which is a subpackage of classifiers, which is part of the overall 
weka package. The next section gives more details on the package structure. The –t 
option signals that the next argument is the name of the training file: We are assum-
ing that the weather data resides in a data subdirectory of the directory from which 
you fired up Weka. The result resembles the text shown in Figure 11.5. In the Simple 
CLI it appears in the panel above the line where you typed the command.

14.2  THE STRUCTURE OF WEKA
We have explained how to invoke filtering and learning schemes with the Explorer 
interface and connect them together with the Knowledge Flow interface. To go further, 
it is necessary to learn something about how Weka is put together. Detailed, up-to-date 
information can be found in the online documentation included in the distribution. 
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This is more technical than the descriptions of the learning and filtering schemes 
given by the More button in the Explorer and Knowledge Flow’s object editors. It is 
generated directly from comments in the source code using Sun’s Javadoc utility. To 
understand its structure, you need to know how Java programs are organized.

Classes, Instances, and Packages
Every Java program is implemented as a class or collection of classes. In object-
oriented programming, a class is a collection of variables along with some methods 
that operate on them. Together, they define the behavior of an object belonging to 
the class. An object is simply an instantiation of the class that has values assigned 
to all the class’s variables. In Java, an object is also called an instance of the class. 
Unfortunately, this conflicts with the terminology used in this book, where the terms 
class and instance appear in the quite different context of machine learning. From 
now on, you will have to infer the intended meaning of these terms from their 
context. This is not difficult—and sometimes we’ll use the word object instead of 
Java’s instance to make things clear.

In Weka, the implementation of a particular learning algorithm is encapsulated 
in a class, and it may depend on other classes for some of its functionality. For 
example, the J48 class described previously builds a C4.5 decision tree. Each time 
the Java virtual machine executes J48, it creates an instance of this class by allocat-
ing memory for building and storing a decision tree classifier. The algorithm, the 
classifier it builds, and a procedure for outputting the classifier are all part of that 
instantiation of the J48 class.

Larger programs are usually split into more than one class. The J48 class, for 
example, does not actually contain any code for building a decision tree. It includes 
references to instances of other classes that do most of the work. When there are a 
lot of classes—as in Weka—they become difficult to comprehend and navigate. Java 
allows classes to be organized into packages. A package is just a directory containing 
a collection of related classes; for example, the trees package mentioned previously 
contains the classes that implement decision trees. Packages are organized in a 
hierarchy that corresponds to the directory hierarchy: trees is a subpackage of the 
classifiers package, which is itself a subpackage of the overall weka package.

When you consult the online documentation generated by Javadoc from your 
web browser, the first thing you see is an alphabetical list of all the packages in 
Weka, as shown in Figure 14.1(a). (If you view the Javadoc with frames, you will 
see more than this. Click on NO FRAMES to remove the extra information.) Here 
we introduce a few of them in order of importance.

The weka.core Package
The core package is central to the Weka system, and its classes are accessed from 
almost every other class. You can determine what they are by clicking on the weka.
core hyperlink, which brings up the web page shown in Figure 14.1(b).
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(a)

FIGURE 14.1 

Using Javadoc: (a) the front page and (b) the weka.core package (see next page). 

This web page is divided into several parts, the main ones being the interface 
summary and the class summary. The latter is a list of classes contained within the 
package, and the former lists the interfaces it provides. An interface is similar to a 
class, the only difference being that it doesn’t actually do anything by itself—it is 
merely a list of methods without actual implementations. Other classes can declare 
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(b1)

(b2)

FIGURE 14.1, cont’d



that they “implement” a particular interface and then provide code for its methods. 
For example, the OptionHandler interface defines those methods that are imple-
mented by all classes that can process command-line options, including all 
classifiers.

The key classes in the core package are Attribute, Instance, and Instances. An 
object of class Attribute represents an attribute. It contains the attribute’s name, its 
type, and, in the case of a nominal or string attribute, its possible values. An object 
of class Instance contains the attribute values of a particular instance; an object of 
class Instances holds an ordered set of instances—in other words, a dataset. You can 
learn more about these classes by clicking their hyperlinks; we return to them in 
Chapter 15 page 536 and 538) when we show how to invoke machine learning 
schemes from other Java code. However, you can use Weka from the command-line 
interface without knowing the details.

Clicking the Overview hyperlink in the upper left corner of any documentation 
page returns you to the listing of all the packages in Weka, shown in Figure 14.1(a).

The weka.classifiers Package
The classifiers package contains implementations of most of the algorithms for clas-
sification and numeric prediction described in this book. (Numeric prediction is 
included in classifiers: It is interpreted as prediction of a continuous class.) The most 
important class in this package is Classifier, which defines the general structure of 
any scheme for classification or numeric prediction. Classifier contains three 
methods: buildClassifier(), classifyInstance(), and distributionForInstance(). In the 
terminology of object-oriented programming, the learning algorithms are repre-
sented by subclasses of Classifier and therefore automatically inherit these three 
methods. Every scheme redefines them according to how it builds a classifier and 
how it classifies instances. This gives a uniform interface for building and using 
classifiers from other Java code. Thus, for example, the same evaluation module can 
be used to evaluate the performance of any classifier in Weka.

To see an example, click on weka.classifiers.trees and then on DecisionStump, 
which is a class for building a simple one-level binary decision tree (with an extra 
branch for missing values). Its documentation page, shown in Figure 14.2, shows the 
fully qualified name of this class, weka.classifiers.trees.DecisionStump, near the top. 
You have to use this rather lengthy name whenever you build a decision stump from 
the command line. The class name is sited in a small tree structure showing the rel-
evant part of the class hierarchy. As you can see, DecisionStump is a subclass of 
weka.classifiers.Classifier, which is itself a subclass of java.lang.Object. The Object 
class is the most general one in Java: All classes are automatically subclasses of it.

After some generic information about the class—brief documentation, its version, 
and the author—Figure 14.2 gives an index of the constructors and methods of this 
class. A constructor is a special kind of method that is called whenever an object of 
that class is created, usually initializing the variables that collectively define its state. 
The index of methods lists the name of each one, the type of parameters it takes, 
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FIGURE 14.2 

DecisionStump, a class of the weka.classifiers.trees package. 

(a) (b)

and a short description of its functionality. Beneath those indexes, the web page 
gives more details about the constructors and methods. We return to these details 
later.

As you can see, DecisionStump overwrites the distributionForInstance() method 
from Classifier; the default implementation of classifyInstance() in Classifier then 
uses this method to produce its classifications. In addition, it contains the methods 
getCapabilities(), getRevision(), globalInfo(), toSource(), toString(), and main(). 
We discuss getCapabilities() shortly. The getRevision() method simply returns the 
revision number of the classifier. There is a utility class in the weka.core package 
that prints it to the screen; it is used by Weka maintainers when diagnosing and 
debugging problems reported by users. The globalInfo() method returns a string 
describing the classifier, which, along with the scheme’s options, is displayed by 
the More button in the generic object editor (see Figure 11.7(b)). The toString() 
method returns a textual representation of the classifier, used whenever it is printed 
on the screen, while the toSource() method is used to obtain a source code repre-
sentation of the learned classifier. The main() method is called when you ask for 
a decision stump from the command line—in other words, every time you enter 
a command beginning with



java weka.classifiers.trees.DecisionStump

The presence of a main() method in a class indicates that it can be run from the 
command line: All learning methods and filter algorithms implement it.

The getCapabilities() method is called by the generic object editor to provide 
information about the capabilities of a learning scheme (Figure 11.9(d)). The training 
data is checked against the learning scheme’s capabilities when the buildClassifier() 
method is called, and an error is raised when the classifier’s stated capabilities do 
not match the data’s characteristics. The getCapabilities() method is present in the 
Classifier class and, by default, enables all capabilities (i.e., imposes no constraints). 
This makes it easier for new Weka programmers to get started because they need 
not learn about and specify capabilities initially. Capabilities are covered in more 
detail in Chapter 16 (page 555).

Other Packages
Several other packages listed earlier in Figure 14.1(a) are worth mentioning: 
weka.associations, weka.clusterers, weka.datagenerators, weka.estimators, weka.
filters, and weka.attributeSelection. The weka.associations package contains 
association-rule learners. These learners have been placed in a separate package 
because association rules are fundamentally different from classifiers. The weka.
clusterers package contains methods for unsupervised learning. Artificial data 
can be generated using the classes in weka.datagenerators. The weka.estimators 
package contains subclasses of a generic Estimator class, which computes dif-
ferent types of probability distribution. These subclasses are used by the Naïve 
Bayes algorithm (among others).

In the weka.filters package, the Filter class defines the general structure of classes 
containing filter algorithms, which are all implemented as subclasses of Filter. Like 
classifiers, filters can be used from the command line—we will see how shortly. The 
weka.attributeSelection package contains several classes for attribute selection. The 
classes are used by the AttributeSelectionFilter in weka.filters.supervised.attribute, 
but can also be invoked separately.

Javadoc Indexes
As mentioned previously, all classes are automatically subclasses of Object. To 
examine the tree that corresponds to Weka’s hierarchy of classes, select the Overview 
link from the top of any page of the online documentation. Click Tree to display the 
overview as a tree that shows which classes are subclasses or superclasses of a 
particular class—for example, which classes inherit from Classifier.

The online documentation contains an index of all of the classes, packages, 
publicly accessible variables (called fields), and methods in Weka—in other words, 
all fields and methods that you can access from your own Java code. To view it, 
click Overview and then Index.
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Suppose you want to check which Weka classifiers and filters are capable of 
operating incrementally. Searching for the word incremental in the index would soon 
lead you to the keyword UpdateableClassifier. In fact, this is a Java interface; inter-
faces are listed after the classes in the overview tree. You are looking for all classes 
that implement this interface. Clicking any occurrence of it in the documentation 
brings up a page that describes the interface and lists the classifiers that implement 
it. To find the filters is a little trickier unless you know the keyword StreamableFilter, 
which is the name of the interface that streams data through a filter; again, its page 
lists the filters that implement it. You would stumble across that keyword if you 
knew any example of a filter that could operate incrementally.

14.3  COMMAND-LINE OPTIONS
In the preceding example, the –t option was used on the command line to commu-
nicate the name of the training file to the learning algorithm. There are many other 
options that can be used with any learning scheme and also scheme-specific ones 
that apply only to particular schemes. If you invoke a scheme with the –h or –help 
option, or without any command-line options at all, it displays the applicable  
options: first the general options, then the scheme-specific ones. In the command-line 
interface, type

java weka.classifiers.trees.J48 –h

You’ll see a list of the options common to all learning schemes, shown in Table 14.1, 
followed by those that apply only to J48, shown in Table 14.2. A notable one is 
–info, which outputs a very brief description of the scheme. We will explain the 
generic options and then briefly review the scheme-specific ones.

Generic Options
The options in Table 14.1 determine which data is used for training and testing, how 
the classifier is evaluated, and what kind of statistics are displayed. For example, 
the –T option is used to provide the name of the test file when evaluating a learning 
scheme on an independent test set. By default, the class is the last attribute in an 
ARFF file, but you can declare another one to be the class using –c followed by the 
position of the desired attribute—1 for the first, 2 for the second, and so on.

When cross-validation is performed (the default if a test file is not provided), the 
data is randomly shuffled first. To repeat the cross-validation several times, each 
time reshuffling the data in a different way, set the random number seed with –s 
(default value 1). With a large dataset you may want to reduce the number of folds 
for the cross-validation from the default value of 10 using –x. If performance on the 
training data alone is required, –no-cv can be used to suppress cross-validation; −v 
suppresses output of performance on the training data. As an alternative to cross-
validation, a train-test split of the data specified with the –t option can be performed 
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Table 14.1  Generic Options for Learning Schemes in Weka

Option Function

h or –help Print help information
–synopsis or –info In combination with –h or –help, prints the 

information from the “More” button in a 
classifier’s generic object editor

–t <training file> Specify training file
–T <test file> Specify test file. If none, a cross-validation is 

performed on the training data.
–c <class index> Specify index of class attribute
–x <number of folds> Specify number of folds for cross-validation
–s <random number seed> Specify random-number seed for 

cross-validation
–no-cv Don’t perform cross-validation
–split-percentage <training percentage> Specify percentage of the data to use for 

the training set in a train-test split
–preserve-order Preserve original order of the data when 

performing a train-test split
–m <cost matrix file> Specify file containing cost matrix
–l <input file> Specify input file for model
–d <output file> Specify output file for model
–v Output no statistics for training data
–o Output statistics only, not the classifier
–i Output information retrieval statistics for 

two-class problems
–k Output information-theoretic statistics
–p <attribute range> Output predictions for test instances
–distribution In combination with –p, output the full 

probability distribution for discrete class data 
instead of just the predicted label

–r Output cumulative margin distribution
–z <class name> Output the source representation of the 

classifier
–g Output the graph representation of the 

classifier
–xml <filename> | <xml string> Set scheme-specific options from XML-

encoded options stored in a file or in a 
supplied string

–threshold-file <file> Save threshold data (for ROC curves, etc.) 
to a file

–threshold-label <label> Class label for the threshold data
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by supplying a percentage to use as the new training set with –split-percentage (the 
remaining data is used as the test set). Randomization of the data can be suppressed 
when performing a train-test split by specifying –preserve-order.

In the Explorer interface, cost-sensitive evaluation is invoked as described in 
Section 11.1 (page 403). To achieve the same effect from the command line, use the 
–m option to provide the name of a file containing the cost matrix. Here is a cost 
matrix for the weather data:

2	 2	 % Number of rows and columns in the matrix
0  10	 % If true class yes and prediction no, penalty is 10
1	 0	 % If true class no and prediction yes, penalty is 1

The first line gives the number of rows and columns—that is, the number of class 
values. Then comes the matrix of penalties. Comments introduced by % can be 
appended to the end of any line.

It is also possible to save and load models. If you provide the name of an output 
file using –d, Weka saves the classifier generated from the training data. To evaluate 
the same classifier on a new batch of test data, you load it back using –l instead of 
rebuilding it. If the classifier can be updated incrementally, you can provide both a 
training file and an input file, and Weka will load the classifier and update it with 
the given training instances.

If you wish only to assess the performance of a learning scheme, use –o to sup-
press output of the model. Use –i to see the performance measures of precision, 
recall, F-measure, and area under the ROC curve (see Section 5.7, page 172). Use 
–k to compute information-theoretic measures from the probabilities derived by a 
learning scheme (see Section 5.6, page 161).

People often want to know which class values the learning scheme actually 
predicts for each test instance. The –p option prints each test instance’s number, the 

Table 14.2  Scheme-Specific Options for the J48 Decision Tree Learner

Option Function

-U Use unpruned tree
-C <pruning confidence> Specify confidence threshold for pruning
-M <number of instances> Specify minimum number of instances in any leaf
-R Use reduced-error pruning
-N <number of folds> Specify number of folds for reduced-error pruning; one 

fold is used as pruning set
-B Use binary splits only
-S Don’t perform subtree raising
-L Retain instance information
-A Smooth probability estimates using Laplace smoothing
-Q Seed for shuffling data
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index of its class value and the actual value, the index of the predicted class value 
and the predicted value, a “+” if the class was misclassified, and the probability of 
the predicted class value. The probability predicted for each of the possible class 
labels of an instance can be output by using the –distribution flag in conjunction 
with –p. In this case, “*” is placed beside the probability in the distribution that 
corresponds to the predicted class value. The –p option also outputs attribute values 
for each instance and must be followed by a specification of the range (e.g., 1–2)—
use 0 if you don’t want any attribute values. You can also output the cumulative 
margin distribution for the training data, which shows the distribution of the margin 
measure (see Section 8.4, page 361). Finally, you can output the classifier’s source 
representation, and a graphical representation if the classifier can produce one.

Data relating to performance graphs such as ROC and recall–precision curves 
can be sent to a file using the –threshold-file option. The class label to treat as the 
positive class for generating the data can be specified with –threshold-label. The 
next section discusses how scheme-specific options are supplied on the command 
line; they can also be set from an XML file or string using the –xml option.

Scheme-Specific Options
Table 14.2 shows the options specific to J48. You can force the algorithm to use the 
unpruned tree instead of the pruned one. You can suppress subtree raising, which 
increases efficiency. You can set the confidence threshold for pruning and the 
minimum number of instances permissible at any leaf—both parameters were 
described in Section 6.1 (page 201). As well as C4.5’s standard pruning procedure, 
reduced-error pruning (see Section 6.2, page 206) can be performed. The –N option 
governs the size of the holdout set: The dataset is divided equally into that number 
of parts and the last is held out (default value 3). You can smooth the probability 
estimates using the Laplace technique, set the random number seed for shuffling the 
data when selecting a pruning set, and store the instance information for future 
visualization. Finally, to build a binary tree instead of one with multiway branches 
for nominal attributes, use –B.
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CHAPTER 

15 

Embedded Machine  
Learning

When invoking learning schemes from the graphical user interfaces or the command-
line interface, there is no need to know anything about programming in Java. In this 
section we show how to access these algorithms from your own code. In doing so, 
the advantages of using an object-oriented programming language will become clear. 
From now on, we assume that you have at least some rudimentary knowledge of 
Java. In most practical applications of data mining, the learning component is an 
integrated part of a far larger software environment. If the environment is written in 
Java, you can use Weka to solve the learning problem without writing any machine 
learning code yourself.

15.1  A SIMPLE DATA MINING APPLICATION
We present a simple data mining application for learning a model that classifies text 
files into two categories: hit and miss. The application works for arbitrary docu-
ments, which are referred to as messages. The implementation uses the StringTo-
WordVector filter mentioned in Section 11.3 (page 439) to convert messages into 
attribute vectors in the manner described in Section 7.3 (page 328). We assume that 
the program is called every time a new file is to be processed. If the user provides 
a class label for the file, the system uses it for training; if not, it classifies it. The 
decision tree classifier J48 is used to do the work.

Figure 15.1 shows the source code for the application program, implemented in 
a class called MessageClassifier. The command-line arguments that the main() 
method accepts are the name of a text file (given by –m), the name of a file holding 
an object of class MessageClassifier (–t), and, optionally, the classification of the 
message in the file (–c). If the user provides a classification, the message will be 
converted into an example for training; if not, the MessageClassifier object will be 
used to classify it as hit or miss.

The main() method reads the message into a Java StringBuffer and checks 
whether the user has provided a classification for it. Then it reads a MessageClassi
fier object from the file given by –t, and creates a new object of class Message
Classifier if this file does not exist. In either case the resulting object is called 
messageCl. After checking for illegal command-line options, the program calls the 



532	 CHAPTER 15  Embedded Machine Learning 

/** 
 * Java program for classifying text messages into two classes. 
 */ 
 
import weka.classifiers.Classifier; 
import weka.classifiers.trees.J48; 
import weka.core.Attribute; 
import weka.core.FastVector; 
import weka.core.Instance; 
import weka.core.Instances; 
import weka.core.SerializationHelper; 
import weka.core.Utils; 
import weka.filters.Filter; 
import weka.filters.unsupervised.attribute.StringToWordVector; 
 
import java.io.FileNotFoundException; 
import java.io.FileReader; 
import java.io.Serializable; 
 
public class MessageClassifier implements Serializable { 
 
/** The training data gathered so far. */ 
  private Instances m_Data = null; 
 
  /** The filter used to generate the word counts. */ 
  private StringToWordVector m_Filter = new StringToWordVector(); 
 
  /** The actual classifier. */ 
  private Classifier m_Classifier = new J48(); 
 
  /** Whether the model is up to date. */ 
  private boolean m_UpToDate; 
 
  /** For serialization. */ 
  private static final long serialVersionUID = -123455813150452885L; 
 
  /** 
   * Constructs empty training dataset. 
   */ 
  public MessageClassifier() { 
    String nameOfDataset = "MessageClassificationProblem"; 
 
    // Create vector of attributes. 
    FastVector attributes = new FastVector(2); 
 
    // Add attribute for holding messages. 
    attributes.addElement(new Attribute("Message", (FastVector) null)); 

     // Add class attribute. 
    FastVector classValues = new FastVector(2); 
    classValues.addElement("miss"); 
    classValues.addElement("hit"); 
    attributes.addElement(new Attribute("Class", classValues)); 

FIGURE 15.1 

Source code for the message classifier main(). 
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  /** 
   * Updates model using the given training message. 
   *  
   * @param message     the message content 
   * @param classValue the class label 
   */ 
  public void updateData(String message, String classValue) { 
    // Make message into instance. 
    Instance instance = makeInstance(message, m_Data); 
 
    // Set class value for instance. 
    instance.setClassValue(classValue); 
 
    // Add instance to training data. 
    m_Data.add(instance);      
    m_UpToDate = false; 
  } 
 
  /** 
   * Classifies a given message. 
   *  
   * @param message     the message content 
   * @throws Exception  if classification fails 
   */ 
  public void classifyMessage(String message) throws Exception { 
 
    // Check whether classifier has been built. 
    if (m_Data.numInstances() == 0) { 
      throw new Exception("No classifier available."); 
    } 
 
    // Check whether classifier and filter are up to date. 
    if (!m_UpToDate) { 
      // Initialize filter and tell it about the input format. 
      m_Filter.setInputFormat(m_Data); 
 
      // Generate word counts from the training data. 
      Instances filteredData  = Filter.useFilter(m_Data, m_Filter); 
 
      // Rebuild classifier. 
      m_Classifier.buildClassifier(filteredData); 
       
      m_UpToDate = true; 
    } 
 
    // Make separate little test set so that message 
    // does not get added to string attribute in m_Data. 
    Instances testset = m_Data.stringFreeStructure(); 
 
    // Make message into test instance. 
    Instance instance = makeInstance(message, testset); 
 

 
    // Create dataset with initial capacity of 100, and set index 

    m_Data = new Instances(nameOfDataset, attributes, 100); 
    m_Data.setClassIndex(m_Data.numAttributes() - 1); 
  } 

of class. 

FIGURE 15.1, cont’d
Continued
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    // Output class value. 
    System.err.println("Message classified as : " + 
         m_Data.classAttribute().value((int) predicted)); 
  } 
 
  /** 
   * Method that converts a text message into an instance. 
   *  
   * @param text the message content to convert 
   * @param data the header information 
   * @return   the generated Instance 
   */ 
  private Instance makeInstance(String text, Instances data) { 
 
    // Create instance of length two. 
    Instance instance = new Instance(2); 
 
    // Set value for message attribute 
    Attribute messageAtt = data.attribute("Message"); 
    instance.setValue(messageAtt, messageAtt.addStringValue(text)); 
 
    // Give instance access to attribute information from the dataset. 
    instance.setDataset(data); 
     
    return instance; 
  } 
 
  /** 
   * Main method. The following parameters are recognized: 
   *  
   *   -m messagefile 
   *      Points to the file containing the message to classify or use
   *      for updating the model. 
   *   -c classlabel 
   *      The class label of the message if model is to be updated. 
   *      Omit for classification of a message. 
   *   -t modelfile 
   *      The file containing the model. If it doesn't exist, it will 
   *      be created automatically. 
   *  
   * @param args the commandline options 
   */ 
  public static void main(String[] args) { 
 
    try { 
 

    // Filter instance. 
    m_Filter.input(instance); 
    Instance filteredInstance = m_Filter.output(); 

    // Get index of predicted class value. 
    double predicted = m_Classifier.classifyInstance(filteredInstance); 

FIGURE 15.1, cont’d
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      // Check if there are any options left 
      Utils.checkForRemainingOptions(args); 
       
      // Process message. 
      if (classValue.length() != 0) { 
        messageCl.updateData(message.toString(), classValue); 
      } else { 
        messageCl.classifyMessage(message.toString()); 
      } 
       
      // Save message classifier object only if it was updated. 
      if (classValue.length() != 0) { 

 SerializationHelper.write(modelName, messageCl); 
      } 
    } catch (Exception e) { 
      e.printStackTrace(); 
  } 
} 

      FileReader m = new FileReader(messageName); 
      StringBuffer message = new StringBuffer(); 
      int l; 
      while ((l = m.read()) != -1) { 

 message.append((char) l); 
      } 
      m.close(); 
       
      // Check if class value is given. 
      String classValue = Utils.getOption('c', args); 
       
      // If model file exists, read it, otherwise create new one. 
      String modelName = Utils.getOption('t', args); 
      if (modelName.length() == 0) { 

 throw new Exception("Must provide name of model 

      } 
      MessageClassifier messageCl; 
      try { 

 messageCl = 

      } catch (FileNotFoundException e) { 
 messageCl = new MessageClassifier(); 

      } 

       

      // Read message file into string. 
      String messageName = Utils.getOption('m', args); 
      if (messageName.length() == 0) { 
        throw new Exception("Must provide name of message  

      } 

+ file ('-m <file>')."); 

+ file ('-t <file>')."); 

(MessageClassifier) SerializationHelper. read(modelName); 

FIGURE 15.1, cont’d
Continued
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method updateData() message to update the training data stored in messageCl if a 
classification has been provided; otherwise, it calls classifyMessage() to classify it. 
Finally, the messageCl object is saved back into the file because it may have 
changed. In the following, we first describe how a new MessageClassifier object is 
created by the constructor MessageClassifier() and then explain how the two methods 
updateData() and classifyMessage() work.

MessageClassifier ()
Each time a new MessageClassifier is created, objects for holding the filter and 
classifier are generated automatically. The only nontrivial part of the process is creat-
ing a dataset, which is done by the constructor MessageClassifier(). First, the data-
set’s name is stored as a string. Then an Attribute object is created for each attribute, 
one to hold the string corresponding to a text message and the other for its class. 
These objects are stored in a dynamic array of type FastVector. (FastVector is Weka’s 
own implementation of the standard Java Vector class and is used throughout Weka 
for historical reasons.)

Attributes are created by invoking one of the constructors in the class Attribute. 
This class has a constructor that takes one parameter—the attribute’s name—and 
creates a numeric attribute. However, the constructor we use here takes two param-
eters: the attribute’s name and a reference to a FastVector. If this reference is null, 
as in the first application of this constructor in our program, Weka creates an attribute 
of type string. Otherwise, a nominal attribute is created. In that case, it is assumed 
that the FastVector holds the attribute values as strings. This is how we create a class 
attribute with two values, hit and miss—by passing the attribute’s name (class) and 
its values, stored in a FastVector, to Attribute().

To create a dataset from this attribute information, MessageClassifier() must 
create an object of the class Instances from the core package. The constructor of 
Instances used by MessageClassifier() takes three arguments: the dataset’s name, a 
FastVector containing the attributes, and an integer indicating the dataset’s initial 
capacity. We set the initial capacity to 100; it is expanded automatically if more 
instances are added. After constructing the dataset, MessageClassifier() sets the 
index of the class attribute to be the index of the last attribute.

updateData()
Now that you know how to create an empty dataset, consider how the MessageClassi
fier object actually incorporates a new training message. The method updateData() 
does this job. It first converts the given message into a training instance by calling 
makeInstance(), which begins by creating an object of class Instance that corresponds 
to an instance with two attributes. The constructor of the Instance object sets all the 
instance’s values to be missing and its weight to 1. The next step in makeInstance() is 
to set the value of the string attribute holding the text of the message. This is done  
by applying the setValue() method of the Instance object, providing it with the 
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attribute whose value needs to be changed, and a second parameter that corresponds 
to the new value’s index in the definition of the string attribute. This index is returned 
by the addStringValue() method, which adds the message text as a new value to the 
string attribute and returns the position of this new value in the definition of the string 
attribute.

Internally, an Instance stores all attribute values as double-precision floating-
point numbers regardless of the type of the corresponding attribute. In the case 
of nominal and string attributes this is done by storing the index of the corre-
sponding attribute value in the definition of the attribute. For example, the first 
value of a nominal attribute is represented by 0.0, the second by 1.0, and so on. 
The same method is used for string attributes: addStringValue() returns the index 
corresponding to the value that is added to the definition of the attribute.

Once the value for the string attribute has been set, makeInstance() gives the 
newly created instance access to the data’s attribute information by passing it a refer-
ence to the dataset. In Weka, an Instance object does not store the type of each 
attribute explicitly; instead, it stores a reference to a dataset with the corresponding 
attribute information.

Returning to updateData(), once the new instance has been returned from 
makeInstance(), its class value is set and it is added to the training data. We also 
initialize m_UpToDate, a flag indicating that the training data has changed and the 
predictive model is therefore not up to date.

classifyMessage()
Now let’s examine how MessageClassifier processes a message of which the class 
label is unknown. The classifyMessage() method first checks whether a classifier 
has been built by determining whether any training instances are available. It 
then checks whether the classifier is up to date. If not (because the training data 
has changed), the classifier must be rebuilt. However, before doing so, the data 
must be converted into a format appropriate for learning using the StringToWord-
Vector filter. First, we tell the filter the format of the input data by passing it a 
reference to the input dataset using setInputFormat(). Every time this method is 
called, the filter is initialized—that is, all its internal settings are reset. In the 
next step, the data is transformed by useFilter(). This generic method from the 
Filter class applies a filter to a dataset. In this case, because StringToWordVector 
has just been initialized, it computes a dictionary from the training dataset and 
then uses it to form a word vector. After returning from useFilter(), all the filter’s 
internal settings are fixed until it is initialized by another call of inputFormat(). 
This makes it possible to filter a test instance without updating the filter’s internal 
settings (in this case, the dictionary).

Once the data has been filtered, the program rebuilds the classifier—in our case 
a J48 decision tree—by passing the training data to its buildClassifier() method. 
Then it sets m_UpToDate to true. It is an important convention in Weka that the 
buildClassifier() method completely initializes the model’s internal settings before 
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generating a new classifier. Thus, we do not need to construct a new J48 object 
before we call buildClassifier().

Having ensured that the model stored in m_Classifier is current, we proceed to 
classify the message. Before makeInstance() is called to create an Instance object 
from it, a new Instances object is created to hold the new instance and it is passed 
as an argument to makeInstance(). This is done so that makeInstance() does not 
add the text of the message to the definition of the string attribute in m_Data. 
Otherwise, the size of the m_Data object would grow every time a new message 
was classified, which is clearly not desirable—it should only grow when training 
instances are added. Thus, a temporary Instances object is created and discarded 
once the instance has been processed. This object is obtained using the method 
stringFreeStructure(), which returns a copy of m_Data with an empty string 
attribute. Only then is makeInstance() called to create the new instance.

The test instance must also be processed by the StringToWordVector filter before 
being classified. This is easy: The input() method enters the instance into the filter 
object, and the transformed instance is obtained by calling output(). Then a predic-
tion is produced by passing the instance to the classifier’s classifyInstance() method. 
As you can see, the prediction is coded as a double value. This allows Weka’s evalu-
ation module to treat models for categorical and numeric prediction similarly. In the 
case of categorical prediction, as in this example, the double variable holds the index 
of the predicted class value. To output the string corresponding to this class value, 
the program calls the value() method of the dataset’s class attribute.

There is at least one way in which our implementation could be improved. The 
classifier and the StringToWordVector filter could be combined using the Filtered-
Classifier metalearner described in Section 11.5 (page 443). This classifier would 
then be able to deal with string attributes directly, without explicitly calling the filter 
to transform the data. We didn’t do this because we wanted to demonstrate how 
filters can be used programmatically.
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CHAPTER 

16 

Writing New Learning  
Schemes

Suppose you need to implement a special-purpose learning algorithm that is not 
included in Weka. Or suppose you are engaged in machine learning research and 
want to investigate a new learning scheme. Or suppose you just want to learn more 
about the inner workings of an induction algorithm by actually programming it 
yourself. This section uses a simple example to show how to make full use of Weka’s 
class hierarchy when writing classifiers.

Weka includes the elementary learning schemes listed in Table 16.1, mainly for 
educational purposes. None take any scheme-specific command-line options. They 
are all useful for understanding the inner workings of a classifier. As an example, 
we describe the weka.classifiers.trees.Id3 scheme, which implements the ID3 deci-
sion tree learner from Section 4.3 (page 99). Other schemes, such as clustering 
algorithms and association rule learners, are organized in a similar manner.

16.1  AN EXAMPLE CLASSIFIER
Figure 16.1 gives the source code of weka.classifiers.trees.Id3, which extends 
the Classifier class, as you can see from what is shown in the eight-page figure 
that follows the next page. Every classifier in Weka does so, whether it predicts 
a nominal class or a numeric one. It also implements two interfaces, Technical
InformationHandler and Sourcable, which, respectively, allow the implementing 
class to provide bibliographical references for display in Weka’s graphical user 
interface and a source code representation of its learned model.

The first method in weka.classifiers.trees.Id3 is globalInfo(): We mention it 
here before moving on to the more interesting parts. It simply returns a string 
that is displayed in Weka’s graphical user interface when this scheme is selected. 
Part of the string includes information generated by the second method, getTech-
nicalInformation(), which formats a bibliographic reference for the ID3 algorithm. 
The third method, getCapabilities(), returns information on the data characteristics 
that Id3 can handle, namely nominal attributes and a nominal class—and the fact 
that it can deal with missing class values and data that contains no instances 
(although the latter does not produce a useful model!). Capabilities are described 
in Section 16.2.
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buildClassifier ()
The buildClassifier() method constructs a classifier from a training dataset. In this 
case, it first checks the data’s characteristics against Id3’s capabilities. Characteris-
tics of the training data, such as numeric attributes or missing attribute values, will 
cause the Capabilities class to raise an exception, because the ID3 algorithm cannot 
handle these. It then makes a copy of the training set (to avoid changing the original 
data) and calls a method from weka.core.Instances to delete all instances with 
missing class values, because these instances are useless in the training process. 
Finally, it calls makeTree(), which actually builds the decision tree by recursively 
generating all subtrees attached to the root node.

makeTree()
The first step in makeTree() is to check whether the dataset is empty. If it is, a leaf 
is created by setting m_Attribute to null. The class value m_ClassValue assigned to 
this leaf is set to be missing, and the estimated probability for each of the dataset’s 
classes in m_Distribution is initialized to 0. If training instances are present, make-
Tree() finds the attribute that yields the greatest information gain for them. It first 
creates a Java enumeration of the dataset’s attributes. If the index of the class attri-
bute is set—as it will be for this dataset—the class is automatically excluded from 
the enumeration.

Inside the enumeration, each attribute’s information gain is computed by com-
puteInfoGain() and stored in an array. We will return to this method later. The index() 
method from weka.core.Attribute returns the attribute’s index in the dataset, which 
is used to index the array. Once the enumeration is complete, the attribute with the 
greatest information gain is stored in the instance variable m_Attribute. The max
Index() method from weka.core.Utils returns the index of the greatest value in an 
array of integers or doubles. (If there is more than one element with maximum value, 
the first is returned.) The index of this attribute is passed to the attribute() method 
from weka.core.Instances, which returns the corresponding attribute.

You might wonder what happens to the array field corresponding to the class 
attribute. We need not worry about this because Java automatically initializes all 
elements in an array of numbers to 0, and the information gain is always greater 

Table 16.1  Simple Learning Schemes in Weka

Scheme Description Book Section

weka.classifiers.bayes.NaiveBayesSimple Probabilistic learner 4.2
weka.classifiers.trees.Id3 Decision tree learner 4.3
weka.classifiers.rules.Prism Rule learner 4.4
weka.classifiers.lazy.IB1 Instance-based learner 4.7
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package weka.classifiers.trees; 
 
import weka.classifiers.Classifier; 
import weka.classifiers.Sourcable; 
import weka.core.Attribute; 
import weka.core.Capabilities; 
import weka.core.Instance; 
import weka.core.Instances; 
import weka.core.NoSupportForMissingValuesException; 
import weka.core.RevisionUtils; 
import weka.core.TechnicalInformation; 
import weka.core.TechnicalInformationHandler; 
import weka.core.Utils; 
import weka.core.Capabilities.Capability; 
import weka.core.TechnicalInformation.Field; 
import weka.core.TechnicalInformation.Type; 
 
import java.util.Enumeration; 
 
/** 
 * Class implementing an Id3 decision tree classifier. 
 */ 
public class Id3 extends Classifier  
  implements TechnicalInformationHandler, Sourcable { 
 
  /** for serialization */ 
  static final long serialVersionUID = -2693678647096322561L; 
   
  /** The node's successors. */  
  private Id3[] m_Successors; 
 
  /** Attribute used for splitting. */ 
  private Attribute m_Attribute; 
 
  /** Class value if node is leaf. */ 
  private double m_ClassValue; 
 
  /** Class distribution if node is leaf. */ 
  private double[] m_Distribution; 
 
  /** Class attribute of dataset. */ 
  private Attribute m_ClassAttribute; 
 
  /** 
   * Returns a string describing the classifier. 
   * @return a description suitable for the GUI. 
   */ 
  public String globalInfo() { 
 

return "Class for constructing an unpruned decision tree "
  + "based on the ID3 algorithm. Can only deal with "
  + "nominal attributes. No missing values allowed. "
  + "Empty leaves may result in unclassified instances. "
  + "For more information see: \n\n"
  + getTechnicalInformation.toString();
}

FIGURE 16.1 

Source code for the ID3 decision tree learner. 

Continued
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    result = new TechnicalInformation(Type.ARTICLE); 
    result.setValue(Field.AUTHOR, "R. Quinlan"); 
    result.setValue(Field.YEAR, "1986"); 
    result.setValue(Field.TITLE, "Induction of decision trees"); 
    result.setValue(Field.JOURNAL, "Machine Learning"); 
    result.setValue(Field.VOLUME, "1"); 
    result.setValue(Field.NUMBER, "1"); 
    result.setValue(Field.PAGES, "81-106");      
    return result; 
  } 
 
  /** 
   * Returns default capabilities of the classifier. 
   * 
   * @return      the capabilities of this classifier 
   */ 
  public Capabilities getCapabilities() { 
    Capabilities result = super.getCapabilities(); 
    result.disableAll(); 
 
    // attributes 
    result.enable(Capability.NOMINAL_ATTRIBUTES); 
 
    // class 
    result.enable(Capability.NOMINAL_CLASS); 
    result.enable(Capability.MISSING_CLASS_VALUES); 
 
    // instances 
    result.setMinimumNumberInstances(0); 
     
    return result; 
  } 
 
  /** 
   * Builds Id3 decision tree classifier. 
   * 
   * @param data the training data 
   * @exception Exception if classifier can't be built successfully 
   */ 
  public void buildClassifier(Instances data) throws Exception { 
 
    // can classifier handle the data? 
    getCapabilities().testWithFail(data); 
 
    // remove instances with missing class 
    data = new Instances(data); 
    data.deleteWithMissingClass(); 
     

  public TechnicalInformation getTechnicalInformation() { 
    TechnicalInformation result; 

  /** 
   * Returns an instance of a TechnicalInformation object, containing  
   * detailed information about the technical background of this class, 
   * e.g., paper reference or book this class is based on. 
   *  
   * @return the technical information about this class 
   */ 

FIGURE 16.1, cont’d
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  /** 
   * Classifies a given test instance using the decision tree. 
   * 
   * @param instance the instance to be classified 
   * @return the classification 
   * @throws NoSupportForMissingValuesException if instance has missing 

   */ 
  public double classifyInstance(Instance instance)  
    throws NoSupportForMissingValuesException {  

    makeTree(data); 
  }  

values 

/**
   * Method for building an Id3 tree.
   *
   * @param data the training data
   * @exception Exception if decision tree can't be built successfully
   */
  private void makeTree(Instances data) throws Exception {

    // Check if no instances have reached this node.
    if (data.numInstances() == 0) {
      m_Attribute = null;
      m_ClassValue = Instance.missingValue();
      m_Distribution = new double[data.numClasses()];
      return;
    }

    // Compute attribute with maximum information gain.
    double[] infoGains = new double[data.numAttributes()];
    Enumeration attEnum = data.enumerateAttributes();
    while (attEnum.hasMoreElements()) {
      Attribute att = (Attribute) attEnum.nextElement();
      infoGains[att.index()] = computeInfoGain(data, att);
    }
    m_Attribute = data.attribute(Utils.maxIndex(infoGains));
    
    // Make leaf if information gain is zero. 
    // Otherwise create successors.
    if (Utils.eq(infoGains[m_Attribute.index()], 0)) {
      m_Attribute = null;
      m_Distribution = new double[data.numClasses()];
      Enumeration instEnum = data.enumerateInstances();
      while (instEnum.hasMoreElements()) {
        Instance inst = (Instance) instEnum.nextElement();
        m_Distribution[(int) inst.classValue()]++;
      }
      Utils.normalize(m_Distribution);
      m_ClassValue = Utils.maxIndex(m_Distribution);
      m_ClassAttribute = data.classAttribute();
    } else {
      Instances[] splitData = splitData(data, m_Attribute);
      m_Successors = new Id3[m_Attribute.numValues()];
      for (int j = 0; j < m_Attribute.numValues(); j++) {
        m_Successors[j] = new Id3();
        m_Successors[j].makeTree(splitData[j]);
      }
    }
  }

FIGURE 16.1, cont’d
Continued
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    if (instance.hasMissingValue()) { 
      throw new NoSupportForMissingValuesException("Id3: no missing values, " 
                                                    + "please."); 
    } 
    if (m_Attribute == null) { 
      return m_Distribution; 
    } else {  
      return m_Successors[(int) instance.value(m_Attribute)]. 
        distributionForInstance(instance); 
    } 
  } 
 
  /** 
   * Prints the decision tree using the private toString method from below. 
   * 
   * @return a textual description of the classifier 
   */ 
  public String toString() { 
 
    if ((m_Distribution == null) && (m_Successors == null)) { 
      return "Id3: No model built yet."; 
    } 
    return "Id3\n\n" + toString(0); 
  } 
 
  /** 
   * Computes information gain for an attribute. 
   * 
   * @param data the data for which info gain is to be computed 
   * @param att the attribute 
   * @return the information gain for the given attribute and data 
   * @throws Exception if computation fails 
   */ 
  private double computeInfoGain(Instances data, Attribute att)  
    throws Exception { 

  /** 
   * Computes class distribution for instance using decision tree. 
   * 
   * @param instance the instance for which distribution is to be computed 
   * @return the class distribution for the given instance 
   * @throws NoSupportForMissingValuesException if instance 

   */ 
  public double[] distributionForInstance(Instance instance)  
    throws NoSupportForMissingValuesException { 

    if (instance.hasMissingValue()) { 
      throw new NoSupportForMissingValuesException("Id3: no missing values, " 
                                                    + "please."); 
    } 
    if (m_Attribute == null) { 
      return m_ClassValue; 
    } else { 
      return m_Successors[(int) instance.value(m_Attribute)]. 
        classifyInstance(instance); 
    } 
  } 
 

* has missing values 

FIGURE 16.1, cont’d
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   * @param data the data for which entropy is to be computed 
   * @return the entropy of the data's class distribution 
   * @throws Exception if computation fails 
   */ 
  private double computeEntropy(Instances data) throws Exception { 
 
    double [] classCounts = new double[data.numClasses()]; 
    Enumeration instEnum = data.enumerateInstances(); 
    while (instEnum.hasMoreElements()) { 
      Instance inst = (Instance) instEnum.nextElement(); 
      classCounts[(int) inst.classValue()]++; 
    } 
    double entropy = 0; 
    for (int j = 0; j < data.numClasses(); j++) { 
      if (classCounts[j] > 0) { 
        entropy -= classCounts[j] * Utils.log2(classCounts[j]); 
      } 
    } 
    entropy /= (double) data.numInstances(); 
    return entropy + Utils.log2(data.numInstances()); 
  } 
 
  /** 
   * Splits a dataset according to the values of a nominal attribute. 
   * 
   * @param data the data which is to be split 
   * @param att the attribute to be used for splitting 
   * @return the sets of instances produced by the split 
   */ 
  private Instances[] splitData(Instances data, Attribute att) { 
 
    Instances[] splitData = new Instances[att.numValues()]; 
    for (int j = 0; j < att.numValues(); j++) { 
      splitData[j] = new Instances(data, data.numInstances()); 
    } 
    Enumeration instEnum = data.enumerateInstances(); 
    while (instEnum.hasMoreElements()) { 
      Instance inst = (Instance) instEnum.nextElement(); 
      splitData[(int) inst.value(att)].add(inst); 
    } 
    for (int i = 0; i < splitData.length; i++) { 
      splitData[i].compactify(); 
    } 
    return splitData; 
  } 
 

    double infoGain = computeEntropy(data); 
    Instances[] splitData = splitData(data, att); 
    for (int j = 0; j < att.numValues(); j++) { 
      if (splitData[j].numInstances() > 0) { 
        infoGain -= ((double) splitData[j].numInstances() / 
                     (double) data.numInstances()) * 
          computeEntropy(splitData[j]); 
      } 
    } 
    return infoGain; 
  } 

  /** 
   * Computes the entropy of a dataset. 
   *  

FIGURE 16.1, cont’d
Continued
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      } else { 
        text.append(": " + m_ClassAttribute.value((int) m_ClassValue)); 
      }  
    } else { 
      for (int j = 0; j < m_Attribute.numValues(); j++) { 
        text.append("\n"); 
        for (int i = 0; i < level; i++) { 
          text.append("|  "); 
        } 
        text.append(m_Attribute.name() + " = " + m_Attribute.value(j)); 
        text.append(m_Successors[j].toString(level + 1)); 
      } 
    } 
    return text.toString(); 
  } 
 
  /** 
   * Adds this tree recursively to the buffer. 
   *  
   * @param id          the unqiue id for the method 
   * @param buffer      the buffer to add the source code to 
   * @return            the last ID being used 
   * @throws Exception  if something goes wrong 
   */ 
  protected int toSource(int id, StringBuffer buffer) throws Exception { 
    int                 result; 
    int                 i; 
    int                 newID; 
    StringBuffer[]      subBuffers; 
     
    buffer.append("\n"); 
    buffer.append("  protected static double node" 
     

    // leaf? 
    if (m_Attribute == null) { 
      result = id; 
      if (Double.isNaN(m_ClassValue)) { 
        buffer.append("    return Double.NaN;"); 
      } else { 
        buffer.append("    return " + m_ClassValue + ";"); 
      } 
      if (m_ClassAttribute != null) { 
        buffer.append(" // " + m_ClassAttribute.value((int) m_ClassValue)); 
      } 
      buffer.append("\n"); 
      buffer.append("  }\n"); 

  /** 
   * Outputs a tree at a certain level. 
   * 
   * @param level the level at which the tree is to be printed 
   * @return the tree as string at the given level 
   */ 
  private String toString(int level) { 

    StringBuffer text = new StringBuffer(); 
     
    if (m_Attribute == null) { 
      if (Instance.isMissingValue(m_ClassValue)) { 
        text.append(": null"); 

  + id + "(Object[] i) {\n"); 

FIGURE 16.1, cont’d
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      result = newID; 
    } 
     
    return result; 
  } 
   
  /** 
   * Returns a string that describes the classifier as source. The 
   * classifier will be contained in a class with the given name (there 
   * may be auxiliary classes), 
   * and will contain a method with the signature: 
   * <pre><code> 
   * public static double classify(Object[] i); 
   * </code></pre> 
   * where the array <code>i</code> contains elements that are either 
   * Double, String, with missing values represented as null. The 
   * generated code is public domain and comes with no warranty. <br/> 
   * Note: works only if class attribute is the last attribute in the 
   * 
   * @param className the name that should be given to the source class. 
   * @return the object source described by a string 
   * @throws Exception if the source can't be computed 
   */ 
  public String toSource(String className) throws Exception { 
    StringBuffer        result; 
    int                 id; 
     

        buffer.append("if (((String) i[" + m_Attribute.index()  
            + "]).equals(\"" + m_Attribute.value(i) + "\"))\n"); 
        buffer.append("      return node" + newID + "(i);\n"); 

        subBuffers[i] = new StringBuffer(); 
        newID = m_Successors[i].toSource(newID, subBuffers[i]); 
      } 
      buffer.append("    else\n"); 
      buffer.append("      throw new IllegalArgumentException
          (\"Value '\" + i[" + m_Attribute.index() + "] 

      buffer.append("  }\n"); 

      // output subtree code 
      for (i = 0; i < m_Attribute.numValues(); i++) { 
        buffer.append(subBuffers[i].toString()); 
      } 
      subBuffers = null; 

       

       
      // subtree calls 
      subBuffers = new StringBuffer[m_Attribute.numValues()]; 
      newID = id; 
      for (i = 0; i < m_Attribute.numValues(); i++) { 
        newID++; 

        buffer.append("    "); 
        if (i > 0) { 
          buffer.append("else "); 
        } 

+ \"' is not allowed!\");\n"); 

dataset. 

    } else { 
      buffer.append("    checkMissing(i, " 

      buffer.append("    // " + m_Attribute.name() + "\n"); 
  + m_Attribute.index() + ");\n\n"); 

FIGURE 16.1, cont’d
Continued
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than or equal to 0. If the maximum information gain is 0, makeTree() creates a leaf. 
In that case, m_Attribute is set to null, and makeTree() computes both the distribution 
of class probabilities and the class with the greatest probability. (The normalize() 
method from weka.core.Utils normalizes an array of doubles to sum to 1.)

When it makes a leaf with a class value assigned to it, makeTree() stores the class 
attribute in m_ClassAttribute. This is because the method that outputs the decision 
tree needs to access this to print the class label.

If an attribute with nonzero information gain is found, makeTree() splits the 
dataset according to the attribute’s values and recursively builds subtrees for each 
of the new datasets. To make the split it calls the method splitData(). This creates 
as many empty datasets as there are attribute values, stores them in an array (setting 
the initial capacity of each dataset to the number of instances in the original dataset), 
and then iterates through all instances in the original dataset and allocates them to 

   
  /** 
   * Returns the revision string. 
   *  
   * @return  the revision 
   */ 
  public String getRevision() { 
    return RevisionUtils.extract("$Revision: 6404 $"); 
  } 
 
  /** 
   * Main method. 
   * 
   * @param args the options for the classifier 
   */ 
  public static void main(String[] args) { 
    runClassifier(new Id3(), args); 
  } 
} 

    result = new StringBuffer(); 

    result.append("class " + className + " {\n"); 
    result.append("  private static void checkMissing(Object[]

i, int index) {\n"); 
    result.append("    if (i[index] == null)\n"); 
    result.append("      throw new IllegalArgumentException (\"Null values "

   + "are not allowed!\");\n"); 
    result.append("  }\n\n"); 
    result.append("  public static double classify(Object[] i) {\n"); 
    id = 0; 
    result.append("    return node" + id + "(i);\n"); 
    result.append("  }\n"); 
    toSource(id, result); 
    result.append("}\n"); 

    return result.toString(); 
  } 

FIGURE 16.1, cont’d
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the new dataset that corresponds to the attribute’s value. It then reduces memory 
requirements by compacting the Instances objects. Returning to makeTree(), the 
resulting array of datasets is used for building subtrees. The method creates an array 
of Id3 objects, one for each attribute value, and calls makeTree() on each one by 
passing it the corresponding dataset.

computeInfoGain()
Returning to computeInfoGain(), the information gain associated with an attribute 
and a dataset is calculated using a straightforward implementation of the formula in 
Section 4.3 (page 104). First, the entropy of the dataset is computed. Then, split-
Data() is used to divide it into subsets, and computeEntropy() is called on each one. 
Finally, the difference between the former entropy and the weighted sum of the latter 
ones—the information gain—is returned. The method computeEntropy() uses the 
log2() method from weka.core.Utils to obtain the logarithm (to base 2) of a number.

classifyInstance()
Having seen how Id3 constructs a decision tree, we now examine how it uses the 
tree structure to predict class values and probabilities. Every classifier must imple-
ment the classifyInstance() method or the distributionForInstance() method (or 
both). The Classifier superclass contains default implementations for both methods. 
The default implementation of classifyInstance() calls distributionForInstance(). If 
the class is nominal, it predicts the class with maximum probability, or a missing 
value if all probabilities returned by distributionForInstance() are 0. If the class is 
numeric, distributionForInstance() must return a single-element array that holds the 
numeric prediction, and this is what classifyInstance() extracts and returns. Con-
versely, the default implementation of distributionForInstance() wraps the predic-
tion obtained from classifyInstance() into a single-element array. If the class is 
nominal, distributionForInstance() assigns a probability of 1 to the class predicted 
by classifyInstance() and a probability of 0 to the others. If classifyInstance() returns 
a missing value, all probabilities are set to 0. To give you a better feeling for just 
what these methods do, the weka.classifiers.trees.Id3 class overrides them both.

Let’s look first at classifyInstance(), which predicts a class value for a given 
instance. As mentioned in the previous section, nominal class values, like nominal 
attribute values, are coded and stored in double variables, representing the index of 
the value’s name in the attribute declaration. This is used in favor of a more elegant 
object-oriented approach to increase the speed of execution. In the implementation 
of ID3, classifyInstance() first checks whether there are missing attribute values in 
the instance to be classified; if so, it throws an exception. The class attribute is 
skipped in this check, or the classifier would not be able to make predictions for 
new data, where the class is unknown. Otherwise, it descends the tree recursively, 
guided by the instance’s attribute values, until a leaf is reached. Then it returns the 
class value m_ClassValue stored at the leaf. Note that this might be a missing value, 
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in which case the instance is left unclassified. The method distributionForInstance() 
works in exactly the same way; that is, it returns the probability distribution stored 
in m_Distribution.

Most machine learning models, and in particular decision trees, serve as a more 
or less comprehensible explanation of the structure found in the data. Accordingly, 
each of Weka’s classifiers, like many other Java objects, implements a toString() 
method that produces a textual representation of itself in the form of a String vari-
able. Id3’s toString() method outputs a decision tree in roughly the same format as 
J48 (see Figure 11.5). It recursively prints the tree structure into a String variable 
by accessing the attribute information stored at the nodes. To obtain each attribute’s 
name and values, it uses the name() and value() methods from weka.core.Attribute. 
Empty leaves without a class value are indicated by the string null.

toSource()
weka.classifiers.trees.Id3 implements the Sourcable interface. Classifiers that imple-
ment this interface can produce a source code representation of the learned model, 
which can be output on the command line by using the –z option (see Section 14.3, 
Table 14.1, page 527). Weka produces a Java class (the name of which is provided 
by the –z option) that can be used to make predictions independently of the Weka 
libraries. Also output is a class called WekaWrapper that extends Classifier and uses 
the named class to make predictions. This class can be used for testing the source 
code representation of the model within the Weka framework—that is, it can be run 
from the command line or used in the Explorer interface. Because the actual classi-
fier is hard-coded, the buildClassifier() method of the WekaWrapper does nothing 
more than check the data against the capabilities.

Figure 16.2 shows the source code produced by weka.classifiers.trees.Id3 when 
run on the nominal-attribute version of the weather data. The name Id3Weather 
was provided with the –z option, and a class of this name is shown in Figure 
16.2(a). All its methods are static, meaning that they can be used without having 
to instantiate an Id3Weather object. The first method is called classify and takes 
as argument an array of Objects that give the attribute values for the instance to 
be classified. Each node in the ID3 tree that has been learned is represented in the 
source code by a static method. The classify method passes the instance to be 
classified to the method corresponding to the root of the tree—node0. The node0 
method corresponds to a test on the outlook attribute. Because it is not a leaf, it 
calls a node representing one of the subtrees—which one depends on the value of 
outlook in the instance being classified. Processing of a test instance continues in 
this fashion until a method corresponding to a leaf node is called, at which point 
a classification is returned.

Figure 16.2(b) shows the WekaWrapper class that uses Id3Weather. Its classify-
Instance method constructs an array of objects to pass to the classify method in 
Id3Weather. The attribute values of the test instance are copied into the array and 
mapped to either String objects (for nominal values) or Double objects (for numeric 



package weka.classifiers; 
 
class Id3Weather { 
  private static void checkMissing(Object[] i, int index) { 
    if (i[index] == null) 
      throw new IllegalArgumentException("Null values are not allowed!"); 
  } 
 
  public static double classify(Object[] i) { 
    return node0(i); 
  } 
 
  protected static double node0(Object[] i) { 
    checkMissing(i, 0); 
 
    // outlook 
    if (((String) i[0]).equals("sunny")) 
      return node1(i); 
    else if (((String) i[0]).equals("overcast")) 
      return node4(i); 
    else if (((String) i[0]).equals("rainy")) 
      return node5(i); 
    else 
      throw new IllegalArgumentException("Value '" + i[0] 

  } 
 
  protected static double node1(Object[] i) { 
    checkMissing(i, 2); 
 
    // humidity 
    if (((String) i[2]).equals("high")) 
      return node2(i); 
    else if (((String) i[2]).equals("normal")) 
      return node3(i); 
    else 
      throw new IllegalArgumentException("Value '" + i[2] 

  } 
 
  protected static double node2(Object[] i) { 
    return 1.0; // no 
  } 
 
  protected static double node3(Object[] i) { 
    return 0.0; // yes 
  } 
 
  protected static double node4(Object[] i) { 
    return 0.0; // yes 
  } 
 
  protected static double node5(Object[] i) { 
    checkMissing(i, 3); 
 
    // windy 
    if (((String) i[3]).equals("TRUE")) 
      return node6(i); 
    else if (((String) i[3]).equals("FALSE")) 
      return node7(i); 
    else 
      throw new IllegalArgumentException("Value '" + i[3] 

  } 
 
  protected static double node6(Object[] i) { 
    return 1.0; // no 
  } 
 
  protected static double node7(Object[] i) { 
    return 0.0; // yes 
  } 
} 

(a)

+ "' is not allowed!");

+ "' is not allowed!");

+ "' is not allowed!");

FIGURE 16.2 

Source code produced by weka.classifiers.trees.Id3 for the weather data: (a) Id3Weather 
class and (b) WekaWrapper class. 
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package weka.classifiers; 
 
import weka.core.Attribute; 
import weka.core.Capabilities; 
import weka.core.Capabilities.Capability; 
import weka.core.Instance; 
import weka.core.Instances; 
import weka.core.RevisionUtils; 
import weka.classifiers.Classifier; 
 
public class WekaWrapper 
  extends Classifier { 
 
  /** 
   * Returns only the toString() method. 
   * 
   * @return a string describing the classifier 
   */ 
  public String globalInfo() { 
    return toString(); 
  } 
 
  /** 
   * Returns the capabilities of this classifier. 
   * 
   * @return the capabilities 
   */ 
  public Capabilities getCapabilities() { 
    weka.core.Capabilities result = new weka.core.Capabilities(this); 
 
    result.enable(weka.core.Capabilities.Capability.NOMINAL_ATTRIBUTES); 
    result.enable(weka.core.Capabilities.Capability.NOMINAL_CLASS); 
    result.enable(weka.core.Capabilities.Capability.MISSING_CLASS_VALUES); 
 
    result.setMinimumNumberInstances(0); 
 
    return result; 
  } 
 
  /** 
   * only checks the data against its capabilities. 
   * 
   * @param i the training data 
   */ 
  public void buildClassifier(Instances i) throws Exception { 
    // can classifier handle the data? 
    getCapabilities().testWithFail(i); 
  } 
 
  /** 
   * Classifies the given instance. 
   * 
   * @param i the instance to classify 
   * @return the classification result 
   */ 
  public double classifyInstance(Instance i) throws Exception { 
    Object[] s = new Object[i.numAttributes()]; 

(b)

FIGURE 16.2, cont’d
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values). If an attribute value is missing in the test instance, its corresponding entry 
in the array of Objects is set to null.

main()
Apart from getRevision(), which is optional and simply returns a version identifier, 
the only method in Id3 that hasn’t been described is main(), which is called when-
ever the class is executed from the command line. As you can see, it’s simple: It 
calls the method runClassifier() from its superclass (Classifier) with a new instance 

     
    // set class value to missing 
    s[i.classIndex()] = null; 
     
    return Id3Weather.classify(s); 
  } 
 
  /** 
   * Returns the revision string. 
   *  
   * @return        the revision 
   */ 
  public String getRevision() { 
    return RevisionUtils.extract("1.0"); 
  } 
 
  /** 
   * Returns only the classnames and what classifier it is based on. 
   * 
   * @return a short description 
   */ 
  public String toString() { 
    return "Auto-generated classifier wrapper, based on 

weka.classifiers.trees.Id3 (generated with Weka 3.6.2).\n" + 
  this.getClass().getName() + "/Id3Weather"; 

  } 
 
  /** 
   * Runs the classfier from commandline. 
   * 
   * @param args the commandline arguments 
   */ 
  public static void main(String args[]) { 
    runClassifier(new WekaWrapper(), args); 
  } 
} 

     
    for (int j = 0; j < s.length; j++) { 
      if (!i.isMissing(j)) { 
        if (i.attribute(j).isNominal()) 
          s[j] = new String(i.stringValue(j)); 
        else if (i.attribute(j).isNumeric()) 
          s[j] = new Double(i.value(j)); 
      } 
    } 

FIGURE 16.2, cont’d
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of Id3 and the given command-line options. runClassifier() tells Weka’s Evaluation 
class to evaluate the supplied classifier with the given command-line options and 
prints the resulting string. The one-line expression in runClassifier() that does this 
calls the evaluation() method in Weka’s evaluation class and is enclosed in a try-
catch statement, which catches the various exceptions that can be thrown by Weka’s 
routines or other Java methods.

The evaluation() method in weka.classifiers.Evaluation interprets the generic 
scheme-independent command-line options described in Section 14.3 (page 526) 
and acts appropriately. For example, it takes the –t option, which gives the name of 
the training file, and loads the corresponding dataset. If there is no test file, it per-
forms a cross-validation by creating a classifier object and by repeatedly calling 
buildClassifier() and classifyInstance() or distributionForInstance() on different 
subsets of the training data. Unless the user suppresses output of the model by setting 
the corresponding command-line option, it also calls the toString() method to output 
the model built from the full training dataset.

What happens if the scheme needs to interpret a specific option such as a pruning 
parameter? This is accomplished using the OptionHandler interface in weka.core. A 
classifier that implements this interface contains three methods—listOptions(), 
setOptions(), and getOptions()—which can be used to list all the classifier’s scheme-
specific options, to set some of them, and to get the options that are currently set. 
The evaluation() method in Evaluation automatically calls these methods if the clas-
sifier implements the OptionHandler interface. Once the scheme-independent 
options have been processed, it calls setOptions() to process the remaining options 
before using buildClassifier() to generate a new classifier. When it outputs the clas-
sifier, it uses getOptions() to output a list of the options that are currently set. For a 
simple example of how to implement these methods, look at the source code for 
weka.classifiers.rules.OneR.

OptionHandler makes it possible to set options from the command line. To 
set them from within the graphical user interfaces, Weka uses the JavaBeans 
framework. All that is required are set…() and get…() methods for every parameter 
used by the class. For example, the methods setPruningParameter() and getPrun-
ingParameter() would be needed for a pruning parameter. There should also be 
a pruningParameterTipText() method that returns a description of the parameter 
for the graphical user interface. Again, see weka.classifiers.rules.OneR for an 
example.

Some classifiers can be incrementally updated as new training instances arrive; 
they don’t have to process all the data in one batch. In Weka, incremental classifiers 
implement the UpdateableClassifier interface in weka.classifiers. This interface 
declares only one method, namely updateClassifier(), which takes a single training 
instance as its argument. For an example of how to use this interface, look at the 
source code for weka.classifiers.lazy.IBk.

If a classifier is able to make use of instance weights, it should implement the 
WeightedInstancesHandler() interface from weka.core. Then other algorithms, such 
as those for boosting, can make use of this property.
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In weka.core there are many other useful interfaces for classifiers—for example, 
interfaces for classifiers that are randomizable, summarizable, drawable, and graph-
able. For more information on these and other interfaces, look at the Javadoc for the 
classes in weka.core.

16.2  CONVENTIONS FOR IMPLEMENTING CLASSIFIERS
There are some conventions that you must obey when implementing classifiers in 
Weka. If you do not, things will go awry. For example, Weka’s evaluation module 
might not compute the classifier’s statistics properly when evaluating it. The Check-
Classifier class can be used to check the basic behavior of a classifier, although it 
cannot catch all problems.

The first convention has already been mentioned: Each time a classifier’s build-
Classifier() method is called, it must reset the model. The CheckClassifier class 
performs tests to ensure that this is the case. When buildClassifier() is called on a 
dataset, the same result must always be obtained regardless of how often the classi
fier has previously been applied to the same or other datasets. However, build
Classifier() must not reset instance variables that correspond to scheme-specific 
options because these settings must persist through multiple calls of buildClassi-
fier(). Also, calling buildClassifier() must never change the input data.

Two other conventions have also been mentioned. One is that when a classifier 
cannot make a prediction, its classifyInstance() method must return Instance.
missingValue() and its distributionForInstance() method must return probabilities of 
zero for all classes. The ID3 implementation shown earlier in Figure 16.1 does this. 
Another convention is that with classifiers for numeric prediction, classifyInstance() 
returns the numeric value that the classifier predicts. Some classifiers, however, are 
able to predict nominal classes and their class probabilities, as well as numeric class 
values—weka.classifiers.lazy.IBk is an example. These implement the distribution-
ForInstance() method, and if the class is numeric it returns an array of size 1, whose 
only element contains the predicted numeric value.

Another convention—not absolutely essential but useful nonetheless—is that 
every classifier implements a toString() method that outputs a textual description of 
itself.

Capabilities
We close this chapter with a closer look at the idea of “capabilities.” As mentioned 
earlier, these allow a learning scheme to indicate what data characteristics it can 
handle. This information is displayed in the object editor when the user presses the 
Capabilities button; it also serves to disable the application of a scheme in the 
Explorer interface when the current data does not match its stated capabilities.

To ease the programming burden for those new to developing with Weka, the 
superclasses of the major types of learning scheme—Classifier, AbstractClusterer, 
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and AbstractAssociator—disable all capabilities constraints by default. This allows 
programmers to focus on the main task of implementing the learning functionality 
without having to bother with capabilities. However, once satisfied that the scheme 
is working correctly, the programmer should specify capabilities that reflect the 
scheme’s ability to handle various data characteristics by overriding the superclass’s 
getCapabilities() method. This method returns a weka.core.Capabilities object that 
encapsulates the characteristics that the scheme can handle.

In Figure 16.1, Id3’s getCapabilities() method first obtains a Capabilities object 
by calling super.getCapabilities(). This returns a Capabilities object without any 
constraints. The best way to proceed is to call the disableAll() method on the Capa-
bilities object and then enable the relevant characteristics—those that the scheme 

FIGURE 16.3 

Javadoc for the Capability enumeration. 



can handle. Id3 does just this, enabling the ability to handle nominal attributes, a 
nominal class attribute, and missing class values. It also specifies that a minimum 
of zero training instances are required. For the most part, individual capabilities are 
turned on or off by calling the enable() or disable() method of the Capabilities 
object. These methods take constants that are defined in the enumeration shown in 
Figure 16.3, which is part of the Capabilities class.
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CHAPTER 

17 

Tutorial Exercises for  
the Weka Explorer

The best way to learn about the Explorer interface is simply to use it. This 
chapter presents a series of tutorial exercises that will help you learn about 
Explorer and also about practical data mining in general. The first section is 
introductory, but we think you will find the exercises in the later sections quite 
thought-provoking.

We begin with a quick, guided tour of the Explorer interface, examining each of 
the panels and what they can do, which largely parallels the introduction given in 
Chapter 11. Our screenshots are from Weka 3.6, although almost everything is the 
same with other versions.

17.1  INTRODUCTION TO THE EXPLORER INTERFACE
Invoke Weka from the Windows Start menu (on Linux or the Mac, double-click 
weka.jar or weka.app, respectively). This starts up the Weka GUI Chooser (shown 
in Figure 11.3(a)). Click the Explorer button to enter the Weka Explorer. The Pre-
process panel (shown in Figure 11.3(b)) opens up when the Explorer interface is 
started.

Loading a Dataset
Load a dataset by clicking the Open file button in the top left corner of the panel. 
Inside the data folder, which is supplied when Weka is installed, you will find a file 
named weather.nominal.arff. This contains the nominal version of the standard 
“weather” dataset in Table 1.2. Open this file (the screen will look like Figure 
11.3(b)).

As the result shows, the weather data has 14 instances, and 5 attributes called 
outlook, temperature, humidity, windy, and play. Click on the name of an attribute 
in the left subpanel to see information about the selected attribute on the right, such 
as its values and how many times an instance in the dataset has a particular value. 
This information is also shown in the form of a histogram. All attributes in this 
dataset are “nominal”—that is, they have a predefined finite set of values. The last 
attribute, play, is the “class” attribute; its value can be yes or no.
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Familiarize yourself with the Preprocess panel by doing the following exercises. 
The solutions to these and other exercises in this section are given at the end of the 
section.

Exercise 17.1.1. What are the values that the attribute temperature can have?
Exercise 17.1.2. Load a new dataset. Click the Open file button and select the 
file iris.arff, which corresponds to the iris dataset in Table 1.4. How many 
instances does this dataset have? How many attributes? What is the range of 
possible values of the attribute petallength?

The Dataset Editor
It is possible to view and edit an entire dataset from within Weka. To do this, load 
the weather.nominal.arff file again. Click the Edit button from the row of buttons at 
the top of the Preprocess panel. This opens a new window called Viewer, which lists 
all instances of the weather data (see Figure 17.1).

Exercise 17.1.3. What is the function of the first column in the Viewer 
window?
Exercise 17.1.4. What is the class value of instance number 8 in the weather 
data?
Exercise 17.1.5. Load the iris data and open it in the editor. How many 
numeric and how many nominal attributes does this dataset have?

FIGURE 17.1 

The data viewer. 
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Applying a Filter
As you know, Weka “filters” can be used to modify datasets in a systematic fashion—
that is, they are data preprocessing tools. Reload the weather.nominal dataset, and 
let’s remove an attribute from it. The appropriate filter is called Remove; its full 
name is

weka.filters.unsupervised.attribute.Remove

Examine this name carefully. Filters are organized into a hierarchical structure of 
which the root is weka. Those in the unsupervised category don’t require a class 
attribute to be set; those in the supervised category do. Filters are further divided 
into ones that operate primarily on attributes (the attribute category) and ones that 
operate primarily on instances (the instance category).

Click the Choose button in the Preprocess panel to open a hierarchical menu 
(shown in Figure 11.9(a)) from which you select a filter by following the path 
corresponding to its full name. Use the path given in the full name above to 
select the Remove filter. The text “Remove” will appear in the field next to the 
Choose button.

Click on the field containing this text. The Generic Object Editor window, which 
is used throughout Weka to set parameter values for all of the tools, opens. In this 
case it contains a short explanation of the Remove filter (shown in Figure 11.9(b))—
click More to get a fuller description (Figure 11.9(c)). Enter 3 into the attribute
Indices field and click the OK button. The window with the filter options closes. 
Now click the Apply button on the right, which runs the data through the filter. The 
filter removes the attribute with index 3 from the dataset, and you can see that this 
has happened. This change does not affect the dataset in the file; it only applies to 
the data held in memory. The changed dataset can be saved to a new ARFF file by 
pressing the Save button and entering a file name. The action of the filter can be 
undone by pressing the Undo button. Again, this applies to the version of the data 
held in memory.

What we have described illustrates how filters are applied to data. However, in 
the particular case of Remove, there is a simpler way of achieving the same effect. 
Instead of invoking a filter, attributes can be selected using the small boxes in the 
Attributes subpanel and removed using the Remove button that appears at the bottom, 
below the list of attributes.

Exercise 17.1.6. Load the weather.nominal dataset. Use the filter weka.
unsupervised.instance.RemoveWithValues to remove all instances in which the 
humidity attribute has the value high. To do this, first make the field next to 
the Choose button show the text RemoveWithValues. Then click on it to get the 
Generic Object Editor window, and figure out how to change the filter settings 
appropriately.
Exercise 17.1.7. Undo the change to the dataset that you just performed, and 
verify that the data has reverted to its original state.
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The Visualize Panel
Now take a look at Weka’s data visualization facilities. These work best with 
numeric data, so we use the iris data. Load iris.arff, which contains the iris dataset 
of Table 1.4 containing 50 examples of three types of Iris: Iris setosa, Iris versicolor, 
and Iris virginica.

Click the Visualize tab to bring up the Visualize panel (shown in Figure 11.17). 
Click the first plot in the second row to open up a window showing an enlarged plot 
using the selected axes. Instances are shown as little crosses, the color of which 
depends on the instance’s class. The x-axis shows the sepallength attribute, and the 
y-axis shows petalwidth.

Clicking on one of the crosses opens up an Instance Info window, which lists 
the values of all attributes for the selected instance. Close the Instance Info window 
again.

The selection fields at the top of the window containing the scatter plot determine 
which attributes are used for the x- and y-axes. Change the x-axis to petalwidth and 
the y-axis to petallength. The field showing Color: class (Num) can be used to 
change the color coding.

Each of the barlike plots to the right of the scatter plot window represents a 
single attribute. In each bar, instances are placed at the appropriate horizontal 
position and scattered randomly in the vertical direction. Clicking a bar uses that 
attribute for the x-axis of the scatter plot. Right-clicking a bar does the same for 
the y-axis. Use these bars to change the x- and y-axes back to sepallength and 
petalwidth.

The Jitter slider displaces the cross for each instance randomly from its true 
position, and can reveal situations where instances lie on top of one another. 
Experiment a little by moving the slider.

The Select Instance button and the Reset, Clear, and Save buttons let you modify 
the dataset. Certain instances can be selected and the others removed. Try the Rect-
angle option: Select an area by left-clicking and dragging the mouse. The Reset 
button changes into a Submit button. Click it, and all instances outside the rectangle 
are deleted. You could use Save to save the modified dataset to a file. Reset restores 
the original dataset.

The Classify Panel
Now we apply a classifier to the weather data. Load the weather data again. Go to 
the Preprocess panel, click the Open file button, and select weather.nominal.arff from 
the data directory. Then switch to the Classify panel (shown in Figure 11.4(b)) by 
clicking the Classify tab at the top of the window.

Using the C4.5 Classifier
As you learned in Chapter 11 (page 410), the C4.5 algorithm for building decision 
trees is implemented in Weka as a classifier called J48. Select it by clicking the Choose 



button near the top of the Classify tab. A dialog window appears showing various 
types of classifier. Click the trees entry to reveal its subentries, and click J48 to choose 
that classifier. Classifiers, like filters, are organized in a hierarchy: J48 has the full 
name weka.classifiers.trees.J48.

The classifier is shown in the text box next to the Choose button: It now reads 
J48 –C 0.25 –M 2. This text gives the default parameter settings for this classifier, 
which in this case rarely require changing to obtain good performance.

For illustrative purposes we evaluate the performance using the training data, 
which has been loaded in the Preprocess panel—this is not generally a good idea 
because it leads to unrealistically optimistic performance estimates. Choose Use 
training set from the Test options part of the Classify panel. Once the test strategy 
has been set, the classifier is built and evaluated by pressing the Start button. 
This processes the training set using the currently selected learning algorithm, 
C4.5 in this case. Then it classifies all the instances in the training data and 
outputs performance statistics. These are shown in Figure 17.2(a).

Interpreting the Output
The outcome of training and testing appears in the Classifier Output box on the right. 
Scroll through the text and examine it. First, look at the part that describes the deci-
sion tree, reproduced in Figure 17.2(b). This represents the decision tree that was 
built, including the number of instances that fall under each leaf. The textual represen-
tation is clumsy to interpret, but Weka can generate an equivalent graphical version.

Here’s how to get the graphical tree. Each time the Start button is pressed and 
a new classifier is built and evaluated, a new entry appears in the Result List panel 
in the lower left corner of Figure 17.2(a). To see the tree, right-click on the entry 
trees.J48 that has just been added to the result list and choose Visualize tree. A 
window pops up that shows the decision tree in the form illustrated in Figure 17.3. 
Right-click a blank spot in this window to bring up a new menu enabling you to 
auto-scale the view. You can pan around by dragging the mouse.

Now look at the rest of the information in the Classifier Output area. The next 
two parts of the output report on the quality of the classification model based on the 
chosen test option.

This text states how many and what proportion of test instances have been 
correctly classified:

Correctly Classified Instances  14  100%

This is the accuracy of the model on the data used for testing. In this case it is 
completely accurate (100%), which is often the case when the training set is used 
for testing.

At the bottom of the output is the confusion matrix:

=== Confusion Matrix ===

 a b   <– classified as
 9 0 | a = yes
 0 5 | b = no
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FIGURE 17.2 

Output after building and testing the classifier: (a) screenshot and (b) decision tree. 

J48 pruned tree 
------------------ 
 
outlook = sunny 
|   humidity = high: no (3.0) 
|   humidity = normal: yes (2.0) 
outlook = overcast: yes (4.0) 
outlook = rainy 
|   windy = TRUE: no (2.0) 
|   windy = FALSE: yes (3.0) 
 
Number of Leaves  :  5 
 
Size of the tree :  8 

(a)

(b)

Each element in the matrix is a count of instances. Rows represent the true classes, 
and columns represent the predicted classes. As you can see, all 9 yes instances have 
been predicted as yes, and all 5 no instances as no.

Exercise 17.1.8. How would this instance be classified using the decision tree?

outlook = sunny, temperature = cool, humidity = high, windy = TRUE



Setting the Test Method
When the Start button is pressed, the selected learning algorithm is run and the 
dataset that was loaded in the Preprocess panel is used with the selected test protocol. 
For example, in the case of tenfold cross-validation this involves running the learn-
ing algorithm 10 times to build and evaluate 10 classifiers. A model built from the 
full training set is then printed into the Classifier Output area: This may involve 
running the learning algorithm one final time. The remainder of the output depends 
on the test protocol that was chosen using test options; these options were discussed 
in Section 11.1.

Exercise 17.1.9. Load the iris data using the Preprocess panel. Evaluate C4.5 
on this data using (a) the training set and (b) cross-validation. What is the 
estimated percentage of correct classifications for (a) and (b)? Which estimate 
is more realistic?

Visualizing Classification Errors
Right-click the trees.J48 entry in the result list and choose Visualize classifier 
errors. A scatter plot window pops up. Instances that have been classified cor-
rectly are marked by little crosses; ones that are incorrect are marked by little 
squares.

Exercise 17.1.10. Use the Visualize classifier errors function to find the 
wrongly classified test instances for the cross-validation performed in Exer
cise 17.1.9. What can you say about the location of the errors?

FIGURE 17.3 

The decision tree that has been built. 
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17.2  NEAREST-NEIGHBOR LEARNING 
AND DECISION TREES
In this section you will experiment with nearest-neighbor classification and deci-
sion tree learning. For most of it, a real-world forensic glass classification dataset 
is used.

We begin by taking a preliminary look at the dataset. Then we examine the effect 
of selecting different attributes for nearest-neighbor classification. Next we study 
class noise and its impact on predictive performance for the nearest-neighbor method. 
Following that we vary the training set size, both for nearest-neighbor classification 
and for decision tree learning. Finally, you are asked to interactively construct a 
decision tree for an image segmentation dataset.

Before continuing you should review in your mind some aspects of the classifica-
tion task:

•	 How is the accuracy of a classifier measured?
•	 To make a good classifier, are all the attributes necessary?
•	 What is class noise, and how would you measure its effect on learning?
•	 What is a learning curve?
•	 If you, personally, had to invent a decision tree classifier for a particular 

dataset, how would you go about it?

The Glass Dataset
The glass dataset glass.arff from the U.S. Forensic Science Service contains data 
on six types of glass. Glass is described by its refractive index and the chemical 
elements that it contains; the the aim is to classify different types of glass based 
on these features. This dataset is taken from the UCI datasets, which have been 
collected by the University of California at Irvine and are freely available on  
the Web. They are often used as a benchmark for comparing data mining 
algorithms.

Find the dataset glass.arff and load it into the Explorer interface. For your own 
information, answer the following exercises, which review material covered in the 
previous section.

Exercise 17.2.1. How many attributes are there in the dataset? What are 
their names? What is the class attribute? Run the classification algorithm 
IBk (weka.classifiers.lazy.IBk). Use cross-validation to test its performance, 
leaving the number of folds at the default value of 10. Recall that you can 
examine the classifier options in the Generic Object Editor window that 
pops up when you click the text beside the Choose button. The default 
value of the KNN field is 1: This sets the number of neighboring instances 
to use when classifying.
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Exercise 17.2.2. What is the accuracy of IBk (given in the Classifier 
Output box)? Run IBk again, but increase the number of neighboring 
instances to k = 5 by entering this value in the KNN field. Here and 
throughout this section, continue to use cross-validation as the evaluation 
method.
Exercise 17.2.3. What is the accuracy of IBk with five neighboring instances 
(k = 5)?

Attribute Selection
Now we investigate which subset of attributes produces the best cross-validated 
classification accuracy for the IBk algorithm on the glass dataset. Weka contains 
automated attribute selection facilities, which are examined in a later section, but it 
is instructive to do this manually.

Performing an exhaustive search over all possible subsets of the attributes is 
infeasible (why?), so we apply the backward elimination procedure described in 
Section 7.1 (page 311). To do this, first consider dropping each attribute individually 
from the full dataset, and run a cross-validation for each reduced version. Once you 
have determined the best eight-attribute dataset, repeat the procedure with this 
reduced dataset to find the best seven-attribute dataset, and so on.

Exercise 17.2.4. Record in Table 17.1 the best attribute set and the greatest 
accuracy obtained in each iteration. The best accuracy obtained in this process 
is quite a bit higher than the accuracy obtained on the full dataset.
Exercise 17.2.5. Is this best accuracy an unbiased estimate of accuracy on 
future data? Be sure to explain your answer. (Hint: To obtain an unbiased 
estimate of accuracy on future data, we must not look at the test data at all 

Table 17.1  Accuracy Obtained Using IBk, for Different Attribute Subsets

Subset Size
(No. of Attributes)

Attributes in “Best” 
Subset

Classification  
Accuracy

9
8
7
6
5
4
3
2
1
0
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when producing the classification model for which the estimate is being 
obtained.)

Class Noise and Nearest-Neighbor Learning
Nearest-neighbor learning, like other techniques, is sensitive to noise in the training 
data. In this section we inject varying amounts of class noise into the data and 
observe the effect on classification performance.

You can flip a certain percentage of class labels in the data to a randomly 
chosen other value using an unsupervised attribute filter called AddNoise, in weka.
filters.unsupervised.attribute. However, for this experiment it is important that the 
test data remains unaffected by class noise. Filtering the training data without 
filtering the test data is a common requirement, and is achieved using a metale-
arner called FilteredClassifier, in weka.classifiers.meta, as described near the end 
of Section 11.3 (page 444). This metalearner should be configured to use IBk as 
the classifier and AddNoise as the filter. FilteredClassifier applies the filter to the 
data before running the learning algorithm. This is done in two batches: first the 
training data and then the test data. The AddNoise filter only adds noise to the 
first batch of data it encounters, which means that the test data passes through 
unchanged.

Exercise 17.2.6. Record in Table 17.2 the cross-validated accuracy estimate 
of IBk for 10 different percentages of class noise and neighborhood sizes 
k = 1, k = 3, k = 5 (determined by the value of k in the k-nearest-neighbor 
classifier).
Exercise 17.2.7. What is the effect of increasing the amount of class noise?
Exercise 17.2.8. What is the effect of altering the value of k?

Table 17.2  Effect of Class Noise on IBk, for Different Neighborhood Sizes

Percentage Noise k = 1 k = 3 k = 5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%



Varying the Amount of Training Data
This section examines learning curves, which show the effect of gradually increas-
ing the amount of training data. Again, we use the glass data, but this time 
with both IBk and the C4.5 decision tree learners, implemented in Weka as J48.

To obtain learning curves, use FilteredClassifier again, this time in conjunc-
tion with weka.filters.unsupervised.instance.Resample, which extracts a certain 
specified percentage of a given dataset and returns the reduced dataset.1 Again, 
this is done only for the first batch to which the filter is applied, so the test 
data passes unmodified through the FilteredClassifier before it reaches the 
classifier.

Exercise 17.2.9. Record in Table 17.3 the data for learning curves for both the 
one-nearest-neighbor classifier (i.e., IBk with k = 1) and J48.
Exercise 17.2.10. What is the effect of increasing the amount of training data?
Exercise 17.2.11. Is this effect more pronounced for IBk or J48?

Interactive Decision Tree Construction
One of Weka’s classifiers is interactive: It lets the user—you!—construct your own 
classifier. Here’s a competition: Who can build a classifier with the highest predictive 
accuracy?

Follow the procedure described in Section 11.2 (page 424). Load the file segment-
challenge.arff (in the data folder that comes with the Weka distribution). This dataset 

1This filter performs sampling with replacement, rather than sampling without replacement, but the 
effect is minor and we will ignore it here.
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Table 17.3  Effect of Training Set Size on IBk and J48

Percentage of 
Training Set IBk J48

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
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has 20 attributes and 7 classes. It is an image segmentation problem, and the task is 
to classify images into seven different groups based on properties of the pixels.

Set the classifier to UserClassifier, in the weka.classifiers.trees package. We use 
a separate test set (performing cross-validation with UserClassifier is incredibly 
tedious!), so in the Test options box choose the Supplied test set option and click 
the Set button. A small window appears in which you choose the test set. Click Open 
file and browse to the file segment-test.arff (also in the Weka distribution’s data 
folder). On clicking Open, the small window updates to show the number of attri-
butes (20) in the data. The number of instances is not displayed because test instances 
are read incrementally (so that the Explorer interface can process larger test files 
than can be accommodated in main memory).

Click Start. UserClassifier differs from all other classifiers: It opens a special 
window and waits for you to build your own classifier in it. The tabs at the top of 
the window switch between two views of the classifier. The Tree visualizer shows 
the current state of your tree, and the nodes give the number of class values there. 
The aim is to come up with a tree of which the leaf nodes are as pure as possible. 
To begin with, the tree has just one node—the root node—containing all the data. 
More nodes will appear when you proceed to split the data in the Data visualizer.

Click the Data visualizer tab to see a two-dimensional plot in which the data 
points are color-coded by class, with the same facilities as the Visualize panel 
discussed in Section 17.1. Try different combinations of x- and y-axes to get the 
clearest separation you can find between the colors. Having found a good separa-
tion, you then need to select a region in the plot: This will create a branch in 
the tree. Here’s a hint to get you started: Plot region-centroid-row on the x-axis 
and intensity-mean on the y-axis (the display is shown in Figure 11.14(a)); you 
can see that the red class (sky) is nicely separated from the rest of the classes 
at the top of the plot.

There are four tools for selecting regions in the graph, chosen using the dropdown 
menu below the y-axis selector. Select Instance identifies a particular instance. Rec
tangle (shown in Figure 11.14(a)) allows you to drag out a rectangle on the graph. 
With Polygon and Polyline you build a free-form polygon or draw a free-form 
polyline (left-click to add a vertex and right-click to complete the operation).

When you have selected an area using any of these tools, it turns gray. (In Figure 
11.14(a) the user has defined a rectangle.) Clicking the Clear button cancels the 
selection without affecting the classifier. When you are happy with the selection, 
click Submit. This creates two new nodes in the tree, one holding all the instances 
covered by the selection and the other holding all remaining instances. These nodes 
correspond to a binary split that performs the chosen geometric test.

Switch back to the Tree visualizer view to examine the change in the tree. 
Clicking on different nodes alters the subset of data that is shown in the Data 
visualizer section. Continue adding nodes until you obtain a good separation of 
the classes—that is, the leaf nodes in the tree are mostly pure. Remember, however, 
that you should not overfit the data because your tree will be evaluated on a 
separate test set.
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When you are satisfied with the tree, right-click any blank space in the Tree 
visualizer view and choose Accept The Tree. Weka evaluates the tree against the test 
set and outputs statistics that show how well you did.

Exercise 17.2.12. You are competing for the best accuracy score of a 
hand-built UserClassifier produced on the segment-challenge dataset and 
tested on the segment-test set. Try as many times as you like. When you 
have a good score (anything close to 90% correct or better), right-click the 
corresponding entry in the Result list, save the output using Save result 
buffer, and copy it into your answer for this exercise. Then run J48 on 
the data to see how well an automatic decision tree learner performs on 
the task.

17.3  CLASSIFICATION BOUNDARIES
In this section we examine the classification boundaries that are produced by dif-
ferent types of models. To do this, we use Weka’s Boundary Visualizer, which is 
not part of the Explorer interface. To find it, start up the Weka GUI Chooser as 
usual from the Windows Start menu (on Linux or the Mac, double-click weka.jar 
or weka.app, respectively) and select BoundaryVisualizer from the Visualization 
menu at the top.

The boundary visualizer shows a two-dimensional plot of the data and is most 
appropriate for datasets with two numeric attributes. We will use a version of the 
iris data without the first two attributes. To create this, start up the Explorer interface, 
load iris.arff using the Open file button, and remove the first two attributes (sepal-
length and sepalwidth) by selecting them and clicking the Remove button that 
appears at the bottom. Then save the modified dataset to a file (using Save) called, 
say, iris.2D.arff.

Now leave the Explorer interface and open this file for visualization using the 
boundary visualizer’s Open file button. Initially, the plot just shows the data in the 
dataset.

Visualizing 1R
The purpose of the boundary visualizer is to show the predictions of a given model 
for every possible combination of attribute values—that is, for every point in the 
two-dimensional space. The points are color-coded according to the prediction the 
model generates. We will use this to investigate the decision boundaries that different 
classifiers generate for the reduced iris dataset.

Start with the 1R rule learner. Use the Choose button of the boundary visualizer 
to select weka.classifiers.rules.OneR. Make sure you tick Plot training data; other-
wise, only the predictions will be plotted. Then click the Start button. The program 
starts plotting predictions in successive scan lines. Click the Stop button once the 
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plot has stabilized—as soon as you like, in this case—and the training data will be 
superimposed on the boundary visualization.

Exercise 17.3.1. Explain the plot based on what you know about 1R. (Hint: 
Use the Explorer interface to look at the rule set that 1R generates for this 
data.)
Exercise 17.3.2. Study the effect of the minBucketSize parameter on the 
classifier by regenerating the plot with values of 1, and then 20, and then some 
critical values in between. Describe what you see, and explain it. (Hint: You 
could speed things up by using the Explorer interface to look at the rule sets.)

Now answer the following questions by thinking about the internal workings of 
1R. (Hint: It will probably be fastest to use the Explorer interface to look at the 
rule sets.)

Exercise 17.3.3. You saw earlier that when visualizing 1R the plot always has 
three regions. But why aren’t there more for small bucket sizes (e.g., 1)? Use 
what you know about 1R to explain this apparent anomaly.
Exercise 17.3.4. Can you set minBucketSize to a value that results in less than 
three regions? What is the smallest possible number of regions? What is the 
smallest value for minBucketSize that gives this number of regions? Explain 
the result based on what you know about the iris data.

Visualizing Nearest-Neighbor Learning
Now let’s examine the classification boundaries created by the nearest-neighbor 
method. Use the boundary visualizer’s Choose button to select the IBk classifier 
(weka.classifiers.lazy.IBk) and plot its decision boundaries for the reduced iris 
data.

OneR’s predictions are categorical: For each instance, they predict one of the 
three classes. In contrast, IBk outputs probability estimates for each class, and the 
boundary visualizer uses them to mix the colors red, green, and blue that correspond 
to the three classes. IBk estimates class probabilities by looking at the set of k-nearest 
neighbors of a test instance and counting the number in each class.

Exercise 17.3.5. With k = 1, which is the default value, it seems that the set of 
k-nearest neighbors could have only one member and therefore the color will 
always be pure red, green, or blue. Looking at the plot, this is indeed almost 
always the case: There is no mixing of colors because one class gets a prob-
ability of 1 and the others a probability of 0. Nevertheless, there is a small 
area in the plot where two colors are in fact mixed. Explain this. (Hint: 
Examine the data carefully using the Explorer interface’s Visualize panel.)
Exercise 17.3.6. Experiment with different values of k, say 5 and 10. Describe 
what happens as k increases.
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Visualizing NaïveBayes
Turn now to the NaïveBayes classifier. Its assumption that attributes are conditionally 
independent given a particular class value means that the overall class probability 
is obtained by simply multiplying the per-attribute conditional probabilities together 
(and taking into account the class prior probabilities as well). In other words, with 
two attributes, if you know the class probabilities along the x- and y-axes (and the 
class prior), you can calculate the value for any point in space by multiplying them 
together (and then normalizing). This is easy to understand if you visualize it as a 
boundary plot.

Plot the predictions of NaïveBayes. But first discretize the attribute values. By 
default, Weka’s NaiveBayes classifier assumes that the attributes are normally dis-
tributed given the class. You should override this by setting useSupervisedDiscretiza-
tion to true using the Generic Object Editor window. This will cause NaïveBayes to 
discretize the numeric attributes in the data with a supervised discretization tech-
nique. In most practical applications of NaïveBayes, supervised discretization works 
better than the default method. It also produces a more comprehensible visualization, 
which is why we use it here.

Exercise 17.3.7. The plot that is generated by visualizing the predicted class 
probabilities of NaïveBayes for each pixel location is quite different from 
anything we have seen so far. Explain the patterns in it.

Visualizing Decision Trees and Rule Sets
Decision trees and rule sets are similar to nearest-neighbor learning in the sense that 
they are quasi-universal: In principle, they can approximate any decision boundary 
arbitrarily closely. In this section, we look at the boundaries generated by JRip 
and J48.

Generate a plot for JRip, with default options.

Exercise 17.3.8. What do you see? Relate the plot to the output of the rules 
that you get by processing the data in the Explorer.
Exercise 17.3.9. The JRip output assumes that the rules will be executed in 
the correct sequence. Write down an equivalent set of rules that achieves the 
same effect regardless of the order in which they are executed. Generate a plot 
for J48, with default options.
Exercise 17.3.10. What do you see? Again, relate the plot to the output that 
you get by processing the data in the Explorer interface. One way to control 
how much pruning J48 performs is to adjust the minimum number of instances 
required in a leaf, minNumObj.
Exercise 17.3.11. Suppose you want to generate trees with 3, 2, and 1 leaf 
node, respectively. What are the exact ranges of values for minNumObj that 
achieve this, given default values for the other parameters?
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Messing with the Data
With the Boundary Visualizer you can modify the data by adding or removing points.

Exercise 17.3.12. Introduce some noise into the data and study the effect on 
the learning algorithms we looked at above. What kind of behavior do you 
observe for each algorithm as you introduce more noise?

17.4  PREPROCESSING AND PARAMETER TUNING
Now we look at some useful preprocessing techniques, which are implemented as 
filters, as well as a method for automatic parameter tuning.

Discretization
As we know, there are two types of discretization techniques: unsupervised ones, 
which are “class blind,” and supervised ones, which take the class value of the 
instances into account when creating intervals. Weka’s main unsupervised method 
for discretizing numeric attributes is weka.filters.unsupervised.attribute.Discretize. 
It implements these two methods: equal-width (the default) and equal-frequency 
discretization.

Find the glass dataset glass.arff and load it into the Explorer interface. Apply the 
unsupervised discretization filter in the two different modes explained previously.

Exercise 17.4.1. What do you observe when you compare the histograms 
obtained? The one for equal-frequency discretization is quite skewed for some 
attributes. Why?

The main supervised technique for discretizing numeric attributes is weka.filters.
supervised.attribute.Discretize. Locate the iris data, load it, apply the supervised 
discretization scheme, and look at the histograms obtained. Supervised discretization 
strives to create intervals within which the class distribution is consistent, although 
the distributions vary from one interval to the next.

Exercise 17.4.2. Based on the histograms obtained, which of the discretized 
attributes would you consider to be most predictive? Reload the glass data and 
apply supervised discretization to it.
Exercise 17.4.3. For some attributes there is only a single bar in the histo-
gram. What does that mean?

Discretized attributes are normally coded as nominal attributes, with one value 
per range. However, because the ranges are ordered, a discretized attribute is actually 
on an ordinal scale. Both filters have the ability to create binary attributes rather than 
multivalued ones, by setting the option makeBinary to true.
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Exercise 17.4.4. Choose one of the filters and use it to create binary attributes. 
Compare the result with the output generated when makeBinary is false. What 
do the binary attributes represent?

More on Discretization
Here we examine the effect of discretization when building a J48 decision tree for 
the data in ionosphere.arff. This dataset contains information about radar signals 
returned from the ionosphere. “Good” samples are those showing evidence of some 
type of structure in the ionosphere, while for “bad” ones the signals pass directly 
through the ionosphere. For more details, take a look at the comments in the ARFF 
file. Begin with unsupervised discretization.

Exercise 17.4.5. For J48, compare cross-validated accuracy and the size of the 
trees generated for (1) the raw data, (2) data discretized by the unsupervised 
discretization method in default mode, and (3) data discretized by the same 
method with binary attributes.

Now turn to supervised discretization. Here a subtle issue arises, discussed near 
the end of Section 11.3 (page 432). If Exercise 17.4.5 were simply repeated using 
a supervised discretization method, the result would be overoptimistic. In effect, 
because cross-validation is used for evaluation, the data in the test set has been taken 
into account when determining the discretization intervals. This does not give a fair 
estimate of performance on fresh data.

To evaluate supervised discretization fairly, use FilteredClassifier from Weka’s 
metalearners. This builds the filter using the training data only, and then evalu-
ates it on the test data using the discretization intervals computed for the training 
data. After all, that is how you would have to process fresh data in practice.

Exercise 17.4.6. Using FilteredClassifier and J48, compare cross-validated 
accuracy and the size of the trees generated for (4) supervised discretization 
in default mode, and (5) supervised discretization with binary attributes.
Exercise 17.4.7. Compare these with the results for the raw data from Exercise 
17.4.5. How can decision trees generated from discretized data possibly be 
better predictors than ones built from raw numeric data?

Automatic Attribute Selection
In most practical applications of supervised learning not all attributes are equally 
useful for predicting the target. For some learning schemes, redundant and/or irrel-
evant attributes can result in less accurate models. As you found in Section 17.2, it 
is tedious to identify useful attributes in a dataset manually; automatic attribute 
selection methods are usually more appropriate.
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Attribute selection methods can be divided into filter and wrapper methods (see 
Section 7.1, page 308). The former apply a computationally efficient heuristic to 
measure the quality of a subset of attributes; the latter measure the quality of an 
attribute subset by building and evaluating an actual classification model, which is 
more expensive but often delivers superior performance.

The Explorer interface’s Select attributes panel applies attribute selection 
methods to datasets. The default is to use CfsSubsetEval, described in Section 
11.8 (page 488), which evaluates subsets of attributes. An alternative is to evaluate 
attributes individually using an evaluator like InfoGainAttributeEval (see Section 
11.8, page 491) and then rank them by applying a special “search” method, namely 
the Ranker, as described Section 11.8 (page 490).

Exercise 17.4.8. Apply the ranking technique to the labor negotiations data in 
labor.arff to determine the four most important attributes based on information 
gain.2

CfsSubsetEval aims to identify a subset of attributes that are highly correlated 
with the target while not being strongly correlated with one another. It searches 
through the space of possible attribute subsets for the “best” one using the BestFirst 
search method by default, although other methods can be chosen. In fact, choosing 
GreedyStepwise and setting searchBackwards to true gives backward elimination, 
the search method you used manually in Section 17.2.

To use the wrapper method rather than a filter method, such as CfsSubsetEval, 
first select WrapperSubsetEval and then configure it by choosing a learning algo-
rithm to apply and setting the number of cross-validation folds to use when evalu
ating it on each attribute subset.

Exercise 17.4.9. On the same data, run CfsSubsetEval for correlation-based 
selection, using the BestFirst search. Then run the wrapper method with 
J48 as the base learner, again using the BestFirst search. Examine the 
attribute subsets that are output. Which attributes are selected by both 
methods? How do they relate to the output generated by ranking using 
information gain?

More on Automatic Attribute Selection
The Select attributes panel allows us to gain insight into a dataset by applying attri-
bute selection methods to it. However, as with supervised discretization, using this 
information to reduce a dataset becomes problematic if some of the reduced data is 
used for testing the model (as in cross-validation). Again, the reason is that we have 

2Note that most evaluators, including InfoGainAttributeEval and CfsSubsetEval, discretize numeric 
attributes using Weka’s supervised discretization method before evaluating them.



looked at the class labels in the test data while selecting attributes, and using the 
test data to influence the construction of a model biases the accuracy estimates 
obtained.

This can be avoided by dividing the data into training and test sets and applying 
attribute selection to the training set only. However, it is usually more convenient 
to use AttributeSelectedClassifer, one of Weka’s metalearners, which allows an 
attribute selection method and a learning algorithm to be specified as part of a  
classification scheme. AttributeSelectedClassifier ensures that the chosen set of 
attributes is selected based on the training data only.

Now we test the three attribute selection methods from above in conjunction 
with NaïveBayes. NaïveBayes assumes independence of attributes, so attribute 
selection can be very helpful. You can see the effect of redundant attributes by 
adding multiple copies of an attribute using the filter weka.filters.unsupervised.
attribute.Copy in the Preprocess panel. Each copy is obviously perfectly correlated 
with the original.

Exercise 17.4.10. Load the diabetes classification data in diabetes.arff and add 
copies of the first attribute. Measure the performance of NaïveBayes (with 
useSupervisedDiscretization turned on) using cross-validation after you have 
added each one. What do you observe?

Do the above three attribute selection methods, used in conjunction with Attri-
buteSelectedClassifier and NaïveBayes, successfully eliminate the redundant attri-
butes? Run each method from within AttributeSelectedClassifier to see the effect on 
cross-validated accuracy and check the attribute subset selected by each method. 
Note that you need to specify the number of ranked attributes to use for the Ranker 
method. Set this to 8 because the original diabetes data contains 8 attributes (exclud-
ing the class). Specify NaïveBayes as the classifier to be used inside the wrapper 
method because this is the classifier for which we want to select a subset.

Exercise 17.4.11. What can you say regarding the performance of the three 
attribute selection methods? Do they succeed in eliminating redundant copies? 
If not, why?

Automatic Parameter Tuning
Many learning algorithms have parameters that can affect the outcome of learning. 
For example, the decision tree learner C4.5 has two parameters that influence the 
amount of pruning (we saw one, the minimum number of instances required in a 
leaf, in Section 17.3). The k-nearest-neighbor classifier IBk has a parameter (k) that 
sets the neighborhood size. But manually tweaking parameter settings is tedious, 
just like manually selecting attributes, and presents the same problem: The test data 
must not be used when selecting parameters; otherwise, the performance estimate 
will be biased.
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Weka’s metalearner CVParameterSelection searches for the best parameter set-
tings by optimizing cross-validated accuracy on the training data. By default, each 
setting is evaluated using tenfold cross-validation. The parameters to optimize are 
specified using the CVParameters field in the Generic Object Editor window. For 
each parameter, three pieces of information must be supplied: (1) a string that 
names it using its letter code (which can be found in the Javadoc for the cor-
responding classifier—see Section 14.2, page 525); (2) a numeric range of values 
to evaluate; and (3) the number of steps to try in this range (note that the param-
eter is assumed to be numeric). Click on the More button in the Generic Object 
Editor window for more information and an example.

For the diabetes data used in the previous section, use CVParameterSelection 
in conjunction with IBk to select the best value for the neighborhood size, ranging 
from 1 to 10 in 10 steps. The letter code for the neighborhood size is K. The 
cross-validated accuracy of the parameter-tuned version of IBk is directly com-
parable with its accuracy using default settings because tuning is performed by 
applying inner cross-validation runs to find the best parameter value for each 
training set occurring in the outer cross-validation—and the latter yields the final 
performance estimate.

Exercise 17.4.12. What accuracy is obtained in each case? What value is 
selected for the parameter-tuned version based on cross-validation on the full 
data set? (Note: This value is output in the Classifier Output text area because, 
as mentioned earlier, the model that is output is the one built from the full 
dataset.)

Now consider parameter tuning for J48. If there is more than one parameter string 
in the CVParameters field, CVParameterSelection performs a grid search on the 
parameters simultaneously. The letter code for the pruning confidence parameter is 
C, and you should evaluate values from 0.1 to 0.5 in five steps. The letter code for 
the minimum leaf size parameter is M, and you should evaluate values from 1 to 10 
in 10 steps.

Exercise 17.4.13. Run CVParameterSelection to find the best parameter value 
setting. Compare the output you get to that obtained from J48 with default 
parameters. Has accuracy changed? What about tree size? What parameter 
values were selected by CVParameterSelection for the model built from the 
full training set?

17.5  DOCUMENT CLASSIFICATION
Next we perform some experiments in document classification. The raw data is text, 
and this is first converted into a form suitable for learning by creating a dictionary 
of terms from all the documents in the training corpus and making a numeric 
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attribute for each term using Weka’s unsupervised attribute filter StringToWord
Vector. There is also the class attribute, which gives the document’s label.

Data with String Attributes
The StringToWordVector filter assumes that the document text is stored in an attribute 
of type String—a nominal attribute without a prespecified set of values. In the fil-
tered data, this is replaced by a fixed set of numeric attributes, and the class attribute 
is put at the beginning, as the first attribute.

To perform document classification, first create an ARFF file with a string attri-
bute that holds the document’s text—declared in the header of the ARFF file using 
@attribute document string, where document is the name of the attribute. A nominal 
attribute is also needed to hold the document’s classification.

Exercise 17.5.1. Make an ARFF file from the labeled mini-documents in Table 
17.4 and run StringToWordVector with default options on this data. How many 
attributes are generated? Now change the value of the option minTermFreq to 
2. What attributes are generated now?
Exercise 17.5.2. Build a J48 decision tree from the last version of the data you 
generated.
Exercise 17.5.3. Classify the new documents in Table 17.5 based on the 
decision tree generated from the documents in Table 17.4. To apply the same 

Table 17.4  Training Documents

Document Text Classification

The price of crude oil has increased significantly yes
Demand for crude oil outstrips supply yes
Some people do not like the flavor of olive oil no
The food was very oily no
Crude oil is in short supply yes
Use a bit of cooking oil in the frying pan no

Table 17.5  Test Documents

Document Text Classification

Oil platforms extract crude oil unknown
Canola oil is supposed to be healthy unknown
Iraq has significant oil reserves unknown
There are different types of cooking oil unknown
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filter to both training and test documents, use FilteredClassifier, specifying the 
StringToWordVector filter and J48 as the base classifier. Create an ARFF file 
from Table 17.5, using question marks for the missing class labels. Configure 
FilteredClassifier using default options for StringToWordVector and J48, and 
specify your new ARFF file as the test set. Make sure that you select Output 
predictions under More options in the Classify panel. Look at the model and 
the predictions it generates, and verify that they are consistent. What are the 
predictions?

Classifying Actual Documents
A standard collection of newswire articles is widely used for evaluating document 
classifiers. ReutersCorn-train.arff and ReutersGrain-train.arff are training sets 
derived from this collection; ReutersCorn-test.arff and ReutersGrain-test.arff are 
corresponding test sets. The actual documents in the corn and grain data are the 
same; only the labels differ. In the first dataset, articles concerning corn-related 
issues have a class value of 1 and the others have 0; the aim is to build a classifier 
that identifies “corny” articles. In the second, the labeling is performed with respect 
to grain-related issues; the aim is to identify “grainy” articles.

Exercise 17.5.4. Build classifiers for the two training sets by applying 
FilteredClassifier with StringToWordVector using (1) J48 and (2) 
NaiveBayesMultinomial, evaluating them on the corresponding test set in 
each case. What percentage of correct classifications is obtained in the four  
scenarios? Based on the results, which classifier would you choose?

Other evaluation metrics are used for document classification besides the per-
centage of correct classifications: They are tabulated under Detailed Accuracy By 
Class in the Classifier Output area—the number of true positives (TP), false posi-
tives (FP), true negatives (TN), and false negatives (FN). The statistics output by 
Weka are computed as specified in Table 5.7; the F-measure is mentioned in Section 
5.7 (page 175).

Exercise 17.5.5. Based on the formulas in Table 5.7, what are the best possible 
values for each of the output statistics? Describe when these values are 
attained.

The Classifier Output also gives the ROC area (also known as AUC), which, as 
explained in Section 5.7 (page 177), is the probability that a randomly chosen positive 
instance in the test data is ranked above a randomly chosen negative instance, based 
on the ranking produced by the classifier. The best outcome is that all positive 
examples are ranked above all negative examples, in which case the AUC is 1. In the 
worst case it is 0. In the case where the ranking is essentially random, the AUC is 0.5, 
and if it is significantly less than this the classifier has performed anti-learning!
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Exercise 17.5.6. Which of the two classifiers used above produces the best 
AUC for the two Reuters datasets? Compare this to the outcome for percent 
correct. What do the different outcomes mean?

The ROC curves discussed in Section 5.7 (page 172) can be generated by 
right-clicking on an entry in the result list and selecting Visualize threshold 
curve. This gives a plot with FP Rate on the x-axis and TP Rate on the y-axis. 
Depending on the classifier used, this plot can be quite smooth or it can be 
fairly irregular.

Exercise 17.5.7. For the Reuters dataset that produced the most extreme 
difference in Exercise 17.5.6, look at the ROC curves for class 1. Make a  
very rough estimate of the area under each curve, and explain it in words.
Exercise 17.5.8. What does the ideal ROC curve corresponding to perfect 
performance look like?

Other types of threshold curves can be plotted, such as a precision–recall curve 
with Recall on the x-axis and Precision on the y-axis.

Exercise 17.5.9. Change the axes to obtain a precision–recall curve. What is 
the shape of the ideal precision–recall curve, corresponding to perfect 
performance?

Exploring the StringToWordVector Filter
By default, the StringToWordVector filter simply makes the attribute value in the 
transformed dataset 1 or 0 for all single-word terms, depending on whether the word 
appears in the document or not. However, as mentioned in Section 11.3 (page 439), 
there are many options:

•	 outputWordCounts causes actual word counts to be output.
•	 IDFTransform and TFTransform: When both are set to true, term frequencies 

are transformed into TF × IDF values.
•	 stemmer gives a choice of different word-stemming algorithms.
•	 useStopList lets you determine whether or not stopwords are deleted.
•	 tokenizer allows different tokenizers for generating terms, such as one that 

produces word n-grams instead of single words.

There are several other useful options. For more information, click on More in the 
Generic Object Editor window.

Exercise 17.5.10. Experiment with the options that are available. What options 
give a good AUC value for the two datasets above, using NaiveBayesMulti
nomial as the classifier?



582	 CHAPTER 17  Tutorial Exercises for the Weka Explorer

Not all of the attributes (i.e., terms) are important when classifying documents. 
The reason is that many words are irrelevant for determining an article’s topic. Weka’s 
AttributeSelectedClassifier, using ranking with InfoGainAttributeEval and the Ranker 
search, can eliminate less useful attributes. As before, FilteredClassifier should be 
used to transform the data before passing it to AttributeSelectedClassifier.

Exercise 17.5.11. Experiment with this, using default options for 
StringToWordVector and NaiveBayesMultinomial as the classifier. Vary 
the number of the most informative attributes that are selected from the 
information gain–based ranking by changing the value of the numToSelect 
field in the Ranker. Record the AUC values you obtain. How many attributes 
give the best AUC for the two datasets discussed before? What are the best 
AUC values you managed to obtain?

17.6  MINING ASSOCIATION RULES
In order to get some experience with association rules, we work with Apriori, the 
algorithm described in Section 4.5 (page 144). As you will discover, it can be  
challenging to extract useful information using this algorithm.

Association-Rule Mining
To get a feel for how to apply Apriori, start by mining rules from the weather.
nominal.arff data that was used in Section 17.1. Note that this algorithm expects 
data that is purely nominal: If present, numeric attributes must be discretized first. 
After loading the data in the Preprocess panel, click the Start button in the Associate 
panel to run Apriori with default options. It outputs 10 rules, ranked according to 
the confidence measure given in parentheses after each one (they are listed in Figure 
11.16). As we explained in Chapter 11 (page 430), the number following a rule’s 
antecedent shows how many instances satisfy the antecedent; the number following 
the conclusion shows how many instances satisfy the entire rule (this is the rule’s 
“support”). Because both numbers are equal for all 10 rules, the confidence of every 
rule is exactly 1.

In practice, it can be tedious to find minimum support and confidence values that 
give satisfactory results. Consequently, as explained in Chapter 11, Weka’s Apriori 
runs the basic algorithm several times. It uses the same user-specified minimum 
confidence value throughout, given by the minMetric parameter. The support level 
is expressed as a proportion of the total number of instances (14 in the case of the 
weather data), as a ratio between 0 and 1. The minimum support level starts at a 
certain value (upperBoundMinSupport, default 1.0). In each iteration the support is 
decreased by a fixed amount (delta, default 0.05, 5% of the instances) until either a 
certain number of rules has been generated (numRules, default 10 rules) or the 
support reaches a certain “minimum minimum” level (lowerBoundMinSupport, 
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default 0.1)—because rules are generally uninteresting if they apply to less than 10% 
of the dataset. These four values can all be specified by the user.

This sounds pretty complicated, so we will examine what happens on the weather 
data. The Associator output text area shows that the algorithm managed to generate 
10 rules. This is based on a minimum confidence level of 0.9, which is the default 
and is also shown in the output. The Number of cycles performed, which is shown 
as 17, indicates that Apriori was actually run 17 times to generate these rules, with 
17 different values for the minimum support. The final value, which corresponds to 
the output that was generated, is 0.15 (corresponding to 0.15 × 14 ≈ 2 instances).

By looking at the options in the Generic Object Editor window, you can see that 
the initial value for the minimum support (upperBoundMinSupport) is 1 by default, 
and that delta is 0.05. Now, 1 – 17 × 0.05 = 0.15, so this explains why a minimum 
support value of 0.15 is reached after 17 iterations. Note that upperBoundMinSup-
port is decreased by delta before the basic Apriori algorithm is run for the first time.

The Associator output text area also shows how many frequent item sets were 
found, based on the last value of the minimum support that was tried (0.15 in this 
example). In this case, given a minimum support of two instances, there are 12 item 
sets of size 1, 47 item sets of size 2, 39 item sets of size 3, and six item sets of size 
4. By setting outputItemSets to true before running the algorithm, all those different 
item sets and the number of instances that support them are shown. Try it out!

Exercise 17.6.1. Based on the output, what is the support for this item set?

outlook = rainy  humidity = normal  windy = FALSE  play = yes

Exercise 17.6.2. Suppose you want to generate all rules with a certain 
confidence and minimum support. This can be done by choosing appropriate 
values for minMetric, lowerBoundMinSupport, and numRules. What is the total 
number of possible rules for the weather data for each combination of values 
in Table 17.6?

Table 17.6  Number of Rules for Different Values of Minimum Confidence 
and Support

Minimum Confidence Minimum Support Number of Rules

0.9 0.3
0.9 0.2
0.9 0.1
0.8 0.3
0.8 0.2
0.8 0.1
0.7 0.3
0.7 0.2
0.7 0.1
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Apriori has some further parameters. If significanceLevel is set to a value between 
0 and 1, the association rules are filtered based on a χ2 test with the chosen signifi-
cance level. However, applying a significance test in this context is problematic 
because of the multiple comparison problem: If a test is performed hundreds of times 
for hundreds of association rules, it is likely that significant effects will be found 
just by chance—that is, an association seems to be statistically significant when 
really it is not. Also, the χ2 test is inaccurate for small sample sizes (in this context, 
small support values).

There are alternative measures for ranking rules. As well as confidence, Apriori 
supports lift, leverage, and conviction, which can be selected using metricType. More 
information is available by clicking More in the Generic Object Editor window.

Exercise 17.6.3. Run Apriori on the weather data with each of the four 
rule-ranking metrics, and default settings otherwise. What is the top-ranked 
rule that is output for each metric?

Mining a Real-World Dataset
Now consider a real-world dataset, vote.arff, which gives the votes of 435 U.S. 
congressmen on 16 key issues gathered in the mid-1980s, and also includes their 
party affiliation as a binary attribute. This is a purely nominal dataset with some 
missing values (corresponding to abstentions). It is normally treated as a classi-
fication problem, the task being to predict party affiliation based on voting patterns. 
However, association-rule mining can also be applied to this data to seek interest-
ing associations. More information on the data appears in the comments in the 
ARFF file.

Exercise 17.6.4. Run Apriori on this data with default settings. Comment on 
the rules that are generated. Several of them are quite similar. How are their 
support and confidence values related?
Exercise 17.6.5. It is interesting to see that none of the rules in the default 
output involve Class = republican. Why do you think that is?

Market Basket Analysis
In Section 1.3 (page 26) we introduced market basket analysis—analyzing customer 
purchasing habits by seeking associations in the items they buy when visiting a store. 
To do market basket analysis in Weka, each transaction is coded as an instance of 
which the attributes represent the items in the store. Each attribute has only one 
value: If a particular transaction does not contain it (i.e., the customer did not buy 
that item), this is coded as a missing value.

Your job is to mine supermarket checkout data for associations. The data in 
supermarket.arff was collected from an actual New Zealand supermarket. Take a 
look at this file using a text editor to verify that you understand the structure. The 
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main point of this exercise is to show you how difficult it is to find any interesting 
patterns in this type of data!

Exercise 17.6.6. Experiment with Apriori and investigate the effect of the 
various parameters described before. Write a brief report on the main findings 
of your investigation.
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AdaBoost, 358–361
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additive logistic regression, 364–365
additive regression, 362–365
AdditiveRegression algorithm, 475t, 476
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adversarial data mining, 393–395
agglomerative clustering, 273, 275–276
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algorithms. See specific Weka algorithms
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generation, 271–272
illustrated examples, 271f

alternating decision trees, 366–367
example, 367, 367f
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ancestor-of relation, 46
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applications, 375–399

automation, 28
challenge of, 375
data stream learning, 380–383
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text mining, 386–389

Apriori algorithm, 216
Apriori rule learner, 485–486, 486t

default options, 582
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parameters, 584
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attribute specifications in, 54
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converting files to, 417–419
defined, 52–56
illustrated, 53f
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association learning, 40
association rule mining, 582–584
association rules, 11, 72–73. See also rules
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characteristics, 72
computation requirement, 123–124
converting item sets to, 119
coverage (support), 72, 116
double-consequent, 123
examples, 11
finding, 116
finding large item sets, 219–222
frequent-pattern tree, 216–219
mining, 116–124
predicting multiple consequences, 72
relationships between, 73

607

Note: Page numbers followed by “f ” indicates a figure, “t” indicates a table, and “b” indicates entry 
is inside boxed text.
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single-consequent, 123
in Weka, 429–430

association-rule learners, 485–487
attribute evaluation methods, 487–494

attribute subset evaluators, 488
list of, 489t
single-attribute evaluators, 490–492

attribute filters, 432
supervised, 443–445
unsupervised, 432–441

attribute selection, 306, 307–314. See also data 
transformation

backward elimination, 311–312
beam search, 312
best-first search, 312
filter method, 308–309
forward selection, 311–312
instance-based learning methods, 310
nearest-neighbor learning, 567–568
race search, 313
recursive feature elimination, 309–310
schemata search, 313
scheme-independent, 308–310
scheme-specific, 312–314
searching the attribute space and, 311–312
selective Naïve Bayes, 314
symmetric uncertainty, 310b
in Weka, 430
Weka evaluation methods for, 487–494
Weka Explorer exercise, 575–577
Weka search methods for, 490t
wrapper method, 308–309

attribute subset evaluators, 488
attribute-efficient learners, 131
attributes, 9–10, 39, 49

adding, 436–438
ARFF format, 54
Boolean, 51
causal relations, 384
combination of, 116
conversions, 438–439
date, 54
difference, 132
discrete, 51
evaluating, 87t
highly branching, 105–107
identification code, 88
interval, 50
irrelevant, 308
nominal, 49, 289
normalized, 57
numeric, 49, 193–194

ordinal, 50–51
ratio, 50
relations between, 77
relation-valued, 54–55
relevant, 308
removing, 436–438
semantic relation between, 384
string, 54, 579–580
string, conversion, 439–440
types of, 39, 56–58
values of, 49
values of, changing, 438
weighting, 246–247

AttributeSelectedClassifier algorithm, 475t, 478, 
582

AttributeSelection filter, 444, 444t
AttributeSummarizer, 498, 499t
AUC. See area under the curve
AUPRC. See area under the precision-recall 

curve
authorship ascription, 387–388
AutoClass, 273, 291, 293
automatic attribute selection, 562, 575–576
automatic parameter tuning, 577–578
automation applications, 28
averaged one-dependence estimator (AODE),  

269, 451
average-linkage method, 275–276

B
background knowledge, 380
backpropagation, 235–241

stochastic, 238b–239b
backward elimination, 311–312
backward pruning, 195
bagging, 352–356

algorithm for, 355f
bias-variance decomposition, 353–355
with costs, 355–356
idealized procedure versus, 354
instability neutralization, 354
for numeric prediction, 354–355
as parallel, 379
randomization versus, 357
in Weka, 474–479

Bagging algorithm, 474, 475t
bags, 141–142

class labels, 142–143
instances, joining, 300
positive, 301–302
positive probability, 302

balanced iterative reducing and clustering using 
hierarchies (BIRCH), 293

association rules (continued)
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Balanced Winnow, 131
ball trees, 135

in finding nearest neighbors, 136
illustrated, 136f
nodes, 135–136
splitting method, 136–137
two cluster centers, 141f

batch learning, 238b–239b
Bayes Information Criterion, 293
Bayesian clustering, 290–292

AutoClass, 291
DensiTree, 292, 292f
hierarchical, 292

Bayesian multinet, 270
Bayesian networks, 143, 261–273

algorithms, 268–270
AD tree, 270–272, 271f
conditional independence, 264–266
data structures for fast learning, 270–272
example illustrations, 263f, 265f
K2 algorithm, 273
learning, 266–268
making predictions, 262–266
Markov blanket, 269
prior distribution over network structures,  

268
structure learning by conditional  

independence tests, 270
TAN, 269
visualization example, 454f

BayesianLogisticRegression algorithm, 446t–450t, 
453

BayesNet algorithm, 446t–450t, 453
beam search, 312
Bernoulli process, 150
BestFirst method, 490t, 492
best-first search, 312
BFTree algorithm, 446t–450t, 456
bias, 31–33

language, 31–32
multilayer perceptron, 233
overfitting-avoidance, 32–33
search, 32

bias-variance decomposition, 353–355
binary classification problems, 63
BIRCH. See balanced iterative reducing and 

clustering using hierarchies
bits, 100–101
Boolean attributes, 51
Boolean classes, 71–72
boosting, 358–362

AdaBoost, 358–361
algorithm for, 359–360, 359f

classifiers, 362
in computational learning theory, 361
decision stumps, 362
forward stagewise additive modeling, 362
power of, 361–362
in Weka, 476–477

bootstrap, 155–156
bootstrap aggregating. See bagging
Boundary Visualizer, 571, 574
buildClassifier() method, 537–538, 540, 555

C
C4.5, 108, 198b, 201–202, 307–308

functioning of, 201
MDL-based adjustment, 201–202

C5.0, 254–255
calibration, class probability, 343–346

discretization-based, 345
logistic regression, 346
PAV-based, 345–346

Capabilities class, 540, 556–557
CAPPS. See Computer-Assisted Passenger 

Prescreening System
CART system, 192, 261, 456

cost-complexity pruning, 202
categorical attributes. See nominal 

attributes
category utility, 273, 284–285

calculation, 284b–285b
incremental clustering, 279, 281

causal relations, 384
CBA technique, 223
Center filter, 433t–435t, 437
CfsSubsetEval method, 488, 489t
chain rule, 342–343
ChangeDateFormat filter, 433t–435t, 440
ChiSquaredAttributeEval, 489t, 491
circular ordering, 51
CitationKNN algorithm, 446t–450t, 473
class boundaries

non-axis parallel, 250
rectangular, 248, 249f

class labels
bags, 142–143
reliability, 377–378

class noise, 568
class probability estimation, 337

dataset with two classes, 344, 344f
difficulty, 343–344
overoptimistic, 344

ClassAssigner component, 495, 499–500, 
499t

ClassAssigner filter, 433t–435t, 438
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classes, 40
Boolean, 71–72
membership functions for, 125
rectangular, 248, 249f
in Weka, 520

classification, 40
clustering for, 294–296
cost-sensitive, 166–167, 356
document, 387–388
k-nearest-neighbor, 78
Naïve Bayes for, 97–98
nearest-neighbor, 78
one-class, 335
pairwise, 339

classification boundaries, 571–574
1R visualization, 571–572
decision tree visualization, 573
Naïve Bayes visualization, 573
nearest-neighbor visualization, 572
rule sets visualization, 573

classification learning, 40
classification rules, 11, 62. See also rules

accuracy, 205
antecedent of, 69
criteria for choosing tests, 203–204
disjunctive normal form, 71–72
with exceptions, 73, 194
exclusive-or, 70, 70f
global optimization, 208
good rule generation, 205–208
missing values, 204–205
multiple, 71
numeric attributes, 205
from partial decision trees, 208–212
producing with covering algorithms, 205
pruning, 206
replicated subtree, 69, 71f
RIPPER rule learner, 208, 209f, 215

ClassificationViaClustering algorithm, 475t, 479
ClassificationViaRegression algorithm, 475t, 

479
Classifier class, 539, 549, 553–555
ClassifierPerformanceEvaluator, 495–496, 

499–502, 499t
classifiers package, 519–520
classifiers (Weka), 526

capabilities, 555–557
implementation conventions, 555–557

ClassifierSubsetEval method, 488, 489t, 493
Classify panel, 422–424, 562–565

with C4.5 algorithm, 562–563
classification error visualization, 565

output interpretation, 563–564
setting test method, 565

classifyInstance() method, 549–550
classifyMessage() method, 537–538
ClassOrder filter, 444, 444t
ClassValuePicker, 499–500, 499t
CLI. See command-line interface
CLOPE algorithm, 480t, 483
closed-world assumptions, 43, 71–72
CLOSET+ algorithm, 223
ClustererPerformanceEvaluator, 499–500, 499t
clustering, 40, 89

agglomerative, 273, 275–276
algorithms, 81, 89
Bayesian, 290–292
category utility, 273
for classification, 294–296
document, 387
EM algorithm, 287
evaluation, 186
group-average, 276
in grouping items, 41
hierarchical, 274–279
incremental, 279–284
iterative distance-based, 139
k-means, 139–140
MDL principle application to, 186–187
number of clusters, 274
probability-based, 285–286
representation, 82f
stage following, 81
statistical, 314–315
in Weka, 429
Weka algorithms, 480–485

ClusterMembership filter, 433t–435t, 436–437
Cobweb algorithm, 429, 480, 480t, 483
co-EM, 297
column separation, 340–341
combining classifiers, in Weka, 477
command-line interface (CLI), 519–530. See also 

Weka
generic options, 526–529
options, 526–529
packages, 519
scheme-specific options, 528t, 529
starting up, 519
weka.associations package, 525
weka.attributeSelection package, 525
weka.classifiers package, 523–525
weka.clusterers package, 525
weka.core package, 520–523
weka.datagenerators package, 525
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weka.estimators package, 525
weka.filters package, 525

comma-separated value (CSV)
data files, 408
example data, 409f
format, 407

ComplementNaiveBayes algorithm, 
446t–450t

complete-linkage method, 275
computational learning theory, 361
computeInfoGain() method, 549
Computer-Assisted Passenger Prescreening  

System (CAPPS), 394
concept descriptions, 39–40
concepts, 40–42. See also input

defined, 39
conditional independence, 264–266
confidence

of association rules, 72, 116
intervals, 150
upper/lower bounds, 246

confidence limits
in error rate estimation, 197–198
for normal distribution, 152t
on success probability, 246
for Student’s distribution, 159t

confusion matrix, 164
ConjunctiveRule algorithm, 446t–450t, 

459
consequent, of rule, 67
ConsistencySubsetEval method, 488, 489t
constrained quadratic optimization, 225
constructors, 523–524
contact lens problem, 12–13

covering algorithm, 110–115
rules, 12f
structural description, 13, 13f

continuous attributes. See numeric 
attributes

convex hulls, 224–225
Copy filter, 433t–435t, 436–437
corrected resampled t-test, 159
cost curves, 177–180

cost in, 179
cost matrixes, 166–167, 166t, 172

cost of errors, 163–180
cost curves, 177–180
cost-sensitive classification, 166–167
cost-sensitive learning, 167–168
examples, 163–164
lift charts, 168–172
problem misidentification, 163–164

recall-precision curves, 174–175
ROC curves, 172–174

cost–benefit analyzer, 170
CostBenefitAnalysis, 498, 499t
cost-complexity pruning, 202
cost-sensitive classification, 166–167, 356

in Weka, 477
cost-sensitive learning, 167–168

two-class, 167–168
in Weka, 477

CostSensitiveAttributeEval method, 488, 489t, 
491–492

CostSensitiveClassifier algorithm, 475t, 
477–478

CostSensitiveSubsetEval method, 489t
co-training, 296

EM and, 297
counting the cost, 163–180
covariance matrix, 289
coverage, of association rules, 72, 116

dividing, 122–123
minimum, 122–123
specifying, 123–124

covering algorithms, 108–116
example, 110–115
illustrated, 109f
instance space during operation of,  

110f
operation, 110
in producing rules, 205
in two-dimensional space, 108

CPU performance, 15
dataset, 16t
in Weka, 423f

cross-validation, 89, 152–154
estimates, 157–159
folds, 153
leave-one-out, 154
repeated, 159
for ROC curve generation, 173
stratified threefold, 153
tenfold, 153–154, 306
threefold, 153

CrossValidationFoldMaker, 495–496, 
499–502, 499t

CSV. See comma-separated value
CSVLoader, 417–418
cumulative margin distribution, 528–529
customer support/service applications, 28
cutoff parameter, 283
CVParameterSelection algorithm, 475t, 478, 

578
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D
Dagging algorithm, 474–476, 475t
data, 35

linearly separable, 127–128
noise, 6–7
overlay, 52
scarcity of, 397
sparse, 56
with string attributes, 579–580

data cleansing, 60, 307, 331–337. See also data 
transformation

anomaly detection, 334–335
decision tree improvement, 332
methods, 307
one-class learning, 335–337
robust regression, 333–334

data mining, 4–5, 8–9
adversarial, 393–395
applying, 375–378
as data analysis, 4–5
ethics and, 33–36
learning machine and, 3–9
scheme comparison, 156–157
ubiquitous, 395–397

data preparation. See also input
ARFF files, 52–56
attribute types, 56–58
data gathering in, 51–52
data knowledge and, 60
inaccurate values in, 59–60
missing values in, 58–59
sparse data, 56

data projections, 306–307, 322–330
partial least-squares regression, 326–328
principal components analysis, 324–326
random, 326
text to attribute vectors, 328–329
time series, 330

data stream learning, 380–383
algorithm adaptation for, 381–382
Hoeffding bound, 382
memory usage, 383
Naïve Bayes for, 381
tie-breaking strategy, 383

data transformations, 305–349
attribute selection, 306–314
data cleansing, 307, 331–337
data projection, 306–307, 322–330
discretization of numeric attributes, 306, 

314–322
input types and, 323
methods for, 306

multiple classes to binary ones, 307,  
338–343

sampling, 307, 330–331
data warehousing, 52
dataSet connections, 501
DataVisualizer, 498, 499t
date attributes, 54
DBScan algorithm, 480t, 483–485, 484f
decision boundaries, 63
decision lists, 10

rules versus, 115–116
decision stumps, 362
decision tree induction, 29, 332

complexity, 199–200
top-down, 202–203

decision trees, 5, 64, 103f
alternating, 366–368, 367f
C4.5 algorithm and, 201–202
constructing, 99–108
cost-complexity pruning, 202
for disjunction, 69f
error rate estimation, 197–198
examples, 13f, 18f
highly branching attributes, 105–107
improving, 332
information calculation, 103–104
interactive construction, 569–571
missing values, 64, 194–195
multivariate, 203
nodes, 64
numeric attributes, 193–194
partial, obtaining rules from, 208–212
pruning, 195–197
with replicated subtree, 71f
rules, 200–201
top-down induction of, 107–108
univariate, 203
visualizing, 573
in Weka, 410–414
Weka Explorer exercise, 566–571

DecisionStump algorithm, 446t–450t, 455
DecisionTable algorithm, 446t–450t, 457
Decorate algorithm, 475t, 476
dedicated multi-instance methods, 301–302
Delta, 330
dendrograms, 81, 274–275
denormalization, 44

problems with, 46
DensiTree, 292, 292f
diagnosis applications, 25–26

faults, 25–26
machine language in, 25
performance tests, 26
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difference attributes, 132
direct marketing, 27
directed acyclic graphs, 262
discrete attributes, 51

converting to numeric attributes, 322
discretization, 306, 314–322. See also data 

transformation
1R (1-rule), 315
decision tree learners, 315
entropy-based, 316–319
error-based, 320–322
global, 315
partitioning, 87
proportional k-interval, 316
supervised, 316, 574
unsupervised, 316, 574
Weka Explorer exercise, 574–575
Weka metalearner for, 443f

discretization-based calibration, 345
Discretize filter, 416, 433t–435t, 438, 444t
disjunctive normal form, 71–72
distance functions, 131–132

difference attributes, 132
generalized, 249–250
for generalized exemplars, 248–249
missing values, 132

distribution, in Weka, 515–517
diverse-density method, 302
divide-and-conquer, 99–108, 308
DMNBText algorithm, 446t–450t, 453
document classification, 387. See also classification

actual documents, 580–581
in assignment of key phrases, 387–388
in authorship ascription, 387–388
data with string attributes, 579–580
in language identification, 387–388
as supervised learning, 387
Weka Explorer exercise, 578–582

document clustering, 387
domain knowledge, 19
double-consequent rules, 123
DTNB algorithm, 446t–450t, 457

E
early stopping, 238b–239b
eigenvalues, 324
eigenvectors, 324
EM algorithm, 480–483, 480t, 482f
embedded machine learning, 531–538
END algorithm, 475t
ensemble learning, 351–373

additive regression, 362–365
bagging, 352–356

boosting, 358–362
interpretable ensembles, 365–369
multiple models, 351–352
randomization, 356–358
stacking, 369–371

entity extraction, in text mining, 388
entropy, 104
entropy-based discretization, 316–319

error-based discretization versus, 320–322
illustrated, 318f
with MDL stopping criterion, 320
results, 318f
stopping criteria, 315, 318–319

enumerated, 51
enumerating concept space, 30–31
equal-frequency binning, 316
equal-interval binning, 316
error log, 415–416
error rate, 148

decision tree, 197–198
repeated holdout, 152–153
success rate and, 197–198
training set, 148

error-based discretization, 320–322
errors

classification, visualizing, 565
estimation, 156
inaccurate values and, 59–60
mean-absolute, 181
mean-squared, 181
propagation, 238b–239b
relative-absolute, 181
relative-squared, 181
resubstitution, 148–149
squared, 161
training set, 197

estimation error, 156
ethics, 33–36

issues, 35–36
personal information and, 34–35
reidentification and, 33–34

Euclidean distance, 131
function, 246
between instances, 276

evaluation
clustering, 186
as data mining key, 147
numeric prediction, 180–182
performance, 148

examples, 42–49. See also instances; specific 
examples

class of, 40
relations, 43–46
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structured, 46–49
types of, 43–49

exceptions, rules with, 73–75, 212–215
exclusive-or problem, 70f
exclusive-OR (XOR), 233
exemplars, 245

generalizing, 247–249
noisy, pruning, 245–246
reducing number of, 245

exhaustive error-correcting codes, 341
ExhaustiveSearch method, 490t, 493
expectation, 289
expectation maximization (EM) algorithm,  

287
maximization step, 295–296
with Naïve Bayes, 295

Experimenter, 405, 505–517. See also Weka
advanced setup, 511–512
Analyze panel, 505–509, 512–515
distributed processing, 515–517
experiment illustration, 506f–508f
results analysis, 509–510
Run panel, 505–506
running experiments, 505
Setup panel, 505, 510
simple setup, 510–511
starting up, 505–510

expert models, 352
Explorer, 404, 407–494. See also Weka

applying filters, 561
ARFF format, 417–419
Associate panel, 429–430
association-rule learning, 485–487
attribute selection, 487–494
automatic attribute selection, 562,  

575–576
automatic parameter tuning, 577–578
classification boundaries, 571–574
Classify panel, 422–424, 562–565
Cluster panel, 429
clustering algorithms, 480–485
CSV data files, 408
CSVLoader, 417–418
Data Visualizer, 427
decision tree building, 410–414, 566–571
discretization, 574–575
document classification, 578–582
error log, 415–416
filtering algorithms, 432–445
filters, 419–422
interface illustration, 408f

introduction to, 559–565
J4.8, 410–414
learning algorithms, 445–474
loading and filtering files, 416–422
loading data into, 408–410
loading datasets, 559–560
market basket analysis, 584–585
metalearners, 427
metalearning algorithms, 474–479
models, 414–415
nearest-neighbor learning, 566–571
neural networks, 469–472
Preprocess panel, 411, 416, 419, 561
preprocessing, 574–578
real-world dataset mining, 584
search methods, 492–494
Select Attributes panel, 430, 478
training/testing learning schemes,  

422–424
Tree Visualizer, 427
tutorial exercises for, 559–585
User Classifier, 424–427
Viewer, 560, 560f
Visualize panel, 430–432, 562

eXtensible Markup Language (XML),  
52–56

F
false negatives (FN), 164, 176t, 580
false positive rate, 164
false positives (FP), 164, 176t, 580
Familiar system, 396–397
FarthestFirst algorithm, 480t, 483
FastVector, 536
feature selection, 346
feed-forward networks, 238b–239b
fielded applications, 21–28

automation, 28
customer service/support, 28
decisions involving judgments, 22–23
diagnosis, 25–26
image screening, 23–24
load forecasting, 24–25
manufacturing processes, 27
marketing and sales, 26–27
scientific, 28
web mining, 5

fields, 525
file mining, 48–49
files

ARFF, 52–56
filtering, 419–422

examples (continued)
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loading, 416–422
opening, 416

filter method, 308–309
FilteredAssociator rule learner, 486t, 487
FilteredAttributeEval method, 489t, 

491–492
FilteredClassifier algorithm, 475t, 569
FilteredClassifier metalearning scheme, 

443–444, 538
FilteredCluster algorithm, 480t, 483
FilteredSubsetEval method, 488, 489t
filtering algorithms (Weka), 432–445
filtering approaches, 334–335
filters, 404

applying, 421
applying (Weka Explorer), 561
attribute, 432–441, 443–445
choosing, 420f
information on, 421
instance, 432, 441–442, 445
supervised, 432, 443–445
unsupervised, 432–442
in Weka, 411

finite mixtures, 286
FirstOrder filter, 433t–435t, 439
fixed set, 492
fixed width, 492
flat files, 42
F-measure, 175, 479
forward pruning, 195
forward selection, 311–312
forward stagewise additive modeling, 362

implementation, 363
numeric prediction, 362–363
overfitting and, 363
residuals, 368–369

FP-growth algorithm, 216, 223
FPGrowth rule learner, 486–487, 486t
frequent-pattern trees, 216

building, 216–219
compact structure, 216–217
data preparation example, 217t–218t
header tables, 219–222
implementation, 222–223
speed, 222
structure illustration, 220f–221f
support threshold, 222–223

FT algorithm, 446t–450t, 456–457
functional dependencies, 385
functional trees, 65
functions, Weka algorithms, 446t–450t,  

459–469

G
gain ratio, 105–107
GainRatioAttributeEval method, 489t, 491
Gaussian process regression, 243
GaussianProcesses algorithm, 446t–450t, 464
generalization

exemplar, 247–249, 251
instance-based learning and, 251
stacked, 369–371

generalization as search, 29
bias, 31–33
enumerating the concept space, 30–31

generalized distance functions, 249–250
Generalized Sequential Patterns (GSP), 223
GeneralizedSequentialPatterns rule learner, 486t, 

487
generalizing exemplars, 247–248

distance functions for, 248–249
nested, 248

generic options (CLI), 526–529
list of, 527t

GeneticSearch method, 490t, 493
getCapabilities() method, 539
getTechnicalInformation() method, 539
glass dataset, 566–567
global optimization, classification rules for, 208
globalInfo() method, 539
gradient ascent, 302
gradient descent, 238b–239b

illustrated, 237f
stochastic, 242–243
subgradients, 242

Grading algorithm, 475t, 477
GraphViewer, 498, 499t
greedy method, for rule pruning, 253–254
GreedyStepwise method, 490t, 492–493
GridSearch algorithm, 475t, 478
group-average clustering, 276
growing sets, 205–206
GSP. See Generalized Sequential Patterns

H
Hamming distance, 339–340
Hausdorff distance, 301, 303
hidden layer, multilayer perceptrons, 233, 

238b–239b, 239f
hierarchical clustering, 274–276. See also clustering

agglomerative, 275–276
average-linkage method, 275–276
centroid-linkage method, 275
dendrograms, 274–275
displays, 277f–278f
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example, 276–279
example illustration, 282f–283f
group-average, 276
single-linkage algorithm, 275, 279

HierarchicalClusterer algorithm, 480t, 483
highly branching attributes, 105–107
hinge loss, 242–243, 242f
histogram equalization, 316
HNB algorithm, 446t–450t, 451
Hoeffding bound, 382
Hoeffding trees, 382–383
HTML. See HyperText Markup Language
hyperpipes, 143
HyperPipes algorithm, 446t–450t, 474
hyperplanes, 127

maximum-margin, 224–225
separating classes, 225b

hyperrectangles, 247
boundaries, 247
exception, 248
measuring distance to, 249
in multi-instance learning, 303
overlapping, 248

hyperspheres, 135
HyperText Markup Language (HTML)

delimiters, 390
formatting commands, 389–390

I
IB1 algorithm, 446t–450t, 472
IB3. See Instance-Based Learner version 3
IBk algorithm, 446t–450t, 472
Id3 algorithm, 446t–450t
ID3 decision tree learner, 107–108, 539–555

buildClassifier() method, 540
classifyInstance() method, 549–550
computeInfoGain() method, 549
gain ratio, 107–108
getCapabilities() method, 539
getTechnicalInformation() method, 539
globalInfo() method, 539
improvements, 108
main() method, 553–555
makeTree() method, 540–549
Sourcable interface, 539, 550
source code, 541f–548f
TechnicalInformationHandler interface, 539
toSource() method, 550–553

identification code attributes, 88
example, 106t

image screening, 23–24
hazard detection system, 23

input, 23
problems, 24

implementations (real machine learning  
schemes), 191–304

association rules, 216–223
Bayesian networks, 261–273
classification rules, 203–216
clustering, 273–293
decision trees, 192–203
instance-based learning, 244–251
linear model extension, 223–244
multi-instance learning, 298–303
numeric prediction with local linear models, 

251–261
semisupervised learning, 294–298

inaccurate values, 59–60
incremental clustering, 279–284

acuity parameter, 281
category utility, 279, 281
cutoff parameter, 283
example illustrations, 280f, 282f–283f
merging, 281
splitting, 281

incremental learning, 502–503
incremental reduced-error pruning, 206, 207f
IncrementalClassifierEvaluator, 498–500, 

499t
inductive logic programming, 77
InfoGainAttributeEval method, 489t, 491, 

582
information, 35, 100–101

calculating, 103–104
extraction, 388–389
gain calculation, 203–204
measure, 103–104
value, 104

informational loss function, 161–163
information-based heuristics, 204
input, 39–60

aggregating, 142
ARFF format, 52–56
attribute types, 56–58
attributes, 39
concepts, 40–42
data assembly, 51–52
data transformations and, 323
examples, 42–49
flat files, 42–43
forms, 39
inaccurate values, 59–60
instances, 42–49
missing values, 58–59
preparing, 51–60

hierarchical clustering (continued)
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sparse data, 56
tabular format, 124

input layer, multilayer perceptrons, 233
instance connections, 193
instance filters, 432

supervised, 445
unsupervised, 441–442

instance space
in covering algorithm operation, 110f
partitioning methods, 80f
rectangular generalizations in, 79

Instance-Based Learner version 3 (IB3), 246
instance-based learning, 78, 131–138

in attribute selection, 310
characteristics, 78
distance functions, 131–132
distance functions for generalized exemplars, 

200
explicit knowledge representation and, 

250–251
generalization and, 251
generalizing exemplars, 247–248
nearest-neighbor, 132–137
performance, 246
pruning noise exemplars, 245–246
reducing number of exemplars, 245
visualizing, 81
weighting attributes, 246–247

instance-based representation, 78–81
instances, 9–10, 39, 42

centroid, 139
misclassified, 128–130
with missing values, 194
multilabeled, 40
order, 55
sparse, 442
subset sort order, 194
training, 184
in Weka, 520

InstanceStreamToBatchMaker, 499–500, 499t
interactive decision tree construction, 569–571
interpretable ensembles, 365–369

logistic model trees, 368–369
option trees, 365–368

InterquartileRange filter, 433t–435t, 436
interval quantities, 50
iris example, 13–15

boundary decision, 63, 63f
data as clustering problem, 41t
dataset, 14t
DBScan clusters, 484f
decision tree, 65, 66f
hierarchical clusterings, 282f–283f

incremental clustering, 279–284
Logistic output, 468f
OPTICS visualization, 485f
rules, 14
rules with exceptions, 73–75, 74f, 213–215, 

213f
SMO output, 463f–464f
SMO output with nonlinear kernel, 465f–467f
visualization, 431f

isotonic regression, 345
IsotonicRegression algorithm, 446t–450t, 462
item sets, 116

checking, of two consecutive sizes, 123
converting to rules, 119
in efficient rule generation, 122–123
example, 117t–118t
large, finding with association rules, 219–222
minimum coverage, 122
subsets of, 122–123

items, 116
iterative distance-based clustering, 139

J
J48 algorithm, 410–411, 446t–450t, 498, 502–503, 

505, 519
changing parameters for, 455f
cross-validation with, 498–500
discretization and, 575
evaluation method, 413
output, 412f
parentheses following rule, 459
result visualization, 415f
using, 411f

J48graft algorithm, 446t–450t, 455
Java database connectivity (JDBC)

databases, 515
drivers, 419, 510–511, 515

Java virtual machine, 519
Javadoc indexes, 525–526
JRip algorithm, 446t–450t, 459
judgment decisions, 22–23

K
K2 algorithm, 273
Kappa statistic, 166, 413
kD-trees, 132

building, 133
in finding nearest-neighbor, 133–134,  

134f
for training instances, 133f
updating, 135

kernel logistic regression, 231–232
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kernel perceptron, 231–232
kernel ridge regression, 229–231

computational expense, 230b
computational simplicity, 230b
drawback, 230b

kernel trick, 229–230
KernelFilter filter, 433t–435t, 439
k-means clustering, 139

iterations, 139–140
k-means++, 139
seeds, 139

k-nearest-neighbor method, 78
knowledge, 35

background, 380
metadata, 385
prior domain, 385

Knowledge Flow interface, 404–405, 495–503.  
See also Weka

Associations panel, 498
Classifiers panel, 498
Clusters panel, 498
components, 498–500
components configuration and connection, 

500–502
dataSet connections, 501
evaluation components, 498–500, 499t
Evaluation panel, 495–496, 499–500
Filters panel, 498
illustrated, 496f
incremental learning, 502–503
instance connections, 193
operations, 500f
starting up, 495–498
visualization components, 498–500,  

499t
knowledge representation, 85–145

clusters, 81
instance-based, 78–81
linear models, 62–63
rules, 67–77
tables, 61–62
trees, 64–67

KStar algorithm, 446t–450t, 472
Kullback-Leibler distance, 473

L
labor negotiations example, 15–19

dataset, 17t
decision trees, 18f
OneR output, 458f
PART output, 460f–461f
training dataset, 18–19

LADTree algorithm, 446t–450t, 457
language bias, 31–32
language identification, 387–388
Laplace estimator, 93, 291
large item sets, finding with association rules, 

219–222
LatentSemanticAnalysis method, 489t, 491
LaTeX typesetting system, 514–515
law of diminishing returns, 379
lazy classifiers, in Weka, 446t–450t, 472
LBR algorithm, 446t–450t, 472
learning

association, 40
batch, 238b–239b
classification, 40
concept, 8
cost-sensitive, 167–168
data stream, 380–383
ensemble, 351–373
incremental, 502–503
instance-based, 78, 131–138, 244–251
locally weighted, 259–261
machine, 7–8
multi-instance, 48, 141–143, 298–303
one-class, 307, 335–337
in performance situations, 21
rote, 78
semisupervised, 294–298
statistics versus, 28–29
testing, 7
training/testing schemes, 422–424

learning algorithms, 445–474
Bayes, 446t–450t, 451–453
functions, 446t–450t, 459–469
lazy, 410–411, 446t–450t
MI, 446t–450t, 472–474
miscellaneous, 446t–450t, 474
neural networks, 469–472
rules, 446t–450t, 457–459
trees, 446t–450t, 454–457

learning Bayesian networks, 266–268
learning paradigms, 380
learning rate, 238b–239b
learning scheme creation, in Weka,  

539–557
least-squares linear regression, 63, 125–126
LeastMedSq algorithm, 446t–450t, 462
leave-one-out cross-validation, 154
level-0 models, 370–371
level-1 model, 369–371
LibLINEAR algorithm, 446t–450t, 469
LibSVM algorithm, 446t–450t, 469
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lift charts, 168–172
data for, 169t
illustrated, 170f
points on, 179

lift factor, 168
linear classification

logistic regression, 125–127
using the perceptron, 127–129
using Winnow, 129–131

linear machines, 144
linear models, 62–63, 124–131

in binary classification problems, 63
boundary decision, 63
extending, 223–244
generating, 224
illustrated, 62f–63f
kernel ridge regression, 229–231
linear classification, 125–131
linear regression, 124–125
local, numeric prediction with, 251–261
logistic regression, 125–127
maximum-margin hyperplane, 224–225
in model tree, 258t
multilayer perceptrons, 232–241
nonlinear class boundaries, 226–227
numeric prediction, 124–125
perceptron, 127–129
stochastic gradient descent, 242–243
support vector machine use, 223
support vector regression, 227–229
in two dimensions, 62

linear regression, 124–125
least-squares, 63, 125–126
locally weighted, 259–261
multiple, 363
multiresponse, 125–126

linear threshold unit, 144
LinearForwardSelection method, 490t, 492–493
LinearRegression algorithm, 446t–450t, 459–462
LMT algorithm, 446t–450t, 456
load forecasting, 24–25
loading files, 416–422
locally weighted linear regression, 259–261

distance-based weighting schemes, 259–260
in nonlinear function approximation, 260

logic programs, 77
Logistic algorithm, 446t–450t, 467, 468f
logistic model trees, 368–369
logistic regression, 125–127

additive, 364–365
calibration, 346
generalizing, 126

illustrated, 127f
two-class, 126

LogitBoost, 364–365, 457, 467
LogitBoost algorithm, 475t, 476–477
log-normal distribution, 290
log-odds distribution, 290
loss functions

0 − 1, 160
informational, 161–163
quadratic, 160–163

LWL algorithm, 446t–450t, 472

M
M5′ program

CPU performance data with, 423f
error visualization, 426f
output for numeric prediction, 425f

M5P algorithm, 446t–450t, 456
M5Rules algorithm, 446t–450t, 459
machine learning, 7–8

applications, 8–9
in diagnosis applications, 25
embedded, 531–538
expert models, 352
statistics and, 28–29

machine learning schemes, 191–304
association rules, 216–223
Bayesian networks, 261–273
classification rules, 203–216
clustering, 273–293
decision trees, 192–203
instance-based learning, 244–251
linear model extensions, 223–244
multi-instance learning, 298–303
numeric prediction with local linear models, 

251–261
semisupervised learning, 294–298

main() method, 553–555
MakeDensityBasedCluster algorithm, 480t, 483
MakeIndicator filter, 433t–435t, 438
makeTree() method, 540–549
manufacturing process applications, 27
market basket analysis, 26–27, 584–585
marketing and sales, 26–27

churn, 26
direct marketing, 27
historical analysis, 27
market basket analysis, 26–27

Markov blanket, 269
massive datasets, 378–380
Massive Online Analysis (MOA), 383
MathExpression filter, 433t–435t, 437, 478
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maximization, 289
maximum-margin hyperplane, 224–225

illustrated, 225f
support vectors, 225

MDD algorithm, 446t–450t, 472–473
MDL. See minimum description length 

principle
mean-absolute errors, 181
mean-squared errors, 181
memory usage, 383
MergeTwoValues filter, 433t–435t, 438
message classifier application, 531–538

classifyMessage() method, 537–538
main() method, 531–536, 532f–535f
MessageClassifier() constructor, 536
source code, 531, 532f–535f
updateData() method, 536–537

MetaCost algorithm, 356, 475t, 477–478
metadata, 51, 384

application examples, 384
extraction, 388
knowledge, 385
relations among attributes, 384

metalearners, 427
configuring for boosting decision stumps,  

429f
using, 427

metalearning algorithms, in Weka, 474–479
bagging, 474–476
boosting, 476–477
combining classifiers, 477
cost-sensitive learning, 477–478
list of, 475t
performance optimization, 478–479
randomization, 474–476
retargeting classifiers, 479

methods (Weka), 520
metric trees, 137–138
MIBoost algorithm, 446t–450t, 473–474
MIDD algorithm, 446t–450t, 472–473
MIEMDD algorithm, 446t–450t, 472–473
MILR algorithm, 446t–450t, 473
minimum description length (MDL) principle,  

163, 183–186
applying to clustering, 186–187
metric, 267
probability theory and, 184–185
training instances, 184

MINND algorithm, 446t–450t
MIOptimalBall algorithm, 446t–450t, 473
MISMO algorithm, 446t–450t, 473
missing values, 58–59

1R, 87–89

classification rules, 204–205
decision trees, 64, 194–195
distance function, 132
instances with, 194
machine learning schemes and, 58
mixture models, 290
Naïve Bayes, 94–97
partial decision trees, 212
reasons for, 58

MISVM algorithm, 446t–450t, 473
MIWrapper algorithm, 446t–450t, 473–474
mixed-attribute problems, 10–11
mixture models, 286

extending, 289–290
finite mixtures, 286
missing values, 290
nominal attributes, 289
two-class, 286f

MOA. See Massive Online Analysis
model trees, 67, 251, 252

building, 253
illustrated, 68f
induction pseudocode, 255–257, 256f
linear models in, 258t
logistic, 368–369
with nominal attributes, 257f
pruning, 253–254
rules from, 259
smoothing calculation, 252

ModelPerformanceChart, 498, 499t
MultiBoostAB algorithm, 475t, 476
multiclass prediction, 164
MultiClassClassifier algorithm, 475t, 479
multi-instance data

classifiers, in Weka, 446t–450t, 472–474
filters for, 440

multi-instance learning, 48, 141–143
aggregating the input, 142
aggregating the output, 142
bags, 141–142, 300
converting to single-instance learning,  

298–300
dedicated methods, 301–302
hyperrectangles for, 303
nearest-neighbor learning adaptation to,  

301
supervised, 141–142
upgrading learning algorithms, 300–301

multi-instance problems, 48
ARFF file, 55f
converting to single-instance problem, 142

MultiInstanceToPropositional filter, 433t–435t, 
440
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multilabeled instances, 40
multilayer perceptrons, 232–241

backpropagation, 235–241, 238b–239b
bias, 233
datasets corresponding to, 234f
disadvantages, 238b–239b
as feed-forward networks, 238b–239b
hidden layer, 233, 238b–239b, 239f
input layer, 233
units, 233

MultilayerPerceptron algorithm, 446t–450t, 
469–472

GUI, 469, 470f
NominalToBinaryFilter filter and, 471–472
parameters, 471

multinominal Naïve Bayes, 97–98
multiple classes to binary transformation, 307,  

338–343, 340t. See also data 
transformation

error-correcting output codes, 339–341
nested dichotomies, 341–343
one-vs.-rest method, 338
pairwise classification, 339
pairwise coupling, 339
simple methods, 338–339

multiple linear regression, 363
multiresponse linear regression, 125

drawbacks, 125–126
membership function, 125

MultiScheme algorithm, 475t, 477
multistage decision property, 103–104
multivariate decision trees, 203

N
Naïve Bayes, 93, 308

for data streams, 381
for document classification, 97–98
with EM, 295
independent attributes assumption, 289–290
locally weighted, 260
missing values, 94–97
multinominal, 97–98
numeric attributes, 94–97
selective, 314
semantics, 99
visualizing, 573
Weka algorithms, 446t–450t, 451–453

NaiveBayes algorithm, 446t–450t, 451, 452f
NaiveBayesMultinomial algorithm, 446t–450t
NaiveBayesMultinomial-Updateable algorithm, 

446t–450t, 451
NaiveBayesSimple algorithm, 446t–450t, 451
NaiveBayesUpdateable algorithm, 446t–450t, 451

NAND, 233
NBTree algorithm, 446t–450t, 456
nearest-neighbor classification, 78

speed, 137–138
nearest-neighbor learning

attribute selection, 567–568
class noise and, 568
finding nearest neighbors, 88
Hausdorff distance variants and, 303
instance-based, 132–137
multi-instance data adaptation, 301
training data, varying, 569
Weka Explorer exercise, 566–571

nested dichotomies, 341–343
code matrix, 342t
defined, 342
ensemble of, 343

neural networks, 469–472
n-fold cross-validation, 154
n-grams, 387–388
Nnge algorithm, 446t–450t, 459
noise, 6–7

class, 568
nominal attributes, 49

mixture model, 289
numeric prediction, 254
symbols, 49

NominalToBinary filter, 433t–435t, 439, 444, 
444t, 471–472

NominalToString filter, 433t–435t, 439
nonlinear class boundaries, 226–227
NonSparseToSparse filter, 441t, 442
normal distribution

assumption, 97, 99
confidence limits, 152t

normalization, 462
Normalize filter, 433t–435t, 437, 441t, 442
NOT, 233
nuclear family, 44–46
null hypothesis, 158
numeric attributes, 49, 314–322

1R, 87–89
classification rules, 205
converting discrete attributes to, 322
decision tree, 193–194
discretization of, 306
Naïve Bayes, 94–97
normal-distribution assumption for, 99

numeric prediction, 15, 40
additive regression, 362–363
bagging for, 354–355
evaluating, 180–182
linear models, 124–125
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outcome as numeric value, 42
performance measures, 180t, 182t
support vector machine algorithms for, 

227–228
numeric prediction (local linear models),  

251–261
building trees, 253
locally weighted linear regression,  

259–261
model tree induction, 255–257
model trees, 252
nominal attributes, 254
pruning trees, 253–254
rules from model trees, 259

numeric thresholds, 193
numeric-attribute problems, 10–11
NumericCleaner filter, 433t–435t, 438
NumericToBinary filter, 433t–435t, 439
NumericToNominal filter, 433t–435t, 439
NumericTransform filter, 433t–435t

O
Obfuscate filter, 433t–435t, 441
object editors, 404

generic, 417f
objects (Weka), 520
Occam’s Razor, 183, 185, 361
one-class learning, 307, 335–337

multiclass classifiers, 336
outlier detection, 335–336

one-dependence estimator, 269
OneR algorithm, 446t–450t, 505

output, 458f
visualizing, 571–572

OneRAttributeEval method, 489t, 491
one-tailed probability, 151
one-vs.-rest method, 338
OPTICS algorithm, 480t, 484–485, 485f
option trees, 365–368

as alternating decision trees, 366–368, 367f
decision trees versus, 365–366
example, 366f
generation, 366

OR, 233
order-independent rules, 115
orderings, 50

circular, 51
partial, 51

ordinal attributes, 50
coding of, 51

OrdinalClassClassifier algorithm, 475t, 479

orthogonal coordinate systems, 324
outliers, 335

detection of, 335–336
output

aggregating, 142
clusters, 81
instance-based representation, 78–81
knowledge representation, 85–145
linear models, 62–63
rules, 67–77
tables, 61–62
trees, 64–67

overfitting, 88
for 1R, 88
backpropagation and, 238b–239b
forward stagewise additive regression and,  

363
support vectors and, 226

overfitting-avoidance bias, 32–33
overlay data, 52

P
PaceRegression algorithm, 446t–450t, 462
packages, 519–520. See also Weka

weka.associations, 525
weka.attributeSelection, 525
weka.classifiers, 523–525
weka.clusterers, 525
weka.core, 520–523
weka.datagenerators, 525
weka.estimators, 525
weka.filters, 525

PageRank, 21, 375–376, 390
recomputation, 391
sink, 392
in Web mining, 391–392

pair-adjacent violators (PAV) algorithm, 345–346
paired t-test, 157
pairwise classification, 339
pairwise coupling, 339
parabolas, 248–249
parallelization, 379
PART algorithm, 411–413, 446t–450t, 460f–461f
partial decision trees

best leaf, 212
building example, 211f
expansion algorithm, 210f
missing values, 212
obtaining rules from, 208–212

partial least-squares regression, 326–328
partial ordering, 51
PartitionedMultiFilter filter, 433t–435t, 437–438

numeric prediction (continued)
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partitioning
for 1R, 88
discretization, 87
instance space, 80f
training set, 195

PAV. See pair-adjacent violators algorithm
perceptron learning rule, 128

illustrated, 129f
updating of weights, 130

perceptrons, 129
instance presentation to, 129
kernel, 231–232
linear classification using, 127–129
multilayer, 232–241
voted, 231–232

performance
classifier, predicting, 149
comparison, 147
error rate and, 148
evaluation, 148
instance-based learning, 246
for numeric prediction, 180t, 182t
optimization in Weka, 478–479
predicting, 150
text mining, 386–387

personal information use, 34–35
PKIDiscretize filter, 433t–435t, 438
PLSClassifier algorithm, 446t–450t, 462
PLSFilter filter, 444t, 445, 462
Poisson distribution, 290
postpruning, 195

subtree raising, 196–197
subtree replacement, 195–196

prediction
with Bayesian networks, 262–266
multiclass, 164
nodes, 366–367
outcomes, 164, 164t–165t
three-class, 165t
two-class, 164t

PredictionAppender, 499–500, 499t
PredictiveApriori rule learner, 486t, 487
preprocessing techniques, 574–578
prepruning, 195
principal component analysis, 324–326

of dataset, 325f
principal components, 325
recursive, 326

principal components regression, 326
PrincipalComponents filter, 433t–435t, 439
PrincipalComponents method, 489t, 491
principle of multiple explanations, 186

prior knowledge, 385
prior probability, 92–94
Prism algorithm, 446t–450t
PRISM method, 114–115, 215
probabilities

class, calibrating, 343–346
maximizing, 185
one-tailed, 151
predicting, 159–163
probability density function relationship,  

96
with rules, 12–13

probability density functions, 96
probability estimates, 262
probability-based clustering, 285–286
programming by demonstration, 396
projection. See data projection
proportional k-interval discretization, 316
PropositionalToMultiInstance filter, 433t–435t, 

440
pruning

cost-complexity, 202
decision trees, 195–197
example illustration, 199f
incremental reduced-error, 206, 207f
model trees, 253–254
noisy exemplars, 245–246
postpruning, 195
prepruning, 195
reduced-error, 197, 206
rules, 200–201
subtree lifting, 199–200
subtree raising, 196–197
subtree replacement, 195–196

pruning sets, 205–206

Q
quadratic loss function, 160–163

R
RacedIncrementalLogitBoost algorithm, 475t, 

476–477
race search, 313
RaceSearch method, 490t, 493
radial basis function (RBF), 241–242

kernels, 227
networks, 227
output layer, 241–242

random projections, 326
random subspaces, 357
RandomCommittee algorithm, 475t, 476
RandomForest algorithm, 446t–450t
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randomization, 356–358
bagging versus, 357
results, 356–357
rotation forests, 357–358
in Weka, 474–476

Randomize filter, 441t, 442
randomizing

unsupervised attribute filters, 441
unsupervised instance filters, 442

RandomProjection filter, 433t–435t, 441
RandomSearch method, 490t, 493
RandomSubset filter, 433t–435t, 437, 476
RandomSubSpace algorithm, 475t
RandomTree algorithm, 446t–450t, 455
Ranker method, 490–491, 490t, 494
RankSearch method, 490t, 493–494
ratio quantities, 50
RBF. See radial basis function
RBFNetwork algorithm, 446t–450t, 467–469
recall-precision curves, 174–175

AUPRC, 177
points on, 179

rectangular generalizations, 79
recurrent neural networks, 238b–239b
recursive feature elimination, 309–310
reduced-error pruning, 206, 238

incremental, 206, 207f
reference density, 337
reference distribution, 337
regression, 15, 62

additive, 362–365
isotonic, 345
kernel ridge, 229–231
linear, 124–125
locally weighted, 259–261
logistic, 125–127
partial least-squares, 326–328
principal components, 326
robust, 333–334
support vector, 227–229

regression equations, 15
regression tables, 61–62
regression trees, 67, 251

illustrated, 68f
RegressionByDiscretization algorithm, 475t, 479
regularization, 244
reidentification, 33–34
RELAGGS filter, 433t–435t, 440
RELAGGS system, 302–303
relations, 43–46

ancestor-of, 46
sister-of, 43f, 45t
superrelations, 44–46

relation-valued attributes, 54–55
instances, 56–57
specification, 55

relative-absolute errors, 181
relative-squared errors, 181
RELIEF (Recursive Elimination of Features), 346
ReliefFAttributeEval method, 489t, 490–491
reloading datasets, 418–419
Remove filter, 433t–435t, 436
RemoveFolds filter, 441t, 442
RemoveFrequentValues filter, 441t, 442
RemoveMisclassified filter, 441t, 442
RemovePercentage filter, 441t, 442
RemoveRange filter, 441t, 442
RemoveType filter, 433t–435t, 436
RemoveUseless filter, 433t–435t, 436
RemoveWithValues filter, 441t, 442
Reorder filter, 433t–435t, 437–438
repeated holdout, 152–153
ReplaceMissingValues filter, 433t–435t, 438
replicated subtree problem, 69

decision tree illustration, 71f
REPTree algorithm, 446t–450t, 456

Resample filter, 441t, 442, 444t, 445
reservoir sampling, 330–331
ReservoirSample filter, 441t, 442
residuals, 327, 368–369
resubstitution errors, 148–149
retargeting classifiers, in Weka, 479
Ridor algorithm, 446t–450t, 459
RIPPER algorithm, 208, 209f, 215
ripple-down rules, 216
robo-soccer, 394
robust regression, 333–334
ROC curves, 172–174, 581

AUC, 177
from different learning schemes, 173–174
generating with cross-validation, 173
jagged, 172–173
points on, 179
sample, 173f
for two learning schemes, 174f

rotation forests, 357–358
RotationForest algorithm, 475t, 476
rote learning, 78
row separation, 340
rule sets

model trees for generating, 259
for noisy data, 203
visualizing, 573

rules, 10, 67–77
antecedent of, 67
association, 11, 72–73, 216–223
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classification, 11, 69–72
computer-generated, 19–21
consequent of, 67
constructing, 108–116
decision lists versus, 115–116
decision tree, 200–201
efficient generation of, 122–123
with exceptions, 73–75, 212–215
expert-derived, 19–21
expressive, 75–77
inferring, 86–90
from model trees, 259
order-independent, 115
perceptron learning, 128
popularity, 70–71
PRISM method for constructing,  

114–115
probabilities, 12–13
pruning, 200–201
ripple-down, 216
trees versus, 109–110
Weka algorithms, 446t–450t, 457–459

S
sampling, 307, 330–331. See also data 

transformation
with replacement, 330–331
reservoir, 330–331
without replacement, 330

ScatterPlotMatrix, 498, 499t
ScatterSearchV1 method, 490t, 494
schemata search, 313
scheme-independent attribute selection, 308–310

filter method, 308–309
instance-based learning methods, 310
recursive feature elimination, 309–310
symmetric uncertainty, 310b
wrapper method, 308–309

scheme-specific attribute selection, 312–314
accelerating, 313
paired t-test, 313
race search, 313
results, 312–313
schemata search, 313
selective Naïve Bayes, 314

scheme-specific options, 528t, 529
scientific applications, 28
screening images, 23–24
SDR. See standard deviation reduction
search, generalization as, 29
search bias, 32
search engines, in web mining, 21–22
search methods (Weka), 421, 490t

seeds, 139
selective Naïve Bayes, 314
semantic relationship, 384
semisupervised learning, 294–298

clustering for classification, 294–296
co-EM, 297
co-training, 296

separate-and-conquer algorithms, 115–116, 308
SerializedClassifier algorithm, 474
SerializedModelSaver, 499–500, 499t
set kernel, 301
shapes problem, 75

illustrated, 76f
training data, 76t

sIB algorithm, 480t, 485
sigmoid function, 236f
sigmoid kernel, 227
SimpleCart algorithm, 446t–450t, 456
SimpleKMeans algorithm, 480–481, 480t, 481f
SimpleLinearRegression algorithm, 446t–450t, 

459, 461f
SimpleLogistic algorithm, 446t–450t, 467
SimpleMI algorithm, 446t–450t, 473–474
single-attribute evaluators, 490–492
single-consequent rules, 123
single-linkage clustering algorithm, 275, 279
skewed datasets, 135
SMO algorithm, 446t–450t, 462, 463f–467f
smoothing calculation, 252
SMOreg algorithm, 446t–450t, 462
SMOTE filter, 444t, 445
soybean classification example, 5

dataset, 20t
examples rules, 19

sparse data, 56
sparse instances, 442
SparseToNonSparse filter, 441t, 442
SPegasos algorithm, 446t–450t, 464
splitter nodes, 366–367
splitting, 281

clusters, 274
criterion, 253
model tree nodes, 255

SpreadSubsample filter, 444t, 445
SQLViewer, 419
squared error, 161
stacking, 334, 369–371

defined, 144, 369
level-0 model, 370–371
level-1 model, 369–371
model input, 369
output combination, 369
as parallel, 379
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Stacking algorithm, 475t, 477
StackingC algorithm, 475t, 477
standard deviation from the mean, 151
standard deviation reduction (SDR), 253,  

254
Standardize filter, 433t–435t, 437
standardizing statistical variables, 57
statistical clustering, 314–315
statistical modeling, 90–99
statistics, machine learning and, 28–29
step function, 236f
stochastic backpropagation, 238b–239b
stochastic gradient descent, 242–243
stopwords, 329, 387
stratification, 152

variation reduction, 153–154
stratified holdout, 152
stratified threefold cross-validation, 153
StratifiedRemoveFolds filter, 444t, 445
StreamableFilter keyword, 526
string attributes, 54

in document classification, 579–580
specification, 54
values, 54

StringToNominal filter, 433t–435t, 439
StringToWordVector filter, 419, 433t–435t, 

439–440, 538
default, 581
options, 581

StripChart, 498, 499t
structural descriptions, 5–7

decision trees, 5
learning techniques, 8–9

structure learning by conditional  
independence tests, 270

Student’s distribution with k-1 degrees of 
freedom, 157

Student’s t-test, 157
subgradients, 242
subsampling, 442
SubsetByExpression filter, 441t, 442
SubsetSizeForwardSelection method, 490t, 

492–493
subtree lifting, 199–200
subtree raising, 196–197
subtree replacement, 195–196
success rate, error rate and, 197–198
superparent one-dependence estimator, 269
superrelations, 44–46
supervised discretization, 316, 574
supervised filters, 432, 443–445

attribute, 443–445

instance, 445
using, 432

supervised learning, 40
support, of association rules, 72, 116
support vector machines (SVMs), 191–192

co-EM with, 297
hinge loss, 242–243
linear model usage, 223
term usage, 223
training, 225
weight update, 243

support vector regression, 227–229
flatness maximization, 229
illustrated, 228f
for linear case, 229
linear regression differences, 228
for nonlinear case, 229

support vectors, 191–192, 225
finding, 225
overfitting and, 226

SVMAttributeEval method, 489t, 491
SwapValues filter, 433t–435t, 438
symmetric uncertainty, 310b
SymmetricalUncertAttributeEval method, 

489t, 491

T
tables

as knowledge representation, 61–62
regression, 61–62

tabular input format, 124
TAN. See tree-augmented Naïve Bayes
teleportation, 392
tenfold cross-validation, 153–154, 306
Tertius rule learner, 486t, 487
testing, 148–150

test data, 149
test sets, 149
in Weka, 422–424

TestSetMaker, 499–502, 499t
text mining, 386–389

data mining versus, 386–387
document classification, 387–388
entity extraction, 388
information extraction, 388–389
metadata extraction, 388
performance, 386–387
stopwords, 387

text summarization, 387
text to attribute vectors, 328–329
TextViewer, 499t
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theory, 183
exceptions to, 183
MDL principle and, 183–184

threefold cross-validation, 153
three-point average recall, 175
ThresholdSelector algorithm, 475t, 479
time series, 330

Delta, 330
filters for, 440
timestamp attribute, 330

TimeSeriesDelta filter, 433t–435t, 440
TimeSeriesTranslate filter, 433t–435t, 440
timestamp attribute, 330
tokenization, 328–329, 440
top-down induction, of decision trees,  

107–108
toSource() method, 550–553
training, 148–150

data, 149
data verification, 569
documents, 579t
instances, 184
learning schemes (Weka), 422–424
support vector machines, 225

training sets, 147
error, 197
error rate, 148
partitioning, 195
size effects, 569t

TrainingSetMaker, 499–502, 499t
TrainTestSplitMaker, 499–500, 499t
tree diagrams. See dendrograms
tree-augmented Naïve Bayes (TAN), 269
trees, 64–67. See also decision trees

AD, 270–272, 271f
ball, 135–137
frequent-pattern, 216–219
functional, 65
Hoeffding, 382–383
kD, 132–133, 133f–134f
logistic model, 368–369
metric, 137–138
model, 67, 68f, 251–252
option, 365–368
regression, 67, 68f, 251
rules versus, 109–110
Weka algorithms, 416, 446t–450t

trees package, 519–520
true negatives (TN), 164, 580
true positive rate, 164
true positives (TP), 164, 580
t-statistic, 158–159

t-test, 157
corrected resampled, 159
paired, 157

two-class mixture model, 286f
two-class problem, 75
typographic errors, 59

U
ubiquitous computing, 395–396
ubiquitous data mining, 395–397
univariate decision trees, 203
unmasking, 394–395
unsupervised attribute filters, 432–441.  

See also filtering algorithms; 
filters

adding/removing attributes, 436–438
changing values, 438
conversions, 438–439
list of, 433t–435t
multi-instance data, 440
randomizing, 441
string conversion, 439–440
time series, 440

unsupervised discretization, 316, 574
unsupervised instance filters, 441–442

list of, 441t
randomizing, 442
sparse instances, 442
subsampling, 442

UpdateableClassifier keyword, 526
updateData() method, 536–537
User Classifier (Weka), 65, 424–427

segmentation data with, 428f
UserClassifier algorithm, 446t–450t, 570

V
validation data, 149
validation sets, 379
variables, standardizing, 57
variance, 354
Venn diagrams, in cluster representation,  

81
VFI algorithm, 417, 446t–450t
visualization

Bayesian network, 454f
classification errors, 565
decision trees, 573
Naïve Bayes, 573
nearest-neighbor learning, 572
OneR, 571–572
rule sets, 573
in Weka, 430–432
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Visualize panel, 430–432, 562
Vote algorithm, 475t, 477
voted perceptron, 197
VotedPerceptron algorithm, 446t–450t, 464
voting feature intervals, defined, 138

W
WAODE algorithm, 446t–450t, 451
Wavelet filter, 433t–435t, 439
weather problem example, 9–12

alternating decision tree, 367f
ARFF file for, 53f, 409f
association rules, 11, 120t–121t
attribute space, 311f
attributes, 9–10
attributes evaluation, 87t
Bayesian network visualization, 454f
Bayesian networks, 263f, 265f
clustering, 280f
counts and probabilities, 91t
CSV format for, 409f
data with numeric class, 42t
dataset, 10t
decision tree, 103f
EM output, 482f
expanded tree stumps, 102f
FP-tree insertion, 217t–218t
identification codes, 106t
item sets, 117t–118t
multi-instance ARFF file, 55f
NaiveBayes output, 452f
numeric data with summary statistics,  

95t
option tree, 366f
SimpleKMeans output, 481f
tree stumps, 100f

web mining, 5, 389–392
PageRank algorithm, 390–392
search engines, 21–22
teleportation, 392
wrapper induction, 390

weight decay, 238b–239b
weighting attributes

instance-based learning, 246–247
test, 247
updating, 247

weights
determination process, 15
with rules, 12–13

Weka, 403–406
advanced setup, 511–512
ARFF format, 407
association rule mining, 582–584

association rules, 429–430
association-rule learners, 485–487
attribute selection, 430, 487–494
clustering, 429
clustering algorithms, 480–485
command-line interface, 519–530
components configuration and connection, 

500–502
CPU performance data, 423f
data preparation, 407
development of, 403
evaluation components, 498–500, 499t
experiment distribution, 515–517
Experimenter, 405, 505–517
Explorer, 404, 407–494
filtering algorithms, 432–445
Generic Object Editor, 417f
GUI Chooser panel, 408
how to use, 404–405
incremental learning, 502–503
interfaces, 404–405
ISO-8601 date/time format, 54
Knowledge Flow, 404–405, 495–503
learning algorithms, 445–474
learning scheme creation, 539–557
market basket analysis, 584–585
message classifier application, 531–538
metalearning algorithms, 474–479
neural networks, 469–472
packages, 519–525
search methods, 492–494
simple setup, 510–511
structure of, 519–526
User Classifier facility, 65, 424–427
visualization, 430–432
visualization components, 498–500, 499t

weka.associations package, 525
weka.attributeSelection package, 525
weka.classifiers package, 523–525

DecisionStump class, 523, 524f
implementations, 523

weka.classifiers.trees.Id3, 539–555
buildClassifier() method, 540
classifyInstance() method, 549–550
computeInfoGain() method, 549
getCapabilities() method, 539
getTechnicalInformation() method, 539
globalInfo() method, 539
main() method, 553–555
makeTree() method, 540–549
Sourcable interface, 539, 550
source code, 541f–548f
source code for weather example, 551f–553f
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TechnicalInformationHandler interface, 
539

toSource() method, 550–553
weka.clusterers package, 525
weka.core package, 520–523

classes, 523
web page illustration, 521f–522f

weka.datagenerators package, 525
weka.estimators package, 525
weka.filters package, 525
weka.log, 415–416
weka package, 520
Weka workbench, 376, 403

filters, 404
J4.8 algorithm, 410–414

Winnow, 129–130
Balanced, 131
linear classification with, 88

updating of weights, 130
versions illustration, 130f

Winnow algorithm, 446t–450t
wisdom, 35
wrapper induction, 390
wrapper method, 308–309
wrappers, 389–390
WrapperSubsetEval method, 488, 489t

X
XMeans algorithm, 480t, 483
XML (eXtensible Markup Language), 52–56
XOR (exclusive-OR), 233
XRFF format, 419

Z
zero-frequency problem, 162
ZeroR algorithm, 413, 446t–450t, 459, 505
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