
Identifying Architectural Technical Debt in Android
Applications through Automated Compliance Checking

Roberto Verdecchia∗†
∗Gran Sasso Science Institute, L’Aquila, Italy

†Vrije Universiteit Amsterdam, The Netherlands
roberto.verdecchia@gssi.it

ABSTRACT
By considering the fast pace at which mobile applications need
to evolve, Architectural Technical Debt results to be a crucial yet
implicit factor of success. In this research we present an approach
to automatically identify Architectural Technical Debt in Android
applications. The approach takes advantage of architectural guide-
lines extraction and modeling, architecture reverse engineering,
and compliance checking. As future work, we plan to fully automate
the process and empirically evaluate it via large-scale experiments.

KEYWORDS
Software Architecture, Technical Debt, Android, Compliance Checking

1 INTRODUCTION
In the past decade a drastic media consumption shift towards mobile
devices took place. It is hence not surprising that the development
of mobile apps experienced an exponential growth in recent times.
The shift towards mobile development was supported by the advent
of app stores, such as Google Play and Apple App Store, where
millions of mobile apps are available nowadays. Mobile application
development results to be a highly competitive business, which
can lead to high profits, but is also sensible to the introduction of
errors with tremendous financial impact [4]. The mobile application
business model is tightly coupled with users satisfaction, who can
efficiently express their opinions through reviewing systems. It is
hence paramount, to ensure the user satisfaction and revenue of
apps, to be able to promptly and efficiently release new versions to
introduce new features, fix bugs, and rapidly adapt to users’ needs.

By considering the fast pace at which mobile apps need to evolve,
Architectural Technical Debt (ATD) results a crucial yet implicit
factor of success. This is confirmed by the recent release of a set of
Android architectural components aimed to lower the complexity of
Android apps and provide a recommended Android architecture [1].

ATD is defined as sub-optimal design decisions hindering the
evolvability and maintainability of software apps over time. By
identifying, resolving, and monitoring ATD of mobile apps, it is
possible to enable them to rapidly adapt according to users’ needs.
While ATD has high impact on overall software quality, its presence
is hard to uncover due to its complexity and lack of tools [3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5712-8/18/05. . . $15.00
https://doi.org/10.1145/3197231.3198442

In this research we present a novel approach, based on architec-
ture reverse engineering and compliance checking, for identifying
ATD hotspots in Android apps. The presented approach is, to the
best of our knowledge, the first one conceived specifically to iden-
tify ATD in Android applications.

2 APPROACH
In the literature several techniques aimed to identify ATD can be
found [5]. Among these, a typology of approaches focuses on iden-
tifying ATD by comparing the architecture of the implemented soft-
ware applications with a reference architecture. Occurrences where
the implemented architecture is non-compliant to the envisioned
reference architecture are regarded as potential ATD Items (ATDIs)
1 This typology of approaches is particularly interesting as design
guidelines can be directly embedded in the reference architecture.
Building on such concept, the reference architecture can even be
composed exclusively of architectural guidelines aimed at avoiding
ATD. The approach presented in this research, conceived to identify
ATDI of Android apps, is based on such intuition. The approach
consists of five steps, namely: (1) Android architectural guidelines
extraction, (2) Android reference architecture establishment, (3) re-
verse engineering of implemented architectures, (4) compliance
checking, and (5) quantitative assessment of compliance violations.
In the reminder of this section the steps constituting the approach,
depicted in Figure 1, are further detailed.

Step 1: Android architecture guideline extraction. The first
step of the approach consists in the identification of architectural
guidelines that Android apps should adhere to in order not to incur
in potential ATD. The data sources adopted for the extraction of
architectural guidelines to construct the Android reference archi-
tecture are complementary and heterogeneous, in order to be as
encompassing as possible, and consist of:
• Official Android Guidelines: Official Android documentation
available online, such as the Guide to App Architecture2;
• Academic researches: Peer-reviewed research papers consid-
ering architectural guidelines of Android apps, e.g. the study of
Bagheri et al. [2];
• Grey literature: Non-academic writings on the topic available
online, e.g. articles featured in Android related websites and blogs;
• Developer interviews: Semi-structured interviews with An-
droid developers to validate and complement the data extracted
from the above mentioned data sources.

Quality assessment is conducted on the extracted guidelines to
ensure the soundness of the findings, remove duplicates, etc. The

1As an example, ATDIs in Android may arise when developers need to maintain
different versions of the same Android API call (e.g., to request permissions) in order
to (i) keep up with new releases of Android and (ii) maintain backwards compatibility.
2 https://developer.android.com/topic/libraries/architecture/guide.html; Accessed 27
February 2018.

mailto:roberto.verdecchia@gssi.it
https://doi.org/10.1145/3197231.3198442
https://developer.android.com/topic/libraries/architecture/guide.html

Figure 1: Android ATD hotspot identification approach overview

output of this step is a textual transcript of the identified Android
architectural guidelines.

Step 2: Android reference architecture establishment. This
step consists of the formalization of the textual transcript produced
in Step 1. This process is required in order to effectively format
the data for the subsequent automated analysis described in Step 4.
Specifically, this step consists in developing a software model which
conveys the information of the architectural guidelines extracted
in Step 1. The resulting model is referred to as Android reference
model. The reference model conforms to a chosen architecture de-
scription language (ADL). Specifically the AcmeADL3 results suited
for this process due to technology constraints dictated by Steps 3-4.

In addition to the Android reference model, in order to comple-
ment it with the information which cannot be exhaustively repre-
sented in form of a software model, a set of constraints expressed
through the Object Constraint Language (OCL) are defined. The
combination of the reference model and OCL constraints is what is
jointly referred to in this document as Android reference architec-
ture. The output of this step is an Android reference architecture
composed of Android architectural guidelines in form of a software
model and complementary OCL constraints.

Step 3: Reverse engineering of implemented architecture.
This step consists in the retrieval of the architecture of an imple-
mented Android application through the analysis of its source code
or APK. Specifically, this step is constituted by the automated re-
verse engineering of the most prominent Android architectural
components (i.e. Activities, Services, Content providers, and Broad-
cast receivers) of an Android application and the relations between
such building blocks in terms of connectors and ports. This process
was first proposed by Bagheri et al. [2], who also provided empirical
evidence of its effectiveness. Due to the potential complexity of this
process, this step has to be carried out by utilizing dedicated archi-
tecture reverse engineering tools. In particular, this can be achieved
by adopting the ACME-Generator tool4, which is a dedicated tool
for reconstructing specifically the architecture of Android apps.
Note that to ease the compliance checking process (Step 4) both
the ANdroid reference architecture and the implemented architec-
ture must either (i) adhere to the same metamodel or (ii) be linked
by a suitable model-to-model transformation being able to bridge
models conforming to them. The output of this step is the reverse
engineered architecture of an implemented Android application.

Step 4: Compliance checking. Subsequent to the establish-
ment of the Android reference architecture and the implemented

3http://www.cs.cmu.edu/~acme/
4https://github.com/arsadeghi/ACME-Generator. Accessed 27th February 2018.

architecture, a compliance checking process is carried out. During
this process, items of non-adherence of the implemented architec-
ture w.r.t. the Android reference architecture are identified. Due to
its complexity, this step has to be carried out (semi-)automatically. In
order to carry out a sound compliance checking process and reduce
the number of potential false positives, the compliance checking
has to consider a semantic comparison logic. This can be achieved
by utilizing the model comparison tool EMFCompare5, which offers
a vast range of extension and customization mechanisms through
which the ad-hoc comparison process can be implemented. The
output of this step is the set of the non-adherence items of the
implemented architecture w.r.t. the Android reference architecture.

Step 5: Quantitative assessment of compliance violations.
Once the set of non-adherence items is computed, it is possible to
analyze the gathered data to identify which architectural elements
of the implemented architecture violate the highest number of
Android architectural guidelines. Such identified items, referred to
as Android ATD hotspots, are stored for a final manual inspection to
prioritize them, select which require refactoring, etc. The output of
this step is the set of Android ATD hotspots, i.e. the components of
the implemented architecture which contain the highest number
of non-adherence items w.r.t. the Android reference architecture.
3 CONCLUSION AND OUTLOOK
In this research we present a novel approach to identify ATD of
Android apps based on architectural guidelines extraction and mod-
eling, architecture reverse engineering, and compliance checking.
We plan to automate the process and extensively evaluate it on large
set of Android apps. The approach enables us to conduct evolution-
ary studies on the ATD of Android apps, through which a higher
precision of the approach could be achieved, e.g. by considering
code churn to rank more precisely ATDIs.
REFERENCES
[1] Android and Architecture. InAndroid Developers Blog. https://android-developers.

googleblog.com/2017/05/android-and-architecture.html Accessed 18 March 2018.
[2] Hamid Bagheri, Joshua Garcia, Alireza Sadeghi, Sam Malek, and Nenad Medvi-

dovic. 2016. Software architectural principles in contemporary mobile software:
from conception to practice. Journal of Systems and Software 119 (2016), 31–44.

[3] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Technical debt: From
metaphor to theory and practice. IEEE Software 29, 6 (2012), 18–21.

[4] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and fault
proneness: a threat to the success of Android apps. In Proceedings of the 2013 9th
joint meeting on foundations of software engineering. ACM, 477–487.

[5] Roberto Verdecchia, Ivano Malavolta, and Patricia Lago. 2018. Architectural Tech-
nical Debt Identification: The Research Landscape. In International Conference on
Technical Debt (TechDebt).

5https://www.eclipse.org/emf/compare/. Accessed 27th February 2018.
2

http://www.cs.cmu.edu/~acme/
https://github.com/arsadeghi/ACME-Generator
https://android-developers.googleblog.com/2017/05/android-and-architecture.html
https://android-developers.googleblog.com/2017/05/android-and-architecture.html
https://www.eclipse.org/emf/compare/

