
Noname manuscript No.
(will be inserted by the editor)

Process Mining Using BPMN:
Relating Event Logs and Process Models

Anna A. Kalenkova · W. M. P. van der Aalst · Irina A. Lomazova ·
Vladimir A. Rubin

Received: 03.2015 / Accepted: date

Abstract Process-aware information systems (PAIS) are
systems relying on processes, which involve human and
software resources to achieve concrete goals. There is a need
to develop approaches for modeling, analysis, improvement
and monitoring processes within PAIS. These approaches
include process mining techniques used to discover process
models from event logs, find log and model deviations, and
analyze performance characteristics of processes. The rep-
resentational bias (a way to model processes) plays an im-
portant role in process mining. The BPMN 2.0 (Business
Process Model and Notation) standard is widely used and al-
lows to build conventional and understandable process mod-
els. In addition to the flat control flow perspective, subpro-
cesses, data flows, resources can be integrated within one
BPMN diagram. This makes BPMN very attractive for both
process miners and business users. In this paper, we describe
and justify robust control flow conversion algorithms, which
provide the basis for more advanced BPMN-based discov-

This work is supported by the Basic Research Program of the National
Research University Higher School of Economics.

Anna A. Kalenkova · Irina A. Lomazova · Vladimir A. Rubin
National Research University Higher School of Economics, Moscow,
Russia
E-mail: akalenkova@hse.ru

W. M. P. van der Aalst
Department of Mathematics and Computer Science, Eindhoven
University of Technology, Eindhoven, The Netherlands
Business Process Management Discipline, Queensland University of
Technology, Brisbane, Australia
E-mail: w.m.p.v.d.aalst@tue.nl

Irina A. Lomazova
E-mail: ilomazova@hse.ru

Vladimir A. Rubin
E-mail: vrubin@hse.ru

ery and conformance checking algorithms. We believe that
the results presented in this paper can be used for a wide
variety of BPMN mining and conformance checking algo-
rithms. We also provide metrics for the processes discovered
before and after the conversion to BPMN structures. Cases
for which conversion algorithms produce more compact or
more involved BPMN models in comparison with the initial
models are identified.

Keywords Process mining · Process discovery · Confor-
mance checking · BPMN (Business Process Model and
Notation) · Petri nets · Bisimulation

1 Introduction

Process-aware information systems (PAIS) are the systems
designed to manage processes, operating in various domains
of human activity. There is a natural requirement to monitor
their work and analyze executed processes. For that purpose
one of the promising approaches - process mining can be
applied.

Process mining is a discipline connecting data mining
and process modeling approaches. Process mining offers
techniques for automatic discovery of process models from
event logs, checking compatibility of process models and
event logs (conformance checking) and enhancing discov-
ered processes with additional data [4, 5]. Process mining
has been successfully applied in a variety of application do-
mains such as healthcare, transportation, tourism and educa-
tion. There is a IEEE process mining community, including
more than 60 organizations [21]. Moreover, there is a wide
range of research and commercial tools available in this
area: ProM [35], Disco (Fluxicon), ARIS Process Perfor-
mance Manager (Software AG), Perceptive Process Mining
(Perceptive Software), ProcessAnalyzer (QPR) and Celonis.

2 Anna A. Kalenkova et al.

Case ID Event Timestamp Price Client IP

1 book flight 2014-12-24 08:30:00:232 145 188.44.42.45
1 get insurance 2014-12-24 08:31:05:171 23 188.44.42.45
2 book flight 2014-12-24 08:31:08:543 94 93.180.0.62
1 book hotel 2014-12-24 08:32:08:703 295 188.44.42.45
3 book flight 2014-12-24 08:32:11:534 192 188.44.50.103
1 pay 2014-12-24 08:34:17:456 463 188.44.42.45
1 confirm 2014-12-24 08:35:17:537 463 188.44.42.45
...

Table 1: An event log of a booking process.

Today, BPMN 2.0 (Business Process Model and No-
tation) [30] is the de facto standard notation for model-
ing business processes understandable by a wide audience
of people. Business analysts and product managers, techni-
cal designers and developers, system and enterprise archi-
tects effectively use this notation in their everyday job al-
most everywhere where BPM is applied. An absolute ma-
jority of freeware and commercial BPM tools and Busi-
ness Suites, like Oracle BPM Suite, IBM Business Process
Manager, jBPM, Activiti, Appian BPM Suite, Bizagi BPM
Suite, MagicDraw Enterprise Architect (Sparx), Mega Pro-
cess (MEGA), Signavio Process Editor and others, either na-
tively support BPMN or provide conversion in order to stay
compatible and up to date.

The representational bias used for process mining is
not only relevant for the understandability of the results:
it is also vital to guide process discovery by setting a suit-
able class of target models. Using the BPMN notation as a
representational bias within process mining opens excellent
perspectives for applicability of process mining: discovered
process models become available and understandable by
the majority of users, the models can be imported/exported
from/to any BPMN-aware modeling tool and executed, pro-
cess mining techniques can be easily integrated to the exist-
ing suites (BPMN serves as an interface in this case). More-
over, BPMN models allow for the combination of different
perspectives varying from control flow to the perspective of
resources, thus a holistic view on a process model can be
obtained.

In this paper we present methods for discovering the
control flow perspective of a process in terms of BPMN.
It should be noted that process mining offers plenty of al-
gorithms for the control flow discovery, each of them has
its own characteristics. The goal is not to invent new al-
gorithms, but to benefit from the existing ones and to make
them BPMN-compatible. Thus the discovery of the control
flow relies on conversion algorithms and existing process
mining techniques. To that end we firstly formalize the se-
mantics for a subset of BPMN models and then present the
conversion algorithms from well-known control flow model-
ing formalisms such as Petri nets (including non-free-choice

Petri nets), causal nets [6] and process trees [8] to BPMN.
The conversion algorithms presented in the paper are also
given the justifications in order to show that behavioral prop-
erties of process models discovered from an event log are
preserved. Moreover, we show relations between languages
of Petri nets and corresponding BPMN models, tacking into
account properties of the initial Petri nets.

As a short introductory example, let us consider an event
log reflecting a small portion of the history of a ticket book-
ing process, which is presented in Tab. 1. In this process,
people use a web site to book a flight, a hotel, get insurance
and pay for the ticket. Different people in different cases ex-
ecute these activities in a different order.

Beside case identifiers, event names, and timestamps, an
event log can contain additional event properties, such as
costs and resources (participants of the process), in this ex-
ample they are represented by prices and clients ip addresses
(Tab. 1).

To discover a control flow an event log is represented as
a multiset of traces, each of which is a sequence of events,
corresponding to a concrete case identifier:

L =
[
〈book_flight, get_insurance, book_hotel, pay, confirm〉5 ,

〈book_flight, book_hotel, get_insurance, pay, confirm〉4 ,

〈book_hotel, book_flight, get_insurance, pay, confirm〉4 ,

〈book_hotel, get_insurance, book_flight, pay, confirm〉3 ,

〈get_insurance, book_hotel, book_flight, pay, confirm〉1 ,

〈get_insurance, book_flight, book_hotel, pay, confirm〉1
]
.

A Petri net discovered from L by the Alpha mining al-
gorithm [10] is presented in Fig. 1.

book hotel

book flight

get insurance

pay confirm

Fig. 1: A Petri net constructed from the log

Process Mining Using BPMN: Relating Event Logs and Process Models 3

With the help of a conversion algorithm, we construct a
BPMN model from the Petri net, as shown in Fig. 2. This
BPMN model is more compact than the initial Petri net.
Thus, the result of process mining is available in a BPMN
notation now; this BPMN model can be easily imported and
executed by any of BPM tools mentioned above.

book

hotel

book

flight

get

insurance

pay confirm

Fig. 2: A BPMN model obtained by a conversion from the Petri net

In order to estimate the advantages of using the BPMN
notation for mining, we additionally compare the complex-
ity of the models produced by the existing control flow dis-
covery algorithms and the complexity of the corresponding
BPMN models. We use the various metrics, such as the num-
ber of nodes, density, and diameter [34] for this evaluation.
We present not only theoretical but also practical evaluations
based on real-life event logs. Moreover, applied to these
event logs, the metrics of the discovered BPMN models are
compared to the metrics of the models designed manually
with a BPMN-editor. This helps us to understand structural
differences between models, which are created by process
analysts and models discovered from event logs.

Since not only discovery, but also conformance checking
and process enhancement are essential steps in process min-
ing, this paper also shows how to enable them for BPMN
models. A BPMN model is converted to a Petri net and then
replay techniques are applied [7] to retrieve performance
and conformance information. This information is used to
enhance BPMN models. Theoretical observations presented
in this paper help us to relate states of a BPMN model with
the states of a corresponding Petri net. Thus, both confor-
mance and performance information obtained for a Petri net
can be visualized using the initial BPMN model.

A general scheme of using BPMN for process mining
is presented in Fig. 3. The user discovers a BPMN model
by applying discovery and BPMN conversions plugins. To
show performance and conformance information and to an-
notate the BPMN diagram the BPMN model is converted to
a Petri net, such that replay techniques can be used.

The paper is organized as follows. Section 2 introduces
basic definitions and notions, including traces, Petri nets,
system nets, (weak) simulation and (weak) bisimulation re-
lations. In Section 3 we propose algorithms for conversion
from well-known formalisms such as Petri nets to BPMN
and prove correctness of these conversions. In Section 4

Event log

Petri net Causal net Process

tree

Process discovery algorithms

BPMN

Conversions to BPMN

(Section 3, Section 4)

Petri net

BPMN to a Petri net

conversion (Section 6)

Evaluation of performance

and conformance info

Performance and

conformance info

Annotated

BPMN

Enhancement of the

BPMN diagram

(Section 6)

Fig. 3: A general scheme of using BPMN for process mining

transformations of causal nets and process trees to BPMN
are introduced. Section 5 contains a set of BPMN simplifica-
tion rules. In Section 6 a technique for conformance check-
ing and performance analysis on the basis of BPMN models
is presented. A tool, which implements the proposed conver-
sion and enhancement techniques, is presented in Section 7.
Section 8 includes a case study, which shows the results of
an application of the algorithms presented in the paper to
real-life event logs. Also the structural business-processes
metrics are calculated and presented in this section. Section
9 concludes the paper.

2 Preliminaries

In this section we introduce basic notions, event logs, Petri
nets, system nets and BPMN semantics.

Multisets are used to present states of Petri nets and
BPMN models, also they are used to define event logs, in
which one trace can appear multiple times.
B(A) is the set of all multisets over some set A. For

some multiset b ∈ B(A), b(a) denotes the number of times
element a ∈ A appears in b. By b = [a1

2, a2
3] we denote

4 Anna A. Kalenkova et al.

that elements a1, a2 ∈ A appear in b two and three times
respectively.

The sum of two multisets b and b′ over set A is defined
as: (b] b′)(a) = b(a) + b′(a) for all a from A. We say that
b ⊇ b′ iff ∀a ∈ A : b(a) ≥ b′(a). For two multisets b and
b′ over set A, such that b ⊇ b′, the difference function is
defined as: (b\b′)(a) = b(a) − b′(a). The size of a multiset
b over set A is denoted by |b| and defined as |b| =

∑
a∈A

b(a).

Sets will be considered as a special case of multisets, where
each element can appear 0 or 1 times. Thus, operations ap-
plicable to multisets can be applied to sets.

Function f : X 9 Y is a partial function with
domain dom(f) ⊆ X and range defined as rng(f) =

{f(x)|x ∈ dom(f)} ⊆ Y . f : X → Y is a total func-
tion, i.e., dom(f) = X . Let f : X 9 Y be a partial
function, f can be applied to sequences of X using the re-
cursive definition f(〈〉) = 〈〉 and for some σ ∈ X∗ and
x ∈ X f(〈x · σ〉) = 〈f(x)〉 · f(σ), if x ∈ dom(f) and
f(〈x · σ〉) = f(σ) otherwise.

2.1 Event logs and Petri nets

Definition 1 (Petri Net) A Petri net is a tuple PN =

(P, T, F) with P the set of places, T the set of transitions,
P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) the flow relation.

Definition 2 (Marking) Let PN = (P, T, F) be a Petri net.
A marking M is a multiset of places, i.e., M ∈ B(P).

Definition 3 (Safe Marking) A marking M of a Petri net
PN = (P, T, F) is safe iff ∀p ∈ P : M(p) ≤ 1, i.e., each
place contains not more than 1 token.

Pictorially, places are represented by circles, transitions
by boxes, and the flow relation F by directed arcs. Places
may carry tokens represented by filled circles. A current
marking M is designated by putting M(p) tokens into each
place p ∈ P .

For a node n ∈ P ∪ T the set of input nodes and the
set of output nodes are defined as •n = {x|(x, n) ∈ F} and
n• = {x|(n, x) ∈ F} respectively.

A transition t ∈ T is enabled in a marking M of net PN,
denoted as (PN,M) [t〉, iff ∀p ∈ •t : M(p) ≥ 1, i.e., each
of its input places contains at least one token.

An enabled transition t may fire, i.e., one token is
removed from each of the input places •t and one to-
ken produced for each of the output places t•. Formally:
M ′ = (M\•t)] t• is the marking resulting from fir-
ing enabled transition t in marking M of Petri net PN.
(PN,M) [t〉 (PN,M ′) denotes that t is enabled in M and
firing results in marking M ′.

Let σ = 〈t1, ..., tn〉 ∈ T ∗ be a sequence of transi-
tions. (PN,M) [σ〉 (PN,M ′) denotes that there is a set of

markings M0,M1,...,Mn, such that M0 = M , Mn = M ′,
and (PN,Mi) [ti+1〉 (PN,Mi+1) for 0 ≤ i < n. We say
that M ′ is reachable from M if there exists σ, such that
(PN,M) [σ〉 (PN,M ′).
R(PN,M) denotes the set of all markings reachable in

PN from the marking M .

Definition 4 (Labeled Petri Net) A labeled Petri net PN =

(P, T, F, l) is a Petri net (P, T, F) with labeling function l ∈
T 9 UA where UA is some universe of activity labels. Let
σv = 〈a1, ..., an〉 ∈ UA∗ be a sequence of activity labels.
(PN,M)[σv . (PN,M ′) iff there is a sequence σ ∈ T ∗ such
that (PN,M) [σ〉 (PN,M ′) and l(σ) = σv .

If t /∈ dom(l), transition t is called invisible. An occur-
rence of visible transition t ∈ dom(l) corresponds to ob-
servable activity label l(t).

In the context of process mining we normally con-
sider so-called complete firing sequences, thus we deal with
processes, which have well-defined initial and end states.
Therefore, let us give a notion of a system net.

Definition 5 (System Net) A system net is a triplet SN =

(PN,Minit,Mfinal) where PN = (P, T, F, l) is a labeled Petri
net, Minit ∈ B(p) is the initial marking and Mfinal ∈ B(p) is
the final marking.

Definition 6 (Language of a System Net) Suppose that
SN = (PN,Minit,Mfinal) is a system net. Language LSN

of SN will be defined as a set of all visible execution se-
quences starting in Minit and ending in Mfinal, i.e., LSN =

{σv | (PN,Minit)[σv . (PN,Mfinal)}.

Event logs are considered as a starting point in the con-
text of process mining, so let us give their formal definition.

Definition 7 (Trace, Event log) Let A ⊆ UA be a set of
activity labels. A trace σ ∈ A∗ is a sequence of activity
labels. L ∈ B(A∗) is an event log, i.e., a multiset of traces.

Note that a trace can appear multiple times in an event
log.

Some conversion techniques presented in this paper deal
with free-choice nets. Let us define them.

Definition 8 (Free-choice Nets) A system net SN =

(PN,Minit,Mfinal) and a corresponding labeled Petri net
PN = (P, T, F, l) are called free-choice iff for any two tran-
sitions t1, t2 ∈ T with •t1 ∩ •t2 6= ∅ holds •t1 = •t2.

2.2 BPMN semantics

In this subsection we will present an approach for the for-
malization of BPMN control flow semantics based on a con-
cept of token. This formalization will give an ability to jus-
tify the conversion algorithms presented later in this paper.

Process Mining Using BPMN: Relating Event Logs and Process Models 5

We restrict ourselves to the core set of BPMN elements,
which includes activities, start and end events, exclusive
and parallel gateways. We hope that these initial results will
give a basis for formal description of more advanced BPMN
modeling constructs.

Let us give a formal definition of a BPMN model.

Definition 9 (BPMN Model)
A BPMN model is a tuple BPMNmodel = (N,A,

GXOR, GAND, estart, Eend, SF, λ), where

– N is a set of flow nodes,
– A ⊆ N is a set of activities,
– GXOR ⊆ N ,GAND ⊆ N are sets of exclusive and parallel

gateways,
– estart ∈ N is a start event,
– Eend ⊆ N is a set of end events,
– sets A, GXOR, GAND, {estart}, Eend form a partition of N ,
– SF ⊆ N ×N is a set of sequence flows,
– λ : N 9 UA is a labeling function, where UA is some

universe of activity labels,
– start event estart doesn’t have incoming sequence flows,

and has not more than one outgoing sequence flow,
– end events from Eend don’t have outgoing sequence

flows.

Figure 4 shows the core BPMN constructs used to
model processes.

parallel

gateway

exclusive

gateway
activity

sequence flow

end eventstart event

Fig. 4: Core BPMN modeling constructs

Let n ∈ N be an arbitrary BPMN model node, the preset
•n and the postset n• are defined as sets of incoming and
outgoing sequence flows for the node n respectively.

To restrict the set of all possible BPMN models we will
consider and discover well-formed BPMN models, which
are revealed as weakly connected graphs with a source and
sink nodes.

Definition 10 (Well-formed BPMN Model)
A BPMN model is called well-formed iff every node of this
model is on a path from the start event to some end event.

Definition 11 (BPMN Model Marking)
Let BPMNmodel be a BPMN model with a set of sequence
flows SF. A marking M is a multiset over the set sequence
flows, i.e., M ∈ B(SF). An initial marking Minit is a mark-
ing, such that for all sf from SF Minit(sf) = 1, if sf ∈ e•start,
and Minit(sf) = 0, otherwise.

An illustration for the initial marking is presented in
Fig. 5.

estart

Fig. 5: Initial marking

Each node independently of its type may be enabled, an
enabled node may fire. Let us consider an arbitrary BPMN
model BPMNmodel = (N,A,GXOR, GAND, estart, Eend, SF, λ)
and define its firing rules:

1. An activity a ∈ A is enabled in a marking M iff
∃sf ∈ SF : (•a(sf) = 1) ∧ (M ⊇

[
sf 1]). Suppose activ-

ity a is enabled, this activity may fire, producing a new
marking M ′, such that M ′ = M\

[
sf 1]] a•. In other

words activity a is enabled in marking M iff it has an
incoming sequence flow, which contains at least one to-
ken. When activity fires it consumes one token from an
incoming sequence flow and produces a token for each
outgoing sequence flow (Fig. 6).

a a

Fig. 6: Firing activity

2. Exclusive gateways merge alternative paths: the in-
coming sequence flow token is routed to one of the
outgoing sequence flows (Fig. 7). Similar to activ-
ities exclusive gateway gXOR ∈ GXOR is enabled in
marking M iff there is an incoming sequence flow,
which contains at least one token in marking M , i.e.,
∃sf ∈ SF : (•gXOR(sf) = 1) ∧ (M ⊇

[
sf 1]). In

contrast to activities it produces a token to one of
the outgoing sequence flows. Suppose an exclusive
gateway gXOR consumes a token from an incoming
sequence flow sf and produces a token to an out-
going sequence flow sf', then a new model marking
M ′ will be defined as follows:M ′ =M\

[
sf 1]][sf'1

]
.

6 Anna A. Kalenkova et al.

gXOR gXOR

Fig. 7: Firing exclusive gateway

3. A parallel gateway gAND ∈ GAND is enabled in marking
M iff ∀sf ∈ •gAND : M(sf) ≥ 1, i.e., each incoming
sequence flow contains at least one token. An enabled
parallel gateway gAND may fire and produce a new
marking: M ′, such that M ′ = M\•gAND] g•AND, i.e., a
parallel gateway consumes a token from each incoming
sequence flow and produces a token to each outgoing
sequence flow (Fig. 8).

gAND gAND

Fig. 8: Firing parallel gateway

4. The unique start event is never enabled, since it doesn’t
have any incoming sequence flow.

5. An end event eend ∈ Eend is enabled in marking M iff
∃sf ∈ SF : (sf ∈ •eend) ∧ (M(sf) ≥ 1). When end event
fires, it consumes a token from an incoming sequence
flow sf, and yields in a new marking M ′ = M\

[
sf 1]

(Fig. 9).

eend eend

Fig. 9: Firing end event

When node n ∈ N fires we denote this firing as
(BPMNmodel,M) [n〉 (BPMNmodel,M

′).
We write (BPMNmodel,M) [σ〉 (BPMNmodel,M

′) for
some sequence of nodes σ = 〈n1, ..., nk〉 ∈ N∗ iff there
are markings M0, ...,Mk, such that M0 = M , Mk =

M ′, and for 0 ≤ i < k the following statement holds
(BPMNmodel,Mi) [ni+1〉 (BPMNmodel,Mi+1).

Likewise in Petri nets marking M ′ is reachable from
marking M iff there is a sequence σ ∈ N∗, such that
(BPMNmodel,M) [σ〉 (BPMNmodel,M

′).

For some sequence of activity labels σv ∈ U∗A we write
(BPMNmodel,M)[σv . (BPMNmodel,M

′), if there is σ, such
that (BPMNmodel,M) [σ〉 (BPMNmodel,M

′) and λ(σ) = σv .
By R(BPMNmodel,M) we will denote the set of all

markings reachable in BPMNmodel from the marking M .
To define the notion of language generated by a BPMN

model let us first give a definition of a final marking.

Definition 12 (Final BPMN Model Marking) Let
BPMNmodel be a BPMN model with an initial mark-
ing Minit and a set of nodes N . Mfinal is a fi-
nal marking iff Mfinal ∈ R(BPMNmodel,Minit) and
∀n ∈ N@M ′ : (BPMNmodel,M) [n〉 (BPMNmodel,M

′).

As it follows from this definition, the final marking of a
BPMN model is the marking, in which no node can fire.

Definition 13 (Language of a BPMN Model) Let
BPMNmodel be a BPMN model with an initial marking
Minit and a set of final markings Mfinal. The language
of BPMNmodel is a set LBPMNmodel = {σv |(BPMNmodel,

Minit)[σv . (BPMNmodel,M) ∧ M ∈Mfinal}.

Thus, we define the language of a BPMN model as a
set of all visible sequences starting in an initial marking and
ending in some final marking.

According to the BPMN 2.0 specification [30] BPMN
model gets the status completed iff there is no token re-
maining. Following the specification, a language of a BPMN
model can be considered as a union of two disjoint sets:
LBPMNmodel = VBPMNmodel ∪ IBPMNmodel .

VBPMNmodel = {σv|((BPMNmodel,Minit)[σv. BPMNmodel,

M)) ∧ (∀sf ∈ SF :M(sf) = 0)} is a set of valid sequences,
corresponding to the model executions, which lead to mark-
ings with no tokens remaining. Note that according to
BPMN semantics if no tokens remaining, no node is en-
abled.

IBPMNmodel = LBPMNmodel\VBPMNmodel stands for a set of in-
valid sequences, which are the traces of the BPMN model
executions, stopped in markings with tokens on sequence
flows. These sequences of activity labels correspond to the
BPMN model deadlocks.

2.3 Transition systems, reachability graphs and simulation
relations

In this subsection some basic definitions, which are used for
the justification of the conversion algorithms, will be given.

Definition 14 (Transition system) Let S andE be two dis-
joint non-empty sets of states and events, let τ ∈ E be a
special silent event, and let B ⊆ S × E × S be a transition
relation. A transition system is a tuple TS = (S,E,B, sin),
where sin ∈ S is an initial state. Elements of B are called
transitions.

Process Mining Using BPMN: Relating Event Logs and Process Models 7

We write s e→ s′, when (s, e, s′) ∈ B. Assume that
∀s ∈ S : s

τ→ s, i.e., there is a transition from every state to
itself, labeled by τ .

A state s is reachable from a state s′ iff there is a (possi-
bly empty) sequence of transitions leading from s to s′ (de-
noted by s ∗→ s′). The reflexive transitive closure of τ→ will
be denoted as⇒. By s e

=⇒ s′ we denote s⇒ s′′
e→ s′′′ ⇒ s′,

i.e., s′ can be reached from s via e preceded and followed
by zero or more τ transitions.

A transition system must satisfy the following basic ax-
iom: every state is reachable from the initial state: ∀s ∈ S :

sin
∗→ s.

Definition 15 (Simulation) For transition systems: TS =

(S,E,B, sin) and TS' = (S′, E,B′, s′in) relationR ⊆ S×S′
is called a simulation iff:

– (sin, s
′
in) ∈ R,

– ∀(u, v) ∈ R ∀e ∈ E: if ∃u′ : u e→ u′ then ∃v′ : v e→ v′

and (u′, v′) ∈ R.

Definition 16 (Weak simulation) Let us consider two
transition systems: TS = (S,E,B, sin) and TS' =

(S′, E,B′, s′in). Relation R ⊆ S × S′ is called a weak sim-
ulation iff:

– (sin, s
′
in) ∈ R,

– ∀(u, v) ∈ R ∀e ∈ E: if ∃u′ : u e→ u′ then ∃v′ : v e
=⇒ v′

and (u′, v′) ∈ R.

Definition 17 (Bisimulation) If R is a (weak) simulation
relation andR−1 is a (weak) simulation relation as well, then
relation R is called a (weak) bisimulation.

Definition 18 (Reachability Graph for a System Net) A
reachability graph for a system net SN = (PN,
Minit,Mfinal), where PN = (P, T, F, l), and l ∈ T 9 UA, is
a transition system TS = (S,E,B, sin), such that:

– S = R(SN,Minit), i.e., the set of states is defined as a
set of markings reachable from Minit,

– E = rng(l) ∪ {τ}, i.e., the set of events is defined as a
union of the range of l and a silent event τ ,

– B contains a transition (M, e,M ′) iff at least one the
following conditions holds:
– ∃t ∈ T : (SN,M) [t〉 (SN,M ′), such that l(t) = e, if
t ∈ dom(l), or e = τ , otherwise,

– M = M ′ and e = τ , this holds for silent transitions
from states to itself.

– sin =Minit, i.e., the initial state in TS is the initial mark-
ing of SN.

Definition 19 (Reachability graph for a BPMN model) A
reachability graph for a BPMN model
BPMNmodel = (N, SF, A,GXOR, GAND, estart, Eend, λ) with
an initial marking Minit is defined as a transition system
TS = (S,E,B, sin), such that:

– S = R(BPMNmodel,Minit),
– E = rng(λ) ∪ {τ}, where τ is a special silent event,
– (M, e,M ′) ∈ B iff at least one of the following condi-

tions holds:
– there exists n ∈ N , such that (BPMNmodel,M) [n〉
(BPMNmodel,M

′), where λ(n) = e, if n ∈ dom(λ),
or e = τ , otherwise,

– M =M ′ and e = τ .
– sin =Minit.

3 Converting process models into BPMN

In this section we will propose algorithms for the conversion
from well-known formalisms such as Petri nets, causal nets
and process trees to BPMN. These formalisms are widely
used within process mining as results of application of pro-
cess discovery algorithms [9, 10, 12, 16, 20, 26, 36]. Hav-
ing conversion algorithms to BPMN format will give an op-
portunity to discover control flow models, which could be
integrated with other process perspectives. The correctness
of the proposed system nets conversion algorithm will be
proven.

Algorithms for conversion of free-choice workflow nets
[3] (a special subset of Petri nets) to workflow graphs (gen-
eralization concept for process modeling notations such as
BPMN, UML Activity [31], EPC [25, 28], etc) were pro-
posed earlier in [2] and [19]. In our paper we will deal with
arbitrary system nets, which have arbitrary Petri nets struc-
tures and arbitrary safe initial markings. Also we prove that
the target model will simulate the behavior of the initial net
and vice versa, thus important (in the context of process
mining) propositions on the language preservation will be
proven.

First, let us show that every system net with a safe ini-
tial marking can be transformed to an equivalent system net,
which contains a unique source place.

3.1 Adding a source place to an arbitrary system net with a
safe initial marking

In most cases models discovered from event logs are
arbitrary system nets with safe initial markings. We start
with transforming of a system net with a safe initial marking
into a system net, which contains a unique source place and
doesn’t contain hanging places (places without outgoing
arcs). In the next subsections we will show algorithms for
conversion of such nets to BPMN.

Algorithm 1 [Adding a source place to a system net].
Input: A system net SN = (PN,Minit,Mfinal), where PN =

(P, T, F, l), such that ∀p ∈ P :Minit(p) ≤ 1.

Step 0: Adding a source place. Add a novel place i ∈ P ,
a novel initial transition t∗ (note that t∗ doesn’t have a

8 Anna A. Kalenkova et al.

label, since t∗ /∈ dom(l)), and connect them with an arc
(i, t∗). For each place p ∈ P , such that Minit(p) = 1,
add an arc (t∗, p). This step is presented in Fig. 10.

...

t*

Fig. 10: Creating a source place

Step 1: Handling unconnected transitions. – For each
transition t ∈ T , such that •t = ∅, add a place p,
connected with t by an incoming and outgoing arc.
Add an arc from the initial transition t∗ to the place p
(Fig. 11).

t ...

t ...p

t*

t*

Fig. 11: Handling unconnected transitions

Step 2: Removing dead places. Remove each place p ∈ P
and transitions from p• along with incident arcs, if there
is no path from i to p. Repeat Step 2 until there are dead
places.

Step 3: Removing hanging places. Remove all
places p ∈ P , such that |p•| = 0, along with incident
arcs.

Step 4: Constructing novel markings. Suppose
that P ′ is the resulting set of places, and P ∗ ⊆ P ′ is the
set of places added at Step 1. Then the initial and final
markings M ′init and M ′final are defined as follows: for all
p ∈ P ′, such that p 6= i, M ′init(p) = 0, M ′init(i) = 1,
for all p ∈ P ∗ holds that M ′final(p) = 1, and for all
p ∈ (P ∩ P ′) the number of tokens is preserved, i.e.,
M ′final(p) = Mfinal(p). The source place doesn’t contain
any tokens in the final marking, i.e., M ′final(i) = 0.

Output: A system net SN' = (PN',M ′init,M
′
final),

where PN' = (P ′, T ′, F ′, l) is defined on the basis of
PN = (P, T, F, l) at Steps 0-3. Markings M ′init and M ′final
are defined at Step 4.

Proposition 1 Let SN = (PN,Minit,Mfinal) be a system net
and SN' = (PN',M ′init,Mfinal), where PN' = (P ′, T ′, F ′, l),

be a result of applying Algorithm 1 to SN. Let i ∈ P ′ be a
source place constructed by Algorithm 1.Then for each node
n ∈ (P ′ ∪ T ′) exists a path from i to n.

Proof. Suppose that n ∈ P ′. Since all the places, to which
there were no paths from i, were deleted at the Step 2, there
exists a path from i to n. If n ∈ T ′, then either n didn’t have
incoming arcs and was connected with i at the Step 1, or
either it is connected by an incoming arc with a place, and
for this place there is a path from i, hence there is a path
from i to n.

Note that places, which were added at Step 1, contain
tokens in any reachable marking.

Algorithm 1 transforms a system net with a safe initial
marking to an equivalent system net with a source place and
no hanging places. More formally, there is a weak bisimu-
lation relation between reachability graphs of the initial and
the target system nets. The proof is straightforward accord-
ing to Definition 17. Further we will consider only system
nets with unique source places and without hanging places
and call them just system nets.

3.2 Free-choice system nets to BPMN conversion

In this subsection an algorithm for conversion from a free-
choice system net to a BPMN model will be presented.

The conversion algorithm will be illustrated by a run-
ning example: a system net, which defines a booking process
(Fig. 12), will be converted to an equivalent BPMN model.
The source place is p1, the final marking Mfinal is the mark-
ing, such that Mfinal(p) = 0 for all p.

book hotel

book flight

p1

book train

get insurance

p2

p3

p4

p5

p6

p7

p8

pay confirm

Fig. 12: A system net of a booking process

Note that in contrast to the booking model presented
earlier (Fig. 1), this model contains a choice construction
(the user books a flight or a train ticket), also note that there
is a transition used as a splitting node, this transition doesn’t

Process Mining Using BPMN: Relating Event Logs and Process Models 9

have a label.

Algorithm 2 [Constructing a BPMN model for a sys-
tem net].
Input: A free-choice system net SN, where SN =

(PN,Minit,Mfinal), PN = (P, T, F, l), and i is a source
place.

Step 0: Initializing BPMN model.
Determine a BPMN model BPMNmodel =

(N,A,GXOR, GAND, estart, Eend, SF, λ), which con-
tains a start event only, i.e., N = {estart}, SF = ∅,
A = ∅, GXOR = ∅, GAND = ∅, and Eend = ∅ (Fig. 13).

Fig. 13: An initial BPMN model

Step 1: Converting transitions.
Create a BPMN model activity a ∈ A for each transition
t ∈ T , determine the corresponding bijective mapping
functionM : T → A. The labeling function λ is defined
as follows λ(M(t)) = l(t), for all t from dom(l). If
there exists a transition t ∈ T , such that |t•| > 1, i.e., t
has more than one outgoing arc, add a parallel gateway
gAND and a sequence flow (M(t), gAND). BPMNmodel

with activities and a parallel gateway added is shown in
Fig. 14.

book

hotel

book

flight

get

insurance

pay confirm

book

train

Fig. 14: Adding activities and parallel gateways to the BPMN
model of a booking process

Step 2: Converting places.
In this step each place p ∈ P is converted to BPMN
routing constructs, identifying a corresponding
place node and a corresponding place flow within
BPMNmodel. During the BPMN model construction we
will define functions, which map places from P to cor-
responding place nodes and place flows for BPMNmodel,
and denote them as N : P → N and F : P → SF,
where N and SF - are the sets of BPMNmodel nodes
and sequence flows respectively. The function N will
be used to define nodes, which correspond to places,
and used for establishing connections within the target
model. The function F will be used to show the
relations between places and sequence flows, and will

help to relate a system net and a BPMN model markings.

Step 2.1: Connecting to inputs. Let us transform
places and identify place nodes, taking into account
presets:

– If |•p| = 0 (p doesn’t have incoming arcs), then
place p is a source place of SN, and the place
node will be defined as estart, i.e, N (p) = estart.

– If |•p| = 1, i.e., there exists one and only one
transition t ∈ T connected with p by an outgo-
ing arc. If there exists gAND ∈ GAND, such that
(M(t), gAND) ∈ SF, then the place node is set to
gAND: N (p) = gAND, otherwise N (p) =M(t).

– If |•p| > 1 (there is more than one transition
connected with p by outgoing arc), then an
exclusive gateway gXOR is added to GXOR and
for each transition t from •p a sequence flow
is added to SF. If there exists gAND ∈ GAND,
such that (M(t), gAND) ∈ SF, this sequence
flow is defined as (gAND, gXOR), otherwise the
sequence flow is (M(t), gXOR). The exclusive
gateway gXOR is set as the place node for p, i.e.,
N (p) = gXOR.

The result of applying Step 2.1 to the booking
process is shown in Fig. 15. For each place of the
initial system net a corresponding place node is
specified.

book

hotel

book

flight

get

insurance

pay confirm

book

train

N(p1) N(p2)

N(p3)

N(p4)

N(p5)

N(p6)

N(p7) N(p8) N(p9)

Fig. 15: Identifying place nodes

Step 2.2: Merging places with coinciding postsets:
For all maximum sets of places {p1, ..., pn} ⊆ P

with coinciding non-empty postsets (p•1 = ... = p•n)
1, such that n ≥ 2, an additional parallel gateway
gAND is added to GAND. This gateway is connected
by incoming sequence flows with all the correspond-
ing place nodes, i.e., sequence flows (N (p1), gAND),
..., (N (pn), gAND) are added to SF and are defined
as place flows: for all si from {s1, ..., sn}, F(si) =
(N (pi), gAND). After that the parallel gateway gAND

is considered to be a novel place node for places
p1,...,pn, i.e., N (p1) = gAND, ..., N (pn) = gAND.

1Note that due to the free-choice structure of PN, postsets either
coincide or do not intersect.

10 Anna A. Kalenkova et al.

Fig. 16 shows the result of applying the places
merge procedure to the booking process presented
in Fig. 15.

book

hotel

book

flight

get

insurance

pay confirm

book

train

N(p1) N(p2)

N(p3)

N(p4)

N(p5)

N(p6)

N(p7)

N(p8) N(p9)
F(p5)

F(p7)

F(p6)

Fig. 16: Merging places with coinciding postsets
Step 2.3: Connecting to outputs. In this step for each

group of places p1,..., pn with coinciding postsets:
post = p•1 = ... = p•n

2 corresponding place
nodes: N (p1), ...,N (pn) are connected by outgoing
sequence flows with other BPMN model elements.

– If |post| = 1, i.e., there is only one transition
t ∈ T connected with p1,...,pn by incoming
arcs, then sequence flow (N ,M(t)), where
N = N (p1) = ... = N (pn)

3, is added to SF.
If the group of places with coinciding postsets
contains only one node (let this node be p1),
then F(p1) = (N ,M(t)).

– If |post| > 1, an exclusive gateway gXOR and
a sequence flow (N , gXOR) are added to GXOR

and SF respectively3. Then for each t from post

a sequence flow (gXOR,M(t)) is added to SF. If
n = 1, F(p1) = (N , gXOR).

The resulting BPMN model is shown in Fig. 17.

book

hotel

book

flight

get

insurance

pay confirm

book

train

N(p1)
N(p2)

N(p3)

N(p4)

N(p5)

N(p6)

N(p7)

N(p8)F(p5)

F(p7)

F(p6)

F(p8)

F(p2)

F(p3)

F(p4)

F(p1)

Fig. 17: The resulting BPMN model

Output: BPMNmodel and mappings: M , N , F .

3.3 Non-free-choice system nets to BPMN

Often non-free-choice Petri nets, which allow more behav-
ior than free-choice Petri nets, are obtained as a result of
applying process discovery algorithms. In this subsection

2Note that we consider system nets without hanging places.
3All the places have the same place node N , obtained on the pre-

vious step of the algorithm.

we will introduce an algorithm for constructing free-choice
Petri nets from Petri nets with non-free-choice construc-
tions. This algorithm works as follows: for each arc, which
produces a non-free-choice construction, do the transforma-
tion presented in Fig. 18. A more formal description of the
algorithm is presented below.

t

t' p*

p' tp'

p''

p* t'

t''

Fig. 18: Converting non-free-choice Petri nets into free-choice Petri
nets

Algorithm 3 [Constructing a free-choice Petri net
from an arbitrary Petri net].
Input: A labeled Petri net PN = (P, T, F, l).

For each arc (p∗, t), p∗ ∈ P , t ∈ T , such that
∃t′ ∈ T : p∗ ∈ (•t ∩ •t′) and ∃p′ ∈ P : p′ ∈ •t, p′ /∈ •t′
do the following transformation: remove flow (p∗, t), add
transition t′′, place p′′, and connecting sequence flows:
(p∗, t′′), (t′′, p′′), (p′′, t) (see Fig. 18). The labeling function
l is not defined for t′′, i.e., t′′ /∈ dom(l).
Output: Labeled Petri net PN' = (P ∪ {p′′} , T ∪ {t′′} , F ∪
{(p∗, t′′), (t′′, p′′), (p′′, t)} , l).

The algorithm can be applied iteratively, arcs can be
considered in any order, since each transformation doesn’t
change the set of arcs, which have to be replaced.

3.4 System nets conversions justification

This subsection presents justifications of the system nets
conversion algorithms.

Let us prove that Algorithm 2 preserve structural and
some behavioral properties of a process model.

Lemma 1 Let SN, where SN = (PN,Minit,Mfinal), and
PN = (P, T, F, l), be a free-choice system net with a source
place i. Let BPMNmodel be a result of applying Algorithm 2
to SN. Suppose that M : T → A is a mapping function
obtained during an execution of Algorithm 2. Suppose also
that N : P → N is a function, which defines place nodes in
BPMNmodel. Then for any two places p1, p2 ∈ P , such that
∃t ∈ T : (t ∈ p•1)∧ (t ∈ •p2) (Fig. 19), there are paths from
N (p1) toM(t) and fromM(t) toN (p2) within BPMNmodel.

Proof. According to the Algorithm 2 node N (p1) is either
directly connected with M(t) or directly connected with

Process Mining Using BPMN: Relating Event Logs and Process Models 11

tp1 p2

Fig. 19: Connected places

its immediate predecessor - an exclusive gateway (see Step
2.3). Hence there is a path from N (p1) to M(t). Now let us
considerN (p2). This node is either M(t) activity or a gate-
way, such that there is a path fromM(t) to this gateway (see
Steps 2.1, 2.2). This implies that there is a path from M(t)

to N (p2) within BPMNmodel.

Lemma 2 Suppose that SN, is a system net with a source
place i. Then the result of applying Algorithm 2 is
BPMNmodel = (N, SF, A,GXOR, GAND, estart, Eend, λ), such
that for each node there is a path from estart to this node.

Proof. Source place i is converted to the start event estart. It
inductively follows from Lemma 1 that all the place nodes
and all the activities A are located on paths from estart. All
other BPMN model nodes are gateways GXOR, GAND and
end events Eend, which lie on paths from place nodes to
activities or from activities to the place nodes by the con-
struction, consequently they are also located on paths from
estart.

Theorem 1 (Well-formedness) Every system net with a
safe initial marking can be converted to a well-formed
BPMN model.

Proof. Algorithm 3 allows to construct free-choice system
nets from non-free choice system nets, preserving nodes
connectivity. Proposition 1 shows that an arbitrary system
net with a safe initial marking can be converted to an equiv-
alent system net, which has a unique source place, such that
for every node of this net there is a path from the source
place to this node. Lemma 2 allows us to construct a BPMN
model, where for each node there is a path from the start
event to this node. According to Algorithm 2 the only pos-
sible hanging nodes in the target BPMN model are activi-
ties. Thus, additional end events can be added to the BPMN
model and connected by incoming sequence flows with ac-
tivities, making all the nodes be on paths from a start event
to end events.

Note that end events consume tokens from incoming
sequence flows, thus the global execution order of BPMN
model will not be changed. Since end events don’t change
the global execution order, further we will prove some
propositions for model conversions, which don’t involve ad-
dition of end events.

Now let us discuss the behavioral relation between initial
system net and the BPMN model generated by Algorithm 2.

We will show that each firing of a Peti net corresponds to a
sequence of the BPMN model firings.

Theorem 2 (Weak similarity)
Let SN be a free-choice system net with a source place
i, where SN = (PN,Minit,Mfinal), PN = (P, T, F, l). Let
BPMNmodel be a result of applying Algorithm 2 to SN, M :

T → A is the mapping function. Let TS = (S,E,B, sin),
TS' = (S′, E,B′, s′in) be reachability
graphs of SN and BPMNmodel respectively. There exist weak
simulation relations R and R′ from TS to TS' and from TS'
to TS respectively, such that:

1. (u, v) ∈ R iff ∀p ∈ P : u(p) = v(F(p)),
2. if (u, v) ∈ R then (v, u) ∈ R′,
3. ∀v ∈ S′∃v′ ∈ S′ : (v

∗→ v′) ∧ (∃u′ ∈ S : (u′, v′) ∈
R). In other words, from each state v ∈ S′ it is always
possible to reach some state v′ ∈ S′, which is in the
relation R with some state u′ ∈ S.

But it is not guaranteed that a weak bisimulation relation
exists.

Proof. Let us prove the existence of weak simulation rela-
tions R and R′ between TS and TS' inductively on pairs of
states u ∈ S, v ∈ S′ such that ∀p ∈ P : u(p) = v(F(p)).

Induction basis. –

1. Pairs (sin, s
′
in) and (s′in, sin) belong to R and

R′ respectively by the definition of a weak simulation
relation. Both variants for initial markings of SN and
BPMNmodel are presented in Fig. 20. Tokens in Fig. 20
are represented by black dots. As can be seen ∀p ∈ P :

sin(p) = s′in(F(p)). For the proof of condition 3. see
the Induction step.

t

...

M(t)

...

t M(t)

a.

b.

...

...

Fig. 20: Initial markings
2. Let us prove that there is no weak bisimu-

lation relation between TS and TS'. Suppose there is
such a relation R′′ (Fig. 21), then by the definition
(s′in, sin) ∈ R′′.

12 Anna A. Kalenkova et al.

sin

v

l()t

l()t

τ

s'inR''

R''?

l(')t

Fig. 21: Construction of a weak bisimulation relation

For variant b. it holds that exists v ∈ S′, such that
s′in

τ→ v, and M(t) is enabled in v. The only state in TS,
to which there is a transition from sin labeled by τ , is
sin itself, thus (sin, v) ∈ R′′. State sin has at least one
outgoing transition labeled with l(t′), such that t′ 6= t.
Suppose that l(t) 6= l(t′), then we get a contradiction,
since v doesn’t have an outgoing transition labeled by
l(t′).

Induction step. –

1. Now let us consider state u ∈ S (Fig. 22)

t

t'

p1 p2

p3

Fig. 22: Marking u of a system net

By the induction hypothesis there exists a state v in
TS' (a marking of BPMNmodel), such that (u, v) ∈ R

(Fig. 23).
u

u'

l()t

v'

l()t

τ

v''

v

...

R

R'

R'

R'

R

v'''

...τ

R'

Fig. 23: Current states in transition systems

Furthermore, by the induction hypothesis the following
condition holds: ∀p ∈ P : u(p) = v(F(p)), i.e., each

place and its corresponding place flow contain the same
number of tokens. Note that more than one token can
appear in a place.
Now let us show that if TS has a transition from
state u, TS' has a corresponding sequence of tran-

sitions from state v, i.e., ∃v′′′ : v
l(t)
==⇒ v′′′ and

∀p ∈ P : u′(p) = v′′′(F(p)). Thus, (u′, v′′′) will be-
long to R. State v of BPMNmodel is presented in Fig. 24.
Note that we consider the most general case, which
represents all the routing elements. The remaining cases
can be treated similarly. The gateway g1 is enabled in
marking v (by the construction, since t is enabled in u)
and can fire, producing a novel marking, in which firing
g2 yields M(t) being enabled.

M(t)

M(t')

F(p1) F(p2)

F(p3)

g1

g2

g3

g4

Fig. 24: Marking v of a BPMN model

Let us call the marking, in which M(t) is enabled,
u′, then u ⇒ u′. After M(t) fires, some marking v′′

is reached: v′
l(t)→ v′′. Starting from marking v′′ firings

of gateways lead to adding a novel token to each place
flow, which corresponds to some place from t•, and

producing marking v′′′: v′′ ⇒ v′′′, i.e., v
l(t)
==⇒ v′′′. Note

that ∀p ∈ P , holds that:

v′′′(F(p)) =

v(F(p))− 1, if p ∈ •t, p /∈ t•,
v(F(p)) + 1, if p ∈ t•, p /∈ •t,
v(F(p)), otherwise.

Initial conditions u′ = u − •t + t• and ∀p ∈ P :

v(F(p)) = u(p), allow to conclude that ∀p ∈ P :

u′(p) = v′′′(F(p)).

Process Mining Using BPMN: Relating Event Logs and Process Models 13

2. Let us consider state v ∈ S′. By the induction
hypothesis if ∃u ∈ S′ : ((v, u) ∈ R′) ∧ (∀p ∈ P :

v(F(p)) = u(p)). Two variants are possible either v
doesn’t have outgoing transitions and then v ⇒ v and
all the theorem conditions hold. Or there is a set of states
V ′, such that ∀v′ ∈ V ′ : v ⇒ v′, i.e., all v′ ∈ V ′ are
reachable from v by τ transitions. In this case there is a
state v′1, such that v ⇒ v′1 and M(t) is enabled in v′1.
Transition t is enabled in u by the induction hypothe-
sis and by the construction. Pair (v′′, u′) belongs to R′,

where v′1
l(t)→ v′′ and u

l(t)→ u′. Let us denote the set of
states v∗, such that v′′ ⇒ v∗, as V ∗, and (v∗, u′) be-
longs to R′ for ∀v∗ ∈ V ∗. The state v′′′ ∈ TS', such
that ∀p ∈ P : v′′′(F(p)) = u′(p), is reachable from
any state in V ∗ by the construction. Thus, the induction
hypothesis and the condition 3. are proven.

Thus, it was shown that there are weak simulation relations
between TS and TS', and conditions 1.-3. are hold. In the
Induction basis it was shown, that there is no weak bisimu-
lation relation between TS and TS'.

This theorem has an important corollary within the pro-
cess mining context : the conversion algorithm allows to pre-
serve the language of a free-choice system net under some
assumption.

Corollary 1 (Language equivalence for free-choice sys-
tem net) Suppose there is a free-choice system net SN,
where SN = (PN,Minit,Mfinal), and i is a source place.
Suppose also that Mfinal is the only reachable marking, in
which no transition enabled, i.e., if M ∈ R(PN,Minit)

then M 6= Mfinal iff ∃t∃M ′ : (PN,M) [t〉 (PN,M ′). Let
BPMNmodel be a result of applying Algorithm 2 to SN, then
LSN = LBPMNmodel .

Proof. 1. Let is consider a trace σv , such that (PN,Minit)

[σv . (PN,Mfinal), i.e., σv ∈ LSN. There is a weak simula-
tion relation R ⊆ (S × S) from TS to TS', where TS and
TS' are reachability graphs for SN and BPMNmodel respec-
tively. Thus, σv can be replayed in BPMNmodel, and after
the replay BPMNmodel will be in a marking M , such that
(Mfinal,M) ∈ R. If ∃n∃M ′(BPMNmodel,

M) [n〉 (BPMNmodel,M
′), then since ∀p ∈ P :Mfinal(p)

= M(F(p)), ∃M ′′(PN,Mfinal) [t〉 (PN,M ′′), we get a con-
tradiction. Thus, LSN ⊆ LBPMNmodel .

2. Now let us prove that LBPMNmodel do not contain traces,
which do not belong to LSN. Suppose there is a trace σv ∈
LBPMNmodel , such that (BPMNmodel,M

′
init)[

σv . (BPMNmodel,M), where M ′init is an initial marking of
BPMNmodel. Theorem 2 states that there exists BPMNmodel

marking M ′, such that (M ⇒ M ′) ∧ (∃M ′′ : (M ′′,M ′) ∈
R), where M ′′ is a marking of SN. By the definition of
BPMN model language no node can fire at the marking

M , thus M = M ′, and (M ′′,M) ∈ R. We get that M ′′

is also a state (SN marking) without outgoing transitions,
otherwise M is not a final marking of a BPMNmodel, since
(M ′′,M) ∈ R. Thus, σv : (SN,Minit)[σv . (SN,M ′′), and
σv ∈ LSN.

Now let us compare behavioral properties of non-free-
choice Petri nets and corresponding free-choice Petri nets
constructed by Algorithm 3.

Theorem 3 (Non-free-choice Petri nets conversion) Let
PN = (P, T, F, l) be an arbitrary labeled Petri net, and
PN' = (P ′, T ′, F ′, l) be a result of applying Algorithm 3
to PN. Let TS = (S,E,B, sin) and TS' = (S′, E,B′, s′in) be
reachability graphs of PN and PN' respectively. Then there
are weak simulation relations from TS to TS', and from TS'
to TS. But it is not guaranteed that a weak bisimulation re-
lation exists.

Proof. Let us define weak simulation relationsR andR′ be-
tween TS and TS' in such a way that for every two states
s ∈ S and s′ ∈ S′ if ∀p ∈ P : s(p) = s′(p), then (s, s′) be-
longs to R and (s′, s) belongs to R′. Let us consider a place
p∗ ∈ P (Fig. 25), such that ∃t, t′ ∈ T : p∗ ∈ (•t ∩ •t′)
and ∃p′ ∈ P : p′ ∈ •t′, p′ /∈ •t. For this place the out-

t

t' p*

p' tp'

p''

p* t'

t''

Fig. 25: Splitting non-free-choice construction

put flow will be modified according to Algorithm 3. Let us
consider u - a marking of PN: u(p∗) ≥ 1 and construct
fragments of reachability graphs for PN and PN', contain-
ing the marking u and a corresponding marking of PN' -
v : ∀p ∈ P : v(p) = u(p) (Fig. 26).

Suppose that t is enabled in u, and u′ is a state (PN mark-

ing) obtained after firing of transition t: u
l(t)→ u′, then t

is also enabled in v, and v′ is a marking of PN', such that

v
l(t)→ v′, then ∀p ∈ P : v′(p) = u′(p), and (u′, v′) ∈ R,

(v′, u′) ∈ R. Now suppose that t′ is enabled in u and
can fire producing a novel marking u′′′. For TS' there is a

corresponding state v′′′, such that v τ→ v′′
l(t′)→ v′′′, and

∀p ∈ P : v′′′(p) = u′′′(p). Pair (u′′′, v′′′) will belong to R,
pairs (v′′′, u′′′), (v′′, u) will belong toR′. Note that the state
u can simulate v′′, since ∀p ∈ P, p 6= p∗ : u(p) = v′′(p)

, thus, it includes behavior allowed in v′′. The procedure of
defining R and R′ can be considered for each transforma-
tion of PN, thus weak simulation relations between TS and
TS' can be derived.

14 Anna A. Kalenkova et al.

There is no bisimulation relation, since there is no state,
which bisimulates v′′.

u

()l t

v

τ

u'

()l t

v''

v'

R,R'

TS TS'

R,R'

()'l t v'''

u'''

()'l t

R,R'

R'

Fig. 26: Simulation of non-free-choice net by the corresponding free-
choice net

Corollary 2 (Language of non-free choice system net)
Let SN = (PN,Minit,Mfinal) be an arbitrary system net,
where PN = (P, T, F, l). Let us apply Algorithm 3 to PN
and obtain a free-choice Petri net PN' = (P ′, T ′, F ′, l). Let
us consider a system net SN' = (PN',Minit,Mfinal) with the
same initial and final markings (we can construct such a
system net since P ⊆ P ′). Then LSN = LSN'.

Proof. Let TS and TS' be reachability graphs of SN and SN'
respectively. As it follows from Theorem 3 TS' simulates TS
and vice versa, also they have the same final marking Mfinal,
thus LSN = LSN'.

Corollary 3 (Language inclusion)
Let us consider a system net SN = (PN,Minit,Mfinal), such
that PN = (P, T, F, l), and ∀t@M : (PN,Mfinal) [t〉
(PN,M), i.e, there is no transition enabled in Mfinal. Then
let us apply Algorithm 3 and to obtain a free-choice system
net SN' = (PN',Minit,Mfinal) with the same initial and final
markings. Suppose that BPMNmodel is a result of applying
Algorithm 2 to SN'. Then LSN ⊆ LBPMNmodel .

Proof. Let TS, TS', TSBPMN be reachability graphs of SN,
SN', and BPMNmodel respectively. LSN = LSN′ by Corol-
lary 2. According to Corollary 1 if SN′ doesn’t contain any
state, in which no transition can be enabled, except Mfinal,
then LSN' = LBPMNmodel . But under hypothesis of this corol-
lary TS (and consequently TS') may contain states, in which
no transition can be enabled, and which are not final. Also
note that SN' may contain additional states (see the proof of
Theorem 3), which represent the reduced behavior of SN,
among them there may be states without outgoing transi-
tions. Hence, LBPMNmodel may contain additional traces.

Corollary 4 (Language equivalence for empty final
marking) Suppose a BPMN model BPMNmodel was con-
structed from a system net SN = (PN,Minit,

Mfinal), where PN = (P, T, F.l), using Algorithm 2. If
∀p ∈ P : Mfinal(p) = 0, then VBPMNmodel = LSN. In other
words, the set of valid sequences coincide with the language
of the system net.

Proof. As it follows from Theorem 2 for every marking M
of a system net SN there is a markingM ′ in BPMNmodel, such
that for every position p, holds that M(p) =M ′(F(p)) and
vice versa. In a system net, such that for every node of this
net there is a path from the source place to this node, and in a
BPMN model no node can fire in an empty marking, hence,
the theorem is proven.

FC FO

FE FNE

LSN=LBPMN

LSN LBPMN∩

LSN=VBPMN

LSN=VBPMN

=LBPMN

Fig. 27: Relations between languages for system nets and correspond-
ing BPMN models. FC is a class of free-choice system nets. FNE -
a class of system nets, for which no transitions are enabled in final
markings. A system net belongs to the class FE, iff the final marking is
the empty marking. FO is a class of system nets, for which their final
markings are the only markings with no transitions enabled.

Fig. 27 summarizes theoretical results presented above:
it shows relations between languages of system nets and cor-
responding BPMN models depending on the type of system
nets.

Note that if the initial system net contains transitions
with no incoming arcs (unconnected transitions), these tran-
sitions will be enabled in any reachable marking of this net.
Such nets don’t meet the sufficient condition for the lan-
guage inclusion, i.e., some transitions are always enabled
in the final marking.

Process Mining Using BPMN: Relating Event Logs and Process Models 15

4 From various process notations to BPMN models

In this section other process modeling formalisms used
within process mining techniques, such as causal nets and
process trees, will be introduced. Basic ideas of conversion
algorithms will be given.

4.1 Transforming causal nets to BPMN models

Causal nets are known to be suitable for the representation
of discovered process models. Often used for process min-
ing (see e.g. the Heuristic miner [36]), causal nets tend to
be unclear for the majority of process analysts. Although
an algorithm for the conversion of causal nets to Petri nets
was already presented in [6], conversions from causal nets
to BPMN models should take into account the free-choice
nature of BPMN models.

Causal nets are represented by activities and their bind-
ings: each activity has a set of input and a set of output
bindings (pre and post conditions). Let us consider a causal
net of a booking process shown in Fig. 28. The start activ-

register

book

flight

book

hotel

pay

Fig. 28: Causal net of a booking process

ity register has only empty input binding. There are three
possible output bindings for this activity: {book flight},
{book hotel}, and {book flight, book hotel}. These bind-
ings imply that activity register is followed by activ-
ity book flight, or activity book hotel, or activities
book flight and book hotel. The end activity pay has an
empty output binding and three possible input bindings, i.e.,
activity pay is preceded by book flight and book hotel ac-
tivities, or book flight activity, or book hotel activity.

While each activity of a causal net is converted to a
BPMN model activity, bindings are represented in terms of
gateways. If some activity has multiple input (output) bind-
ings, a special exclusive gateway is created, if some binding
contains more than element, a parallel gateway should be
added.

In case causal net has many start or end nodes, unique
start/end nodes are added to simplify the conversion to a
BPMN model.

The result of the causal net (Fig. 28) conversion is pre-
sented in Fig. 29.

book

hotel

book

flight

payregister

Fig. 29: BPMN model constructed from the causal net example
(Fig. 28)

It is important to mention that causal nets provide
declarative description of the process behavior while BPMN
has a local firing rules semantics. This means that “un-
sound” BPMN models may be obtained as a result of con-
version.

4.2 Converting process trees to BPMN models

Process trees are often obtained as a result of applying pro-
cess discovery algorithms (e.g. Inductive miner [26] or Ge-
netic miner [15]). In this subsection basic transformations
for constructing a BPMN model from a given process tree
will be proposed. Although process trees can be represented
as system nets, and system nets in their turn can be con-
verted to BPMN models using algorithms introduced above,
a direct conversion algorithm gives an ability to consider ad-
ditional perspectives during the conversion. Moreover, the
BPMN standard natively supports such modeling elements
as OR-join/merge. Hence, there is no need to convert these
constructions to problematic, unreadable process models.
Process trees were proposed in [26] and defined as direct
acyclic graphs with branch and leaf nodes. Each branch node
has outgoing edges and is considered to be an operator node,
leaf nodes don’t have outgoing edges and stand for atomic
activities.

Transformation rules are applied inductively, starting
from the root node. For each branch node the transforma-
tion depends on a node type, each leaf node is transformed to
an activity or BPMN model event. We consider the follow-
ing basic operators: sequence, exclusive/inclusive/deferred
(event-based) choice, exclusive/deferred (event-based) loop
and parallel execution. Note that during this transformation
an extended set of BPMN elements is used. Transformation
rules for each type of a branch node are presented in Tab. 2.

5 BPMN model simplification

In this subsection BPMN model transformations are pre-
sented. These transformations allow us to reduce the size of

16 Anna A. Kalenkova et al.

Branch node BPMN model

Table 2: Process tree to BPMN conversion

target BPMN models. Similar Petri nets and YAWL reduc-
tion rules have already been presented in [18, 29, 38] and
can be applied to BPMN constructions as well.

1. Removing silent activities. In contrast to Petri nets
BPMN models allow connecting arbitrary activities and
gateways, thus activities, which are not labeled, may be
removed (Fig. 30). Note that all the activities constructed

BPMN node BPMN node

BPMN node BPMN node

Fig. 30: Removing silent activities

during an execution of Algorithm 2 have exactly one in-
coming and exactly one outgoing sequence flow.

2. Reducing gateways. Sequential gateways of the same
type, serving as join and split routers, can be reduced
(Fig. 31).

Fig. 31: Reducing gateways of the same type

3. Merging activities and gateways. According to the se-
mantics of BPMN, activities can be merged with preced-
ing and following gateways of the right type (Fig. 32).

Fig. 32: Merging activities with preceding exclusive join and following
parallel split gateways

6 Mapping conformance and performance info onto
BPMN models

Process mining is not limited to discovery, but also offers
conformance checking and enhancement techniques. To ap-
ply existing replay methods, which will allow us to obtain
detailed conformance and performance information, the ini-
tial BPMN model should first be converted to a Petri net,
and after that this Petri net can be analyzed using existing
techniques for Petri nets.

6.1 Converting BPMN models to Petri nets

BPMN models presented in this paper are based on the core
subset of BPMN modeling elements and can be considered
as workflow graphs. Every node of a workflow graph can be
simply converted to a corresponding Petri net pattern (Fig.
33) by the algorithms, presented in [2] and [19].

Note that according to [19] some preliminary transfor-
mations should be applied to a BPMN model: each gateway
and activity, containing multiple inputs and outputs, should
be splitted. Also note that this basic conversion preserves se-
mantics and guarantees bisimilarity between a BPMN model
and a target Petri net due to the correspondence between
BPMN sequence flows and workflow net places: Map :

SF → P , i.e., for each sequence flow of the BPMN model

Process Mining Using BPMN: Relating Event Logs and Process Models 17

... ...

...

...
...

...

...

a a

...

Fig. 33: BPMN to Petri net conversion patterns

there is a corresponding place in the target Petri net. The
proof of bisimulation is straightforward.

6.2 Mapping conformance and performance info

The bisimulation relation defines a mapping between states
of an initial BPMN model and a target Petri net, and gives
us an ability to visualize performance and conformance in-
formation, which is attached to some states of the Petri net,
within the initial BPMN model.

To give an example, which shows how a conformance
information can be visualized within a BPMN diagram, we
have to introduce the notion of alignment. Alignment estab-
lishes log and model similarities and discrepancies by defin-
ing correspondence between moves on log and moves (fir-
ings) on model.

Let AL be a set of log events. Let also PN = (P, T, F, l)

be a labeled Petri net, where l : T 9 AM , and AM is a
set of model events. Let� be a special event, such that�/∈
(AL ∪AM).

Alignment step is a pair (x, y):

– (x, y) is a move on log if x ∈ AL, y =�,
– (x, y) is a move on model if x =�, y ∈ AM ,
– (x, y) is a move in both if x ∈ AL, y ∈ AM ,
– (x, y) is an illegal move if x =�, y =�.

An alignment is a sequence of alignment steps, that are
not illegal moves.

Now let us consider a BPMN model of a booking pro-
cess (Fig. 34).

book

hotel

book

flight

get

insurance

pay
sf1 sf2

sf3

sf4

sf5

sf6

sf7

sf8

sf9 sf10

register

Fig. 34: A BPMN of a booking procedure

Let us apply the conversion algorithm to obtain a Petri
net with places, corresponding to BPMN sequence flows.
The result is shown in Fig. 35.

book hotel

book flight

get insurance

pay

M(sf1)

M(sf2)

M(sf3)

M(sf4)

M(sf5)

M(sf6)

M(sf7)

M(sf8)

M(sf9)

M(sf10)

register

Fig. 35: A Petri net constructed from the BPMN model presented in
Fig. 34

To illustrate enhancement of a process model with con-
formance and performance information, an event log con-
sisting of only one trace, containing insurance cancellation
event, is considered (Tab. 3).

Case ID Event Timestamp

1 register 2014-12-24 09:30:01:727
1 book flight 2014-12-24 09:43:23:353
1 book hotel 2014-12-24 09:52:14:252
1 cancel insurance 2014-12-24 09:52:20:732
1 pay 2014-12-24 10:04:24:754

Table 3: An event log of a booking process with cancellation.

To construct an alignment this log should be represented as
a multiset of traces:

L =
[
〈register, book flight, book hotel, cancel insurance, pay〉1].

18 Anna A. Kalenkova et al.

The result of application of the algorithm [11], which finds
an optimal (with the minimal number of log only and model
only moves) alignment is presented below (the names of
events are represented by their first letters, firing of silent
transitions are denoted as τ). The first row represents log
moves, while the second row stands for model firings:

γ =
� r � b f � b h c i � p

τ r τ b f g i b h � τ p.

Such alignments can be used to enhance existing BPMN
models with conformance information (Fig. 36).

book

hotel

book

flight

get

insurance

pay
sf1 sf2

sf3

sf4

sf5

sf6

sf7

sf8

sf9 sf10

register

Log only move:

cancel insurance

Model only move

Fig. 36: A BPMN model annotated with conformance information.

Note that the relation between states of the models al-
lows us to attach log move information to sequence flows,
which correspond to a concrete state of the BPMN model
- the state, in which log move is performed. This BPMN
model can be enriched with a performance information
(such as activity execution times) obtained as a result of
alignment-based replay(Fig. 37). Note that different types

book

hotel

book

flight

get

insurance

pay
sf1 sf2

sf3

sf4

sf5

sf6

sf7

sf8

sf9 sf10

register

13 min, 21 sec

22 min, 13 sec

12 min, 10 sec

Fig. 37: A BPMN model annotated with performance information.

of performance information, such as average, minimal, max-
imal, relative execution times can be added to a diagram.

7 Tool support

The techniques presented in this paper have all been imple-
mented in ProM [35], an open source framework for process
mining. Let us consider BPMN packages architecture and
their functionality in ProM (Fig. 38).

ProM

BPMN

Analysis

package

BPMN

Conversions

package

BPMN

package

«call»

Replay

plugins

«call»

BPMN modeling tool

Import/export of BPMN

diagrams in BPMN XML 2.0

and XPDL 2.2 formats

«import» «import»

Fig. 38: BPMN packages architecture

The core BPMN package provides basic interfaces for
working with BPMN models, including import and export of
BPMN diagrams in BPMN XML [30] and XPDL 2.2 [37]
formats. The BPMN conversions package depends on the
core BPMN package and provides the ability to convert Petri
nets, causal nets [6] and process trees [8] to BPMN, thus
supporting the discovery of BPMN models. Besides that the
resource and the data flow perspectives can be discovered as
well: data Petri nets obtained using the data-aware process
mining algorithm [27] can be used to create BPMN models
with data perspective, process trees with resources can be
converted to BPMN model with lanes. The BPMN Analysis
package is constructed on top of the core BPMN and the
BPMN conversions packages and its plugins can be used
to enhance BPMN models with additional conformance and
performance information.

To illustrate this we consider two main use cases for
working with BPMN in ProM.

Use case 1 (Discovering BPMN processes): The user
discovers a BPMN model by applying discovery and BPMN
conversions plugins, then this model can be exported to an
external BPMN modeling or execution tool
(Fig. 39).

Use case 2 (Analyzing BPMN processes): The user loads
a BPMN model from an external BPMN modeling tool,
then, by applying the BPMN Analysis package, converts this
model into a Petri net, replays a log to obtain conformance
and performance information, and enhances the BPMN dia-
gram with this information (Fig. 40).

More details about the functionality of the BPMN pack-
ages in ProM can be found at [22].

Process Mining Using BPMN: Relating Event Logs and Process Models 19

Data Petri net to BPMN Conversion

Export to an external tool

Fig. 39: Discovering a BPMN model with data

8 Case studies

In this section we present case studies based on the event
logs produced by information systems from different do-
mains.

First we consider a complex ticket reservation system
from the traveling and transportation domain. This system
belongs to a class of Computer Reservation Systems (CRS)
and is used for booking all types of touristic products such as
hotels, flights, cars, excursions, activities, trains, etc. It inte-
grates multiple Global Distribution Systems (GDS) for pre-
sales (search, reservation) and sales (book, pay) processes.
The system can be accessed by normal customers through
a web interface or by expert users, e.g. travel agency or
system support, through a special rich client interface. In-
dependently of the client interface, calls to the backend of
the system are logged in order to track the system state and
performance, to gather statistics and to analyze the user be-
havior and make estimations and predictions 4. These logs
contain the timestamps, identifiers of the business cases
(unique identifier of the reservation) and also different busi-
ness attributes describing user operations (e.g. search, quote,
book, pay), travel directions (e.g. origin, destination, book-
ing code), traveling time (e.g. start and end date). For our
experiments we took a log of the ticket reservation system,
which contains 94 cases, 50 events, and describes the sys-

4These logs exclude user and commercial sensible information like
names, credit cards and invoices.

Import from an external tool

Replay event log on model

and add conformance and performance info

Fig. 40: Analysis of a BPMN model

tem behavior during four hours of its work. This event data
is perfectly suitable for applying process mining, since we
identify the case by reservation id, events by a subset of busi-
ness attributes and order of events by a timestamp. For more
information about these event logs please refer to [32, 33].

The other system being analyzed is a Tracker System
(TS) used for management of kanban and scrum software
development processes. The history of the system usage
contains short traces (the average number of events per trace
is 3.5). Each trace can be identified by a unique number, it
corresponds to a concrete task for developers, and represents
a sequence of task states, such as “Open”, “In Progress”,
“Resolved”, “Reopened” and “Closed”. These task states are
considered as events, timestamps are used to order them.

Event logs produced by six different anonymous munic-
ipalities [13, 14] within the CoSeLoG project in the Nether-
lands were analyzed as well. These event logs contain in-
formation about executions of a permit application process.
The original event logs were reduced in order to speed up
the discovery techniques applied: the number of traces for
these six logs varies from 17 to 324, the number of differ-
ent events (event classes) is 22 for the log, which contains
receiving phase only, and between 69 and 176 for the other
event logs. For the log corresponding to the receiving phase
the mean case duration time is 3.1 days, for the other logs
the mean case duration time lies between 21.4 days and 49.2
weeks.

20 Anna A. Kalenkova et al.

8.1 Discovering BPMN models

In this subsection we show fragments of the CRS log and
describe models discovered from this log.

A short typical fragment of an event log is shown in Tab.
4. Every log entry contains fields such as reservation id, an
event name, a timestamp, a booking code and a notification.
An event name is a shortcut built from a user operation and
of a product type, e.g. “T1-HF-H:TES” means that user does
operation “search” for a product type “Hotel”. The booking
code identifies the location, e.g. “BER” means Berlin, Ger-
many. Thus, in the example in Tab. 4 we show two reserva-
tions: “390234516” is a search for available hotels in Berlin
and “390235717” is a reservation for a double room in a
concrete hotel in Berlin.

Further in this subsection we use different discovery
(Heuristic [36], Alpha [10], and Inductive [26] miners) to
construct process models from the event log. As a result of
applying discovering methods we obtain Petri nets, causal
nets and process trees. All these models are converted to
BPMN using algorithms presented before. The log of the
booking process was filtered: the parts, which contain only
positive or only negative cases (cases with booking error
events) were identified. Moreover, since the booking flight
procedure differs from other bookings, the log was also fil-
tered by containing booking flight event.

Let us consider models constructed from a filtered log
containing only positive traces without flight booking proce-
dure 5; Fig. 41 illustrates a Petri net discovered with Alpha
miner [10] for this log. The BPMN model constructed for

Fig. 41: A Petri net discovered by the Alpha miner from the event log

the given Petri net (Fig. 41) by the conversion algorithm is
shown in Fig. 42. Note that in this case the amount of rout-

5All the models presented in this section are discovered using
ProM framework [35]

Fig. 42: A BPMN model constructed from the Petri net presented in
Fig. 41

ing elements (gateways) in the BPMN model is comparable
with the number places of the initial Petri net, the number
of activities coincides with the number of transitions. Also
note that thanks to Algorithm 1 all the activities of the target
BPMN model are on paths from the start event to end events.

Now let us consider a causal net (Fig. 43) discovered
using the heuristic miner algorithm [36].

Fig. 43: A causal net discovered by heuristic miner from the event log

This causal net can be converted to a BPMN model
(Fig. 44) using the conversion algorithm presented before.
The BPMN model reveals the operational semantics of the

Fig. 44: A BPMN model constructed from the causal net presented in
Fig. 43

process. Fig. 43 is not explicitly showing the routing con-
structions, but the BPMN model does. Now we will con-

Process Mining Using BPMN: Relating Event Logs and Process Models 21

Reservation Event Timestamp Booking Notifi-
ID Code cation

390234516 T1-HF-H:TES 2013-12-18 08:36:00:570 BER
390234516 M55Type010Rsp-034 2013-12-18 08:36:04:717 998
390234516 T3-HF-H:HH004 2013-12-18 08:36:09:337 BER
390234516 M52Rsp 2013-12-18 08:36:09:337 998
390235717 T1-BA-H:TES 2013-12-18 08:36:12:155 BER45010 DH
390235717 M52Rsp 2013-12-18 08:36:18:397 712

Table 4: Event log from a CRS.

sider a process tree discovered by the Inductive miner [26]
(Fig. 45). The corresponding Petri net is presented in

Fig. 45: A process tree discovered by inductive miner

Fig. 46. The BPMN model constructed from the process

Fig. 46: A Petri net constructed from the process tree shown in Fig. 45

tree by the conversion algorithm doesn’t contain any silent
activities (Fig. 47).

Fig. 47: A BPMN model, which corresponds to the process tree
(Fig. 45)

Moreover, the number of gateways is significantly less
than the amount of places in the corresponding Petri net
(Fig. 46). Note that the process, discovered by the Inductive
miner, is compactly presented in terms of BPMN.

8.2 Comparative analysis of the models discovered

In this subsection we make a comparative analysis of pro-
cesses models discovered from the event logs and corre-
sponding BPMN models obtained as a result of conversions
using various metrics [34]. We will consider the following
metrics: the number of nodes, the diameter (the maximal
length of a shortest path from a start node to a node of the
graph) and density (ratio of the total number of arcs to the
maximum possible number of arcs of the graph).

Different process mining algorithms give process mod-
els with different characteristics. Of course the set of con-
sidered process mining algorithms is far from complete. But
our aim is to analyze the conversion techniques, thuswise
we have selected algorithms, representing the entire classes
of discovery approaches, which produce process models
with certain properties. The Alpha mining algorithm is not
tailored towards handling noisy real-life logs and discov-
ers unstructured process models, meanwhile the Inductive
miner deals with noise and produces structured models. The
Heuristic miner was chosen as a technique, which allows us
to construct causal nets from event logs.

Let us consider a free-choice system net SN =

(PN,Minit,Mfinal), where PN = (P, T, F, l) is a la-
beled Petri net, and a BPMN model BPMNmodel =

(N,A,GXOR, GAND, estart, Eend, SF, λ), obtained by the con-
version algorithm from this net. The number of activi-
ties equals to the number of non-silent transitions: |A| =
| {t ∈ T : t λ(t) 6= τ} |. In the worst case the number of
gateways |GXOR ∪GAND| is comparable to the number of
places plus the number of transitions : |P |+ |T |, since every
place can produce an XOR-join, and in the worst case the
number of AND-join gateways and the number of XOR-split
gateways are both comparable to b|T |/2c. Note that AND-
split gateways will be deleted during the simplification of
the BPMN model. In the best case (for a sequential control

22 Anna A. Kalenkova et al.

flow) a BPMN model will not contain any gateways. Also
note that all the constructions produced during the transfor-
mation of arbitrary Petri nets to free-choice nets will contain
only silent transitions and related places.

For a BPMN model constructed from a causal net the
number of activities equals the number of causal net activ-
ities. The number of gateways is determined by input and
output bindings of the activities.

A BPMN model constructed as a result of a process tree
conversion contains activities corresponding to non-silent
process tree leafs, every branch node of the process tree will
be converted to a routing construction of the BPMN model,
containing zero (in the case of a sequential control flow),
one, or more routing nodes. Note that some routing nodes
might be merged during the simplification procedure.

To estimate the number of nodes of process models dis-
covered from the real-life event logs let us consider Tab. 5.
The rows in this and other tables are ordered by the number
of process models nodes.

Log
traces

Heuristic miner
(C-net/ BPMN6)

Alpha miner (Petri
net7/ BPMN6)

Inductive miner
(Proc. tree/ Petri
net7/ BPMN6)

CSLG1 176 / 176,143,128 176,372 /
176,340,120

261 / 235,49 /
176,25,0

CSLG2 134 / 134,58,56 134,238 /
134,159,54

273 / 223,89 /
134,42,0

CSLG3 93 / 93,58,70 93,198 / 93,153,42 219 / 173,78 /
93,35,0

CSLG4 75 / 75,49,52 75,143 / 75,101,33 151 / 120,50 /
75,21,0

CSLG5 68 / 68,58,58 68,181 / 69,159,55 84 / 77,9 / 68,3,0

CSR1 30 / 30,14,4 30,23 / 30,18,13 130 / 100,53 /
30,25,0

CSR2 30 / 30,14,5 30,13 / 30,5,7 102 / 81,43 /
30,20,0

CSR3 27 / 27,10,4 27,28 / 27,24,13 107 / 82,52 /
27,24,2

CSLG6 22 / 22,8,6 22,24 / 22,14,12 54 / 41,19 / 22,7,0

CSR4 21 / 21,6,4 21,23 / 21,18,11 88 / 67,41 /
21,18,0

TS 5 / 5,7,0 5,7 / 5,5,4 15 / 9,5 / 5,3,0

Table 5: Number of nodes of process models discovered from the event
logs

The first column refers to the event logs used: six event
logs, originating from municipal processes, of the CoSeLoG
project (denoted as CSLG1 - CSLG6), the logs of CSR
(Computer Reservation System) with various types of fil-
tering applied8, and the logs of TS (Tracking system). Each
of the other columns mentions the number of nodes of the
initial process model constructed by a discovery algorithm
and the number of nodes of the BPMN model obtained as

6For BPMN models the number of activities, XOR gateways and
AND gateways are specified, the values are separated by a comma.

7For Petri nets the number of transitions and places are specified
and separated by a comma.

8By CSR1, CSR2, CSR3 and CSR4 we denote event logs of the
Computer Reservation System, containing only positive cases and/or
booking flight event.

a result conversion (for Petri nets and BPMN models the
number of transitions, places and the number of activities,
XOR gateways, AND gateways are specified, the values are
separated by a comma).

This table shows that the number of BPMN model nodes
depends on the properties of the initial Petri net: BPMN
models constructed for structured Petri nets are more com-
pact (see the Inductive miner column). This holds due to
the fact that BPMN language allows simplifications, such
as silent nodes deletion (structured models usually contain
silent nodes) and gateways reduction, which is also appli-
cable to structured nets, if some blocks can be merged.
For non-structured Petri nets (see the Alpha miner column)
the number of BPMN model nodes is comparable or even
greater than the number of nodes of the initial Petri net.
Also according to the theoretical observations the number of
nodes of a BPMN model is not always lower than the num-
ber of nodes of the initial causal net, since BPMN models
may have routing nodes.

Similarly let us estimate the density of the models dis-
covered (Tab. 6). Graph density is defined as D = |E|/
(|V | ∗ (|V | − 1)), where E is a set of edges and V is a set of
nodes. Density shows the relation between the real number
of edges and the maximum possible number of edges in the
graph.

Log
traces

Heuristic miner
(C-net/ BPMN)

Alpha miner (Petri
net/ BPMN)

Inductive miner
(Petri net/ BPMN)

CSLG1 0.01 / 0.004 0.005 / 0.004 0.005 / 0.01

CSLG2 0.01 / 0.005 0.005 / 0.005 0.005 / 0.01

CSLG3 0.02 / 0.01 0.01 / 0.01 0.005 / 0.02

CSLG4 0.02 / 0.01 0.01 / 0.01 0.01 / 0.02

CSLG5 0.02 / 0.005 0.005 / 0.005 0.01 / 0.02

CSR1 0.07 / 0.04 0.05 / 0.04 0.01 / 0.04

CSR2 0.07 / 0.04 0.03 / 0.05 0.01 / 0.04

CSR3 0.06 / 0.04 0.04 / 0.03 0.01 / 0.03

CSLG6 0.07 / 0.05 0.04 / 0.04 0.03 / 0.06

CSR4 0.08 / 0.05 0.05 / 0.04 0.01 / 0.04

TS 0.5 / 0.2 0.19 / 0.12 0.1 / 0.16

Table 6: Density of the models discovered

The density of the BPMN models constructed from un-
structured Petri nets is comparable with the density of these
Petri nets (see the Alpha miner column). The density of
structured Petri nets is larger than the density of correspond-
ing BPMN models (see the Inductive miner column) due to
reductions applied in the case of structured processes. The
density of causal nets is certainly greater than the density of
corresponding BPMN models, since novel gateways, which
connect process activities, are added.

Now let us consider the diameter - the maximal length
of a shortest path from a start node to a node of the graph.
The results presented in the Tab. 7 show that the statements
valid for the number of nodes parameter are also true for the

Process Mining Using BPMN: Relating Event Logs and Process Models 23

diameter: BPMN models corresponding to structured Petri
nets are more compact than the initial models.

Log
traces

Heuristic miner
(C-net/ BPMN)

Alpha miner (Petri
net/ BPMN)

Inductive miner
(Petri net/ BPMN)

CSLG1 12 / 24 17 / 21 37 / 14

CSLG2 39 / 53 49 / 42 76 / 23

CSLG3 23/ 38 37/ 26 71 / 23

CSLG4 25 / 32 39 / 34 56 / 16

CSLG5 18/ 35 13 / 17 16 / 5

CSR1 3 / 7 6 / 10 20 / 6

CSR2 3 / 7 5 / 7 8 / 9

CSR3 6 / 12 11 / 13 39 / 14

CSLG6 6 / 11 13 / 13 25 / 7

CSR4 5/ 8 10 / 11 41 / 12

TS 2 / 5 3 / 6 5 / 4

Table 7: Diameter of the process models discovered from the event logs

In this subsection we have evaluated the discovered pro-
cess models using metrics, such as the number of nodes, the
density and the diameter. The results show that the compact-
ness of the result BPMN models depends considerably on
characteristics of the initial models.

Another important issue in the context of our practical
case studies presented in this subsection was the understand-
ability of the process mining output format. The software ar-
chitects and designers of the touristic system were especially
interested in getting the results in the BPMN format. They
were familiar with BPMN and BPMN was also used in the
specification and design phases of the software product for
documenting the typical touristic business processes. More-
over BPMN exchange formats, such as BPMN XML [30]
and XPDL 2.2 [37], give us an ability to integrate with a va-
riety of BPMN supporting tools, thus discovered processes
can be analyzed, improved or even automated using external
environments. In addition BPMN offers great opportunities
to add other perspectives, such as data and resource informa-
tion, results of conformance and performance analysis. This
way the analyst can obtain a holistic view on the processes
discovered.

8.3 Comparing discovered and manually created BPMN
models

To compare the models discovered from the event log with
manually created BPMN models we analyzed the Signavio
model collection, which contains a variety of BPMN mod-
els from different domains. We took only flat models rep-
resented by start and end events, tasks, gateways and se-
quence flows. Currently the Signavio model collection con-
tains 4900 of such models. For these models we calculated
the structural characteristics: number of nodes, density, and
diameter (Tab. 8).

Number of
nodes Density Diameter

Maximal 58.00 0.87 25

Mean 20.76 0.10 8

Minimal 6.00 0.00 1

Table 8: Characteristics of process models from the Signavio model
collection

Comparing these results with the measurements pre-
sented in the tables 5 and 7 one may conclude that mod-
els drawn manually (excluding models discovered from the
small TS log) are usually more compact than those, which
were automatically discovered using the well-known dis-
covery and conversion algorithms presented in this paper.
Also these observations show that BPMN models created
manually have higher density than automatically discovered
BPMN models. The results obtained for the Signavio model
collection is a consequence of the fact that business process
analysts and engineers are used to work with more struc-
tured models, so an algorithm for subprocesses discovery is
needed. An algorithm for the construction of BPMN subpro-
cesses based on a log clustering and filtering was proposed
in [17]. However, more research is needed to compare hand-
made and discovered models.

9 Conclusions and future work

This paper provides a solid basis for using BPMN in process
mining. The results presented in the paper concentrate on
the control flow perspective, as it is usually considered to be
the main perspective. It is the starting point for extending
with additional perspectives during an enhancement of the
process model discovered from an event log.

In this paper we used various control flow discovery
algorithms. These produce Petri nets, causal nets, process
trees, etc. Few algorithms produce directly a BPMN model.
Hence, we developed various conversion algorithms to mine
BPMN. Petri nets, process trees and causal nets discovered
from a real-life event log were compared with the corre-
sponding BPMN models on the basis of three process met-
rics. Moreover, these metrics were applied to measure the
difference between BPMN models, which were created by
analysts, and BPMN models retrieved as a result of process
discovery algorithms. An approach for enhancing a BPMN
model with additional conformance and performance infor-
mation was proposed as well.

The results presented in the paper can be used to retrieve
BPMN models out of event logs and verify them against
event logs. This work can be considered as a first step to-
wards the development of more advanced process discovery
methods, including novel perspectives.

As was shown in Subsection 8.3 more structured process
models are needed, thus methods for subprocesses discov-
ery should be introduced. In comparison with the approach

24 Anna A. Kalenkova et al.

presented in [17] we plan to build a method on top of the de-
composition techniques [1, 23, 24] to obtain structural mod-
els, preserving behavior recorded in an event log.

References

1. Aalst, W.: A General Divide and Conquer Approach for
Process Mining. In: Federated Conference on Computer
Science and Information Systems (FedCSIS 2013), pp.
1–10 (2013)

2. Aalst, W., Hirnschall, A., Verbeek, H.: An Alternative
Way to Analyze Workflow Graphs. In: Proceedings
of the 14th International Conference on Advanced In-
formation Systems Engineering (CAiSE’02), vol. 2348,
pp. 535–552 (2002)

3. van der Aalst, W.M.P.: The application of Petri nets to
workflow management. Journal of Circuits, Systems,
and Computers 8(1), 21–66 (1998)

4. van der Aalst, W.M.P.: Process Mining - Discovery,
Conformance and Enhancement of Business Processes.
Springer (2011)

5. van der Aalst, W.M.P.: Process mining. Communica-
tions of the ACM 55(8), 76–83 (2012)

6. van der Aalst, W.M.P., Adriansyah, A., van Dongen,
B.F.: Causal nets: A modeling language tailored to-
wards process discovery. In: CONCUR, Lecture Notes
in Computer Science, pp. 28–42. Springer (2011)

7. van der Aalst, W.M.P., Adriansyah, A., van Dongen,
B.F.: Replaying history on process models for confor-
mance checking and performance analysis. Wiley Int.
Rev. Data Min. and Knowl. Disc. 2(2), 182–192 (2012)

8. van der Aalst, W.M.P., Buijs., J.C.A.M., van Dongen,
B.F.: Towards improving the representational bias of
process mining. In: IFIP International Symposium on
Data-Driven Process Discovery and Analysis (SIMPDA
2011), Lecture Notes in Business Information Process-
ing, vol. 116, pp. 39–54. Springer-Verlag, Berlin (2012)

9. van der Aalst, W.M.P., Rubin, V.A., Verbeek, H.M.W.,
van Dongen, B.F., Kindler, E., Günther, C.W.: Process
mining: A two-step approach to balance between under-
fitting and overfitting. Software and Systems Modeling
9(1), 87–111 (2010)

10. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster,
L.: Workflow mining: Discovering process models from
event logs. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1128–1142 (2004)

11. Adriansyah, A., van Dongen, B.F., van der Aalst,
W.M.P.: Conformance checking using cost-based fit-
ness analysis. In: EDOC, pp. 55–64. IEEE Computer
Society (2011)

12. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Pro-
cess mining based on regions of languages. In: Inter-
national Conference on Business Process Management

(BPM 2007), Lecture Notes in Computer Science, vol.
4714, pp. 375–383. Springer (2007)

13. Buijs, J.: Environmental permit application process,
coselog project (2014)

14. Buijs, J.: Receipt phase of an environmental permit ap-
plication process, coselog project (2014)

15. Buijs, J., Dongen, B., Aalst, W.: A Genetic Algorithm
for Discovering Process Trees. In: IEEE Congress on
Evolutionary Computation (CEC 2012), pp. 1–8. IEEE
Computer Society (2012)

16. Carmona, J., Cortadella, J.: Process mining meets ab-
stract interpretation. In: ECML/PKDD 210, Lecture
Notes in Computer Science, vol. 6321, pp. 184–199.
Springer (2010)

17. Conforti, R., Dumas, M., Garcia-Baneulos, L., La Rosa,
M.: Beyond tasks and gateways: Discovering BPMN
models with subprocesses, boundary events and activ-
ity markers. In: International Conference in Business
Process Management (BPM), pp. 101–117. Springer,
Haifa, Israel (2014)

18. Desel, J., Esparza, J.: Free Choice Petri Nets. Cam-
bridge University Press, New York, NY, USA (1995)

19. Favre, C., Fahland, D., Völzer, H.: The relationship be-
tween workflow graphs and free-choice workflow nets.
Information Systems 47, 197 – 219 (2015)

20. Günther, C.W., van der Aalst, W.M.P.: Fuzzy min-
ing: Adaptive process simplification based on multi-
perspective metrics. In: International Conference on
Business Process Management (BPM 2007), Lecture
Notes in Computer Science, vol. 4714, pp. 328–343.
Springer (2007)

21. IEEE Task Force on Process Mining: Process Mining
Manifesto. In: Business Process Management Work-
shops, Lecture Notes in Business Information Process-
ing, vol. 99, pp. 169–194. Springer (2012)

22. Kalenkova, A.A., de Leoni, M., van der Aalst, W.M.P.:
Discovering, analyzing and enhancing BPMN mod-
els using ProM. In: Business Process Management -
12th International Conference, BPM 2014, Haifa, Is-
rael, September 7-11, 2014. Proceedings (2014). In
press

23. Kalenkova, A.A., Lomazova, I.A.: Discovery of cancel-
lation regions within process mining techniques. Fun-
damenta Informaticae 133(2–3), 197–209 (2014)

24. Kalenkova, A.A., Lomazova, I.A., van der Aalst,
W.M.P.: Process model discovery: A method based on
transition system decomposition. In: Application and
Theory of Petri Nets and Concurrency, Lecture Notes in
Computer Science, pp. 71–90. Springer (2014)

25. Kindler, E.: On the Semantics of EPCs: A Framework
for Resolving the Vicious Circle. In: International Con-
ference on Business Process Management (BPM 2004),
Lecture Notes in Computer Science, vol. 3080, pp. 82–

Process Mining Using BPMN: Relating Event Logs and Process Models 25

97. Springer (2004)
26. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.:

Discovering block-structured process models from
event logs: A constructive approach. In: Application
and Theory of Petri Nets and Concurrency, Lecture
Notes in Computer Science, vol. 7927, pp. 311–329.
Springer (2013)

27. de Leoni, M., van der Aalst, W.M.P.: Data-aware pro-
cess mining: Discovering decisions in processes using
alignments. In: ACM Symposium on Applied Comput-
ing (SAC 2013), pp. 1454–1461. ACM Press (2013)

28. Mendling, J., van der Aalst, W.M.P.: Towards EPC se-
mantics based on state and context. In: Proceedings of
Fifth Workshop on Event-Driven Process Chains (WI-
EPK 2006), pp. 25–48. Gesellschaft für Informatik,
Bonn, Vienna (2006)

29. Murata, T.: Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE 77(4), 541–580 (1989)

30. OMG: Business Process Model and Nota-
tion (BPMN), Version 2.0 (2011). URL
http://www.omg.org/spec/BPMN/2.0

31. OMG: OMG Unified Modeling Language 2.5. OMG,
http://www.omg.org/spec/UML/2.5/ (2013)

32. Rubin, V.A., Lomazova, I.A., van der Aalst, W.M.P.:
Agile development with software process mining. In:
Proceedings of the 2014 International Conference on
Software and System Process, ICSSP 2014, pp. 70–74.
ACM, New York, NY, USA (2014)

33. Rubin, V.A., Mitsyuk, A.A., Lomazova, I.A., van der
Aalst, W.M.P.: Process mining can be applied to soft-
ware too! In: Proceedings of the 8th ACM/IEEE Inter-
national Symposium on Empirical Software Engineer-
ing and Measurement, ESEM ’14, pp. 57:1–57:8. ACM,
New York, NY, USA (2014)

34. Sánchez-González, L., García, F., Mendling, J., Ruiz,
F., Piattini, M.: Prediction of business process model
quality based on structural metrics. In: ER, Lecture
Notes in Computer Science, vol. 6412, pp. 458–463.
Springer (2010)

35. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F.,
van der Aalst, W.M.P.: ProM 6: The Process Min-
ing Toolkit. In: Proc. of BPM Demonstration Track
2010, CEUR Workshop Proceedings, vol. 615, pp. 34–
39 (2010)

36. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics
miner (FHM). In: IEEE Symposium on Computational
Intelligence and Data Mining (CIDM 2011), pp. 310–
317. IEEE, Paris, France (2011)

37. WFMC: XML Process Definition Language Version
2.2. Tech. Rep. WFMC-TC-1025, Workflow Manage-
ment Coalition, Lighthouse Point, Florida, USA (2012)

38. Wynn, M., Verbeek, H., van der Aalst, W.M.P., Hofst-
ede, A., Edmond, D.: Reduction Rules for YAWL Work-

flows with Cancellation Regions and OR-join. Informa-
tion and Software Technology 51(6), 1010–1020 (2009)

