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SUMMARY

In this paper, the evolution of a large sample of open source software systems will be analysed. The
evolution of commercial systems has been an issue that has long been a centre of research, thus a coherent
theoretical framework of software evolution has been developed and empirically tested, most notably the
laws of software evolution. In exploring the evolutionary behaviour of open source systems, these results
can serve as a point of reference, allowing to assess if differences exist, or which aspects of open and
collaborative development styles have an impact on evolutionary behaviour. The data collection method
relying on a large software repository and the respective source code control systems is described, and
an overview on the collected data on several thousand projects is given. The evolutionary behaviour is
explored using both a linear and a quadratic model, with the quadratic model being shown as better
suited. The most interesting fact is that while in the mean the growth rate is linear or decreasing over time
according to the laws of software evolution, a significant percentage of projects is able to sustain super-
linear growth. There is a positive relationship between the size of a project, the number of participants,
and the inequality in the distribution of work within the development team with the presence of super-
linear growth patterns. On the other hand, there is evidence for a group of projects of moderate size
which shows decreasing growth rates, while small projects in general exhibit linear growth. Copyright ©
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last years, free and open source software has gathered increasing interest, both from the
business and academic world. As some projects in different application domains like Linux together
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with the suite of GNU utilities, GNOME, KDE, Apache, sendmail, bind, and several programming
languages have achieved huge success in their respective markets, new business models have been
developed and tested by businesses both small and large like Netscape or IBM. Academic interest
into this new form of collaborative software development has arisen from very different backgrounds
including software engineering, sociology, management or psychology, and has gained increasing
prominence.
While many of the successful projects mentioned above are well known and produce output

of high quality, a general assessment of the open source software development paradigm is yet
outstanding. Currently, any discussion of this new model is mostly based on a small number of
glamorous and successful projects, but these might constitute exceptions. Also several aspects of
development processes can vary between different projects. Therefore, any analysis needs to be
based on quantitative information on the enactment in a variety of project forms and sizes.
The main ideas of the open source development model are described in the seminal work

of Raymond, ‘The Cathedral and the Bazaar’, in which he contrasts the traditional type of
software development of a few people planning a cathedral in splendid isolation with the new
collaborative bazaar form of open source software development [1]. In this, a large number
of developer-turned users come together without monetary compensation to cooperate under a
model of rigorous peer review and take advantage of parallel debugging that leads to innova-
tion and rapid advancement in developing and evolving software products. In order to allow
for this to happen and to minimize duplicated work, the source code of the software needs to
be accessible, and new versions need to be released often. To this end, software licences that
grant the necessary rights to the users, like free redistribution, inclusion of the source code,
the possibility for modifications and derived works and some others have been developed. One
model for such licences is the Open Source Definition, which lists a number of requirements
for specific licences [2]. The most prominent example that fulfils these criteria while still being
even more stringent, is the GNU General Public Licence, developed by the GNU project and
advocated by the Free Software Foundation [3]. While there is no defined open source development
model, but a list of general principles which projects follow completely or to some degree, open
source projects in general share some characteristics like an open and collaborative development
style.
The advantages and disadvantages of this new development model have been hotly debated [4,5],

but mostly on a general level without empirical backing. While some detailed research has been
undertaken to uncover issues like the organization of work in a small number of open source projects
[6–9] and some aspects have been analysed using larger samples [10–15], several facets of the
development process, including the expended effort and its estimation or the evolution of open
source systems remain still largely unexplored on a large scale.
In this paper, the evolution of a large sample of open source software systems will be analysed.

The evolution of commercial systems has been an issue that has long been a centre of research,
thus a coherent theoretical framework has been developed and empirically tested, most notably the
laws of software evolution. In exploring the evolutionary behaviour of open source systems, these
results can serve as a point of reference, allowing to assess if differences exist, which aspects of
open and collaborative development styles have an impact on evolutionary behaviour, and analyse
possible reasons for differences. In addition, modelling the growth rate in open source projects
can be interesting for developing models to predict future evolution, maintainability and other
characteristics, both on project and wider levels. Given the increasingly widespread commercial
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interest and investment into open source, such results would be of high interest to several parties.
Lastly, open source provides a huge number of projects with publicly available data for software
engineering studies in general, and software evolution in general. While until today much empirical
research is based on small numbers of projects and often unavailable raw data due to commercial
interests, studies today could, if any differences found are accounted for, include thousands of
projects and be completely replicable.
In the next section, a literature review both on software evolution in general and prior research

on evolution of open source projects will be given. After that, the method used for data collec-
tion will be described together with an overview of the data set. Then the software evolution
in this sample will be analysed. The paper ends with a discussion of threats to validity and a
conclusion.

2. LITERATURE REVIEW

The study of software evolution for commercial systems was pioneered by the work of Lehman
and Belady on the releases of the IBM OS/360 operating system [16], which has led to many
other works, also based on other software systems [17,18], in which the laws of software evolution
were formulated, expanded, and revised. These laws entail a continual need for adaptation of a
system. This continual adaptation leads to increased complexity of the system. As it is assumed
that constant incremental effort is applied at each time step, average incremental growth naturally
declines. Turski [19] for example has modelled this as an inverse square growth rate, others use a
linear model. During the years, several other empirical studies have been conducted and published
on software evolution in non-open source software systems, Kemerer and Slaughter [20] and Scacchi
[21] provide overviews of such works.
For the area of open source software systems, several works have explicitly dealt with the topic of

software evolution. The first and one of the most important contributions is a case study by Godfrey
and Tu [22], who have analysed the most prominent example available, the Linux operating system
kernel. Using the size in lines-of-code (LOC) as a function of the time in days since release 1.0,
they found that the growth behaviour is best fitted by a super-linear rate. This result significantly
contradicts the prior theory of software evolution, which postulates a decline in growth best modelled
either using a linear or an inverse square rate. This would, therefore, give an indication of major
differences in development models and their results.
On the other hand, Paulson et al. [23] have used a linear approximation, and have not found any

differences in growth behaviour between open and closed source software projects. In their study,
they analysed three widely known open source projects (Linux, Apache, and GCC) and three closed
source systems.
Robles et al. [24] reproduced the study of Godfrey and Tu [22] with newer data, and found

similar results, in addition showing that the growth of Linux has even accelerated during the five
years between both works. They have also analysed major subsystems, finding also super-linear
growth patterns on this level. To validate these results, the authors have compared this to the family
of ∗BSD kernels, which in contrast show an almost linear growth pattern with the exception of
FreeBSD until the year 2000, where super-linear growth is present. In addition, 18 more large open
source projects (like Apache, GNOME, or KDE) were analysed, finding growth patterns linear or
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close to linear for 16 of them, with the other two exhibiting some special characteristics. From the
fact that the studied systems show a growth rate higher than a smooth one, the authors conclude
that the fourth law of software evolution, ‘conservation of organizational stability’ which implies
constant incremental effort, possibly does not apply to these large open source projects. In another
case study, Robles et al. [25] found that the KDE project shows super-linear growth.
Capiluppi et al. [26] presented the first large horizontal study of open source system evolution

using 406 projects from a repository, focusing more closely on 12 ‘alive’ projects out of this set.
In the full data set, the authors observe that over six months, 97% of projects did not change size
or changed less than 1%. In the sample of alive projects, size is constantly growing, from which
the applicability of the laws of software evolution is hypothesized, but no model is fitted to the
data to further explore this notion. They also note that in large and medium projects, the number
of modules grows, but their size tends to evolve to a stable value.
Robles-Martinez et al. [27] have applied a similar methodology to this work based on the use

of publicly available data in the form of the Concurrent Versions System (CVS) [28] source code
control system, and have detailed the evolution of MONO as a case study from several perspectives,
including commits, authorship and also size in LOC. They conclude that the evolution of the studied
modules proceeds with rather different growth rates, but did not fit any model to the data.
Nakakoji et al. [29] have also studied the evolution of open source software systems, but take

a broader perspective in also examining the evolution of the associated communities and the rela-
tionship between both types. Using four case studies, they link the system evolution on the level
of different versions and branches to the community evolution, and arrive at a classification with
three different types of projects.
Scacchi [30] gives an excellent discussion of open source software evolution, with an overview

and review of studies both on proprietary and open source projects. He concludes from this analysis
that the laws of software evolution as presently stated and based primarily on the study of large
closed source systems do not account for the potential for super-linear growth in software size that
can be sustained by satisfied developer–user communities. He also stresses the importance of the
availability of data on open source projects for further studies on software evolution and software
engineering in general.

3. METHOD AND DATA SET

3.1. Data collection

For performing the proposed analysis of the evolutionary behaviour of open source software projects,
the information contained in software development repositories will be explored. These reposito-
ries contain a plethora of information on the underlying software and the associated development
processes [31,32]. Studying software systems and development processes using these sources of
data offers several advantages [31]: this approach is very cost-effective, as no additional instru-
mentation is necessary, and it does not influence the software process under consideration. In
addition, longitudinal data are available, allowing for analyses considering the whole project history.
Depending on the tools used in a project, possible repositories available for analysis include source
code versioning systems, bug reporting systems, or mailing lists. Many of these have already been
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used as information sources for closed source software development projects. For example, Cook
et al. [31] present a case study to illustrate their proposed methodology of analysing in-place soft-
ware processes. They describe an update process for large telecommunications software, analysing
several instances of this process using event data from customer request database, source code
control, modification request tracking database, and inspection information database. Atkins et al.
[32] use data from a version control system in order to quantify the impact of a software tool, a
version-sensitive editor, on developer effort. Kemerer and Slaughter [20] in their study on soft-
ware evolution use a coding of change events found in histories or logs written by maintenance
programmers.
In open source software development projects, repositories in several forms are also in use, in

fact form the most important communication and coordination channels, as the participants in any
project are not collocated. Therefore, only a small amount of information cannot be captured by
repository analyses because it is transmitted inter-personally. As a side effect, the repositories in
use must be available openly and publicly, in order to enable as many persons as possible to access
them and to participate in the project. Therefore, open source software development repositories
form an optimal data source for studying the associated type of software development.
Given this situation, repository data have already been used in research on open source soft-

ware development. This includes in-depth analyses of small numbers of successful projects like
Apache and Mozilla [6,7], GNOME [8], or FreeBSD [9] using mostly information provided by
version control systems, but sometimes in combination with other repository data like from mailing
list archives. Large-scale quantitative investigations spanning several projects going into software
development issues are not yet as common, and have mostly been limited to using aggregated data
provided by software project repositories [10–12], meta-information included in Linux Software
Map entries [13], or data retrieved directly from the source code itself [14].
In this paper, we will follow this approach of using publicly available data from software repos-

itories to study the evolutionary behaviour of open source projects and the underlying software
process.
For this analysis, a large data set covering a diverse population of projects was needed. Source-

Forge.net, the software development and hosting site, was chosen as the source of data. The mission
of SourceForge.net is ‘to enrich the open source community by providing a centralized place for
open source developers to control and manage open source software development’. To fulfil this
mission goal, a variety of services is offered to hosted projects, including tools for managing
support, mailing lists and discussion forums, web server space, shell services and compile farm,
and source code control. While SourceForge.net publishes several statistics, e.g., on activity in their
hosted projects, this information was not detailed enough for the proposed analysis. For example,
Crowston and Scozzi [10] used the available data for validating a theory for competency rallying,
which suggests factors important for the success of a project. Hunt and Johnson [11] have analysed
the number of downloads of projects occurring, and Krishnamurthy [12] used the available data of
the 100 most active mature projects for an analysis.
As sources of data within SourceForge.net, especially the source code control system offered, in

the form of CVS, a free system which is being used extensively in the free software community
[28], was identified as being able to provide necessary information. Several works have already
demonstrated that important information about software development can be retrieved from such
repositories [6–9]. In addition, data from the web pages of the projects hosted was retrieved. The
process employed for data retrieval is depicted in Figure 1. Fischer et al. [33] have employed a

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:361–382
DOI: 10.1002/smr



366 S. KOCH

SF-
Webserver

SF-
CVS-
Server

CVS-
logs

Project
and CVS

list

1. Project
retrieval & 

parsing (PERL)

Project
range

2. Module
retrieval &

parsing (PERL)

Module
list

4. CVS string
generation

(PERL)

CVS-
command

strings

5. CVS string
execution

(Shell)

Database

6. CVS-log
parsing
(PERL)

3. Status
retrieval &

parsing (PERL)
Full set 
(23,000
projects)

21,355 projects with
CVS option active

8,791 projects
with >= 1 checkin

8,621 projects with
CVS server reachable

Figure 1. Data retrieval process.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:361–382
DOI: 10.1002/smr



SOFTWARE EVOLUTION IN OPEN SOURCE PROJECTS 367

similar approach, but combining CVS data with bug tracking data and using the Mozilla project
for evaluation.
As a first step, a data set had to be defined. In this case, all projects hosted and actively using

CVS were selected to be included in the analysis. Therefore, the first step was to consult the
SourceForge.net homepage that displays the number of currently hosted projects (at the relevant
date 23 000). All possible project numbers starting by one and up to this number were selected.
By querying for each project (as identified by its number) its CVS information web page hosted
at SourceForge.net, a list of projects which are both still hosted and have the CVS service enabled
was retrieved. This resulted in one HTML page retrieved per project which was then parsed for the
necessary information regarding CVS server name and password. Both tasks were performed using
Perl scripts (step 1), resulting in 21 355 candidate projects with enabled CVS service. The project
titles, CVS server names, and passwords were extracted and stored. As SourceForge.net also has
a development or maturity status indicator assigned to each project, this information was retrieved
for the projects using again Perl scripts for downloading the relevant web pages (the summary page
for each project) and parsing them (step 3). The resulting status was stored in the database for each
project to be used later for analysis.
As the CVS interface can only handle statements concerning the modules of which a project

is composed, the names of the modules of each project were also necessary. In addition, this
would yield the information that projects actively use the CVS service. Therefore, the web page
for browsing the CVS repository was retrieved for each project in the list and parsed (step 2). This
showed that only 8791 projects were actively using the CVS service, i.e., during the observed time
period between project start and data retrieval showed any commits, and thus were usable for further
analysis. Using this information together with the CVS server name information, a Perl program
was used to generate a shell script for querying the CVS servers and retrieving the necessary data
(step 4). This was done by first checking out the source code for each module and then issuing the
‘log’ command for it (which is only possible for checked out items). Therefore, for each project
a number of commands were necessary, including check out, log, creating a directory, and sleep
periods.
Executing this large shell script (about 110 000 statements) resulted both in the downloaded

source code and an output log file for each project (step 5). The CVS log command produces the
whole history of all files in the module. This shows the work of the programmers on the project
by submitting (‘checking in’, ‘committing’) files. A commit can pertain to several files, resulting
in a revision for each of them. The CVS-repository records every revision with the changes in the
LOC and further information. For a more in-depth description of CVS and available data, see also
Fischer et al. [33]. This information, was then extracted from the logs by yet another Perl script
and stored in the database (step 6). The number of LOC checked in with the first commit for each
file (‘initial revision’) was computed from the source code itself, as it is not recorded automatically
in CVS.
Based on this data collection, the following metrics are available: the first metric used is the

number of LOC added to a file. The definition of this often disputed metric LOC [34] is taken
from the CVS repository and, therefore, includes all types of LOC, e.g., also commentaries [28].
In addition, any LOC changed is counted as one LOC added and one LOC deleted. The LOC
deleted are defined analogous. The difference between the LOC added and deleted, therefore,
gives the change in size of a software artefact under consideration in the corresponding time
period. These changes can be cumulated to give the size at any moment. As files, all types of
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files have been included, so there has not been a limitation to source code files. The metric of
revision refers to the submission of a single file by a single programmer. The next metric was
directly taken from the SourceForge.net repository, which has a development or maturity indicator
assigned to each project. This indicator has seven possible values, reaching from planning, pre-
alpha, alpha, beta to production/stable and mature, and to inactive. This indicator is assigned
by the project administrator, and therefore need not necessarily be a correct description of the
current status. Lastly, we define a programmer as being active in a given period of time if he
performed at least one commit during this interval. For the following analyses, a time window
of one month has been used. With the data available, programmers are identified by their CVS
account, so everybody with a CVS account having performed at least one commit is defined as a
programmer.
Subsequent analyses were performed using queries to the database and processing with R, a free

statistics package. Overall, information was retrieved for 8621 projects, mostly due to some projects
having disabled CVS between module identification (step 2) and actual download (step 5). The
download took more than one month during the end of 2001, and the downloaded files use about
33GB of disk space. All downloads and queries to the SourceForge.net servers were supplied with
ample sleeping periods so as to not delay services for other users due to overloads. More details
on the data retrieval can be found in Hahsler and Koch [35], additional analyses of these data can
be found in Koch [15], while in the following a short overview is provided.

3.2. Data set

Within the complete set of projects, a total of 7 734 082 revisions have been made, with 663 801 121
LOCs having been added and 87 405 383 having been deleted. The projects consist of 2 474 175
single files, and an overall number of 12 395 distinct programmers have contributed with at least
one commit to the CVS. The distribution of both the assets available, i.e., the programmers, and
the resulting outcome, i.e., revisions, LOC and project status within the project ecology is very
skewed. Table I gives descriptive statistics for the associated variables from this data set.
As can be seen, the vast majority of projects have only a very small number of programmers

(67.5% have only one programmer), only 1.3% have more than 10 programmers. This number
of programmers can be shown to follow a power law (or Pareto or Zipf) distribution [15], like
Hunt and Johnson [11] have also found for the number of downloads of projects. These numbers
also correspond to the findings of Krishnamurthy [12], who showed that most of the projects had
only a small number of participants (median of 4). Only 19% had more than 10, 22% had only
one developer. While this percentage is much smaller than found here, this is not surprising as
Krishnamurthy used only the 100 most active projects.
Regarding the output of the projects, a similar situation can be seen, the vast majority of projects

achieves only a small number of revisions and is of small size, leading to the assumption that input
and output of projects are correlated, i.e., that projects with a small number of programmers only
achieve small numbers of revisions and LOC. This intuitive relationship can be ascertained. For
example, the total number of programmers of a project correlates positively at 1% significance with
coefficients 0.472 with number of revisions and 0.408 with total LOC added [15].
Regarding the situation within projects, most prior studies [6–9,14,36] have found a distinctly

skewed distribution of effort between the participants. Similar results can also be found at the
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Table I. Descriptive statistics for project variables from SourceForge.net data set (N = 8621).

Definition Min. Max. Mean Std. dev. Median

Number of Number of distinct CVS accounts 1 88 1.86 2.61 1
programmers having performed at least

one revision for a project
Revisions Number of submissions of a single 1 133 759 897.12 3840.90 192

file to a project
LOC LOCs added to a project by all 0 12 951K 77K 459K 10 801
added programmers based on CVS

definition (e.g., including
commentaries)

LOC LOCs deleted from a project by all 0 3847K 10K 73K 373
deleted programmers based on CVS definition

(e.g., including commentaries)
Files Number of files of a project 1 42 674 285.46 1317.74 69

(including all types)
Age Number of months between first 1 133 11.38 17.81 9

revision of a project and time of data
retrieval

Development SourceForge.net maturity status 0 6 2.67 1.77 3
status indicator with seven possible values

(planning, alpha, beta, etc.)

project ecology under consideration (see Table II for variables of programmer participation in
SourceForge.net). The top decile is responsible for 79% of the total SourceForge.net code base, the
second decile for additional 11%. In this study, we used a simple measure for the inequality of work
distribution within the development team [15,37], computing for each programmer in the team the
squared difference between the percentage of revisions he contributed, and the percentage he should
contribute if everyone contributed the same amount, and summing up for all team members. An
increasingly inequal distribution of work then shows rather small, but positive correlations with the
total number of revisions and sum of LOC added. There is no correlation with the age of the project,
so the inequality does not increase simply with time. Of course, the direction of the relationship is
not ascertained, so the results do not necessarily indicate that more activity in projects is caused by a
more unequal distribution of contributions, as the other way would also give a possible explanation,
i.e., as the project grows, the inequality grows as a result.
The next possible influence on productivity in a project is the number of active programmers,

following the reasoning behind Brooks’s law [38], ‘Adding manpower to a late project makes it
later’, that communication costs are increasing at a super-linear rate with the number of participants.
Therefore, the number of active programmers and the achieved progress in each project was analysed
on a monthly basis, using hypotheses H1.

Hypothesis H1. A higher number of active programmers in a month has a negative influence on
productivity as measured by the mean output per programmer in LOC in this month. Likewise,
a higher number of active programmers in a month has a negative influence on productivity as
measured by the mean output per programmer in revisions in this month.
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Table II. Descriptive statistics for programmer variables from SourceForge.net data set (N = 12 395).

Definition Min. Max. Mean Std. dev. Median

Revisions Number of submissions of 1 132 736 624 2815 112
a single file performed

LOC LOCs added to all project based on CVS 0 16 152 866 53 554 374 750 5469
added definition (e.g., including commentaries)
LOC LOCs deleted from all project based on CVS 0 3 846 863 7052 54 547 372
deleted definition (e.g., including commentaries)
Files Number of files of all projects for which 1 44 271 230 1105 48

at least one revision was performed
(including all types)

Projects Number of projects for which at least 1 15 1.29 0.81 1
one revision was performed

Although the number of active programmers can be shown to have a significant and positive
relationship with the overall output in this data set, the coefficient is much smaller than previously
found by Koch and Schneider in their analysis of the GNOME project [8]. A productivity decrease
due to more participants itself is next to non-existent, as the correlation between the number of
active programmers and the mean output per programmer in a period is (although negative) only
−0.013 with both revisions and LOC used as output measures (significant at 5%). Therefore, H1
is not confirmed, as the correlation is too small to give any significant effect.

4. ANALYSIS OF SOFTWARE EVOLUTION IN OPEN SOURCE SYSTEMS

4.1. Growth modelling

Using the data retrieved for the projects from the SourceForge.net project ecology as detailed above,
the evolutionary behaviour of these systems is explored. The first idea is to analyse whether a linear
or other growth pattern is present in the data. This is formulated as hypothesis H2, to be first tested
on the full data set.

Hypothesis H2-fullset. The growth of open source software systems in LOC is better modelled
using a quadratic function of time than a linear one.

To this end, both a linear and a quadratic model are computed for each project, taking the size
in LOC S as a function of the time in days since the first commit t , which is used as project start
date, and using one month as time window. This approach is similar to Godfrey and Tu [22], who
used release 1.0 as starting point and further releases of Linux, respectively [24]. Therefore, model
A was formulated simply as

SA(t) = a ∗ t + b (1)

and model B as

SB(t) = a ∗ t2 + t ∗ b + c (2)
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The necessary parameters were estimated using regression techniques. This was possible for 4047
of the projects, as the other lacked necessary information, i.e., had too few data points to be able to
determine regression parameters with enough confidence (e.g., for projects with activity in only one
month, no regression can be fitted). In order to compare the resulting fit of these models and thus
test hypothesis H1, the adjusted R2 measure is used which accounts for the number of parameters.
Therefore, the fact that the quadratic model is more flexible, and also contains the linear model as a
special case (for a = 0) is considered in the results. The quadratic model B outperformed the linear
one with a mean adjusted R2 of 0.831 (median 0.918) against 0.592 (median 0.727). This difference
was tested for significance, using a Wilcoxon signed rank test instead of a paired-samples t-test
because the difference scores are not normally distributed. Therefore, the associated null hypothesis
H10-fullset that the distributions are equal is indeed rejected (at 1% significance). Nevertheless,
we will revisit this sharp distinction later on in this paper.
These first results are not surprising and are still in line with the laws of software evolution. As a

next step, it is therefore necessary to explore whether or not the growth rate is decreasing over time
according to these laws. This can be checked by analysing the second derivative of the quadratic
model SB(t)′, or more conveniently directly the coefficient of the quadratic term a. As a first step, it
is confirmed that the distribution of this parameter indeed is different from zero, using a t-test at 1%
significance. Then, the distribution of this term is explored. In the mean, it has a slightly negative
value of −0.504 with a median of −0.020. This would indeed indicate a decreasing growth rate
in accordance with the laws of software evolution, but contrary to the findings of Godfrey and Tu
[22] and Robles et al. [24] for Linux, respectively, Robles et al. [25] for KDE. In fact, for 61% of
the projects this term is negative, for the remaining minority of 1578 it is positive. This shows that
a rather large number of projects exhibit super-linear growth.

4.2. Project characteristics

As a next step, it is explored whether there are any characteristics of projects that lead to this
super-linear growth behaviour. Therefore, the projects are divided into two groups according to their
growth behaviour, i.e., whether it is super-linear or not. This is formulated as a series of hypotheses,
to be tested first on the full set of projects, therefore denoted as follows.

Hypothesis H3-fullset. Projects achieving super-linear growth are larger in number of LOC than
those not.

Hypothesis H4-fullset. Projects achieving super-linear growth are more active in number of revi-
sions than those not.

Hypothesis H5-fullset. Projects achieving super-linear growth have more programmers than
those not.

Hypothesis H6-fullset. Projects achieving super-linear growth have a higher inequality than
those not.

For testing these hypotheses, Spearman correlation coefficients and non-parametric Mann–
Whitney U -tests are employed due to the fact that all variables are not normally distributed. This
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can be verified by employing a Kolmogorov–Smirnov test, in all cases at 1% significance. For
testing all hypotheses, the respective values at the time of last revision was used.
In this analysis, a small but significant (at level 0.01) relationship with size in LOC, activity in

number of revisions and number of programmers, both at the time of data retrieval, can be found,
indicating that larger projects with a higher number of participants might be more often able to
sustain super-linear growth (see also Figure 2). This supports hypotheses H3-fullset, H4-fullset, and
H5-fullset, and would be in accordance to the findings of Godfrey and Tu [22], respectively, Robles
et al. [25], as both Linux and KDE are relatively large projects, but would contradict the assumption
of software evolution that increased size leads to more complexity and interdependencies, thus
decreasing growth rate. It would also be in conflict with the findings of Robles et al. [24], who
have found linear growth rates in 16 out of 18 large open source projects.
As a further explanatory variable, the inequality of work distribution within the teamwas explored.

Again, a small but significant positive relationship (significance level 0.05) was found, both when
computing the inequality based on LOC and on revisions (see also Figure 3), supporting hypothesis
H6-fullset.
This indicates that in the projects with super-linear growth rate, the distribution is in general

more inequal. At first glance, this seems to contradict the prior result of these projects having more
participants, but indeed seems to point at a certain development model. A project with super-linear
growth has a higher number of participants, but this does not necessarily lead to a more equal
distribution of output within this group. Indeed, it can verified that in the project population, there
is a significant correlation with coefficients over 0.9 between inequality, based on LOC or revisions,

Figure 2. Boxplot of project size distribution depending on growth behaviour.
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Figure 3. Boxplot of project inequality distribution depending on growth behaviour.

and number of participants (at level 0.01). Therefore, a few people within this larger group seem
to do most of the work, while the others assist them in large numbers. This organisation has been
proposed decades ago by Mills [39] as ‘chief programmer team organization’ [40], also termed
‘surgical team’ by Brooks [38], in which system development is divided into tasks each handled by
a chief programmer who is responsible for the most part of the actual design and coding, supported
by a larger number of other specialists like a documentation writer or a tester. This finding will
need to be further explored, as this form of organization seems to be able to overcome the problems
associated with increased complexity during software evolution.

4.3. Analysis of subsets

To check the validity of these results, we will explore two different subsets of the data set separately,
again applying hypotheses H2–H6. First, only projects having achieved a given maturity (devel-
opment status as assigned by the project administrator productive or mature) have been included
in a separate analysis, which leaves about a quarter (1087 projects) of the data. In this data sample,
the hypothesis that open source projects might experience super-linear in their early phases, but
slow down later to form a S-curve [21], can be checked to some extent. Robles et al. [24], for
example, did not find any difference in growth patterns before and after the first stable results. Using
this subset, the results are verified, using respective hypotheses H2-mature to H6-mature. Model
B employing a quadratic form is still a significantly better fit than the linear model A, support
H2-mature. Analysing further the second derivative of this model, again the growth rate in the
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mean (−0.586) and median (−0.011) is decreasing, and the percentage of projects with super-linear
growth is also nearly identical (425 out of 1087). Regarding project characteristics, the relation-
ship between super-linearity and inequality is no longer significant, the other remain, supporting
H3-mature, H4-mature and H5-mature, but not H6-mature.
As a second subset, only those projects have been selected which have achieved at least moderate

size. This has been defined as having at least five distinct programmers and a size of at least 100K
LOC at the time of data retrieval. In this set, 207 projects are included, applying hypotheses H2-
large to H6-large. Again, results confirm that the quadratic model outperforms the linear one and
therefore H2-large, but the second derivative is now close to zero. A t test of the distribution on
this value is no longer significant. The mean value is still negative with −0.364, but the median
with 0.0023 is already positive with half of the projects now showing super-linear growth rate (104
projects). Regarding project characteristics, all relationships hold, although size and inequality only
at 5% significance, supporting all hypotheses H3-large to H6-large.

4.4. Revised growth modelling

Lastly, the sharp distinction between two groups of projects, those experiencing super-linear growth
and those that do not, is revisited. A new group is introduced representing linear growth in contrast
to sub- and super-linear rates. This group is defined as those projects having either a better fit
for the linear than the quadratic model, or a coefficient of the quadratic term between −0.1 and
0.1, thus being very near to zero. Using this definition, this new group becomes the largest, with
42.3%, followed by 35.7% with sub-linear and 22% with super-linear growth. Therefore, still a
significant amount of projects exhibit super-linear growth. Again using Mann–Whitney U -tests, the
relationships between group membership and project characteristics are explored, using the adapted
hypotheses as follows.

Hypothesis H3′. Projects achieving super-linear growth are larger in number of LOC than those
showing linear growth behaviour, and projects achieving super-linear growth are larger in number
of LOC than those showing sub-linear growth behaviour.

Hypothesis H3′′. Projects achieving linear growth are larger in number of LOC than those showing
sub-linear growth behaviour.

Hypothesis H4′. Projects achieving super-linear growth are more active in number of revisions
than those showing linear growth behaviour, and projects achieving super-linear growth are more
active in number of revisions than those showing sub-linear growth behaviour.

Hypothesis H4′′. Projects achieving linear growth are more active in number of revisions than
those showing sub-linear growth behaviour.

Hypothesis H5′. Projects achieving super-linear growth have more programmers than those
showing linear growth behaviour, and projects achieving super-linear growth have more program-
mers than those showing sub-linear growth behaviour.

Hypothesis H5′′. Projects achieving linear growth have more programmers than those showing
sub-linear growth behaviour.
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Hypothesis H6′. Projects achieving super-linear growth have a higher inequality than those
showing linear growth behaviour, and projects achieving super-linear growth have a higher
inequality than those showing sub-linear growth behaviour.

Hypothesis H6′′. Projects achieving linear growth have a higher inequality than those showing
sub-linear growth behaviour.

In this case, as two consecutive tests are employed in testing H3′, H4′, H5′, and H6′, Bonferroni
correction is used to adapt the significance level for these tests accordingly. Nevertheless, the results
obtained above are in general verified, with projects experiencing super-linear growth being larger,
having more participants and a more inequal distribution of effort than those in the other two groups.
Only the difference in inequality to the sub-linear growth rate group is not statistically significant.
Thus, hypotheses H3′, H4′, and H5′ are unconditionally supported, H6′ to some extent. The
interesting and new result is that, in all of these characteristics, projects in the group of sub-linear
growth rate are statistically significantly larger than those in the group with linear evolution, thus
falsifying hypotheses H3′′, H4′′, H5′′, and H6′′. This relationship is also shown in Figure 4 for
size. For summary, Table III shows the distributions of growth patterns in different data sets and
Table IV gives an overview of all hypotheses, tests, and results.
Therefore, it seems as if projects of small size with few participants and relatively equal distribu-

tion exhibit linear growth patterns, while larger ones either show sub- or super-linear growth rates,
again depending on size. This leads to slight modifications on the reasonings given above: when a
project grows over time, it seems to either have the potential for even further growth, may be due

Figure 4. Boxplot of project size distribution depending on revised growth behaviour.
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Table III. Distribution of growth patterns in data sets.

Coefficient a
of quadratic model Frequency Frequency

Data set N (mean/median) Groups (absolute) (relative) (%)

Full 4047 −0.504/−0.020 Super-linear 1578 39
Other 2469 61

Mature projects 1087 −0.586/−0.011 Super-linear 425 39
Other 662 61

Large projects 207 −0.364/0.0023 Super-linear 104 50
Other 103 50

Full with revised groups 4047 n.a. Super-linear 890 22
Linear 1700 42
Sub-linear 1457 36

to a number of possible factors including a modular initial design, attractiveness or others, and thus
can achieve and sustain super-linear growth rate. On the other hand, in the absence of these factors,
the laws of software evolution apply and the growth rates decrease.

4.5. Threats to validity

According to Perry et al. [41], threats to validity in experimental studies, under which they group
version control systems as a form of retrospective artefact analysis, can be categorized into construct,
internal, and external validities. Construct validity means that the independent and dependent
variables accurately model the abstract hypotheses. Internal validity means that changes in the
dependent variables can be safely attributed to changes in the independent variables. External
validity means that the results generalize to settings outside the study.
The first, and a major source of possible threats is construct validity. Several measures used for

conceptualizing different aspects for the following analyses need to be discussed in this context. The
first possible issue is that LOC are used for studying the evolution of software systems instead of
more traditional higher-level metrics such as number of modules or files. But, as Herraiz et al. [42]
have shown, this approach is possible, their study validates that the evolution patterns in both cases
are the same. Also, Godfrey and Tu [22] noted that the LOC grew at roughly the same rate as the
number of source files in their case study of the Linux kernel. Furthermore, the definition of LOC
is very much disputed [34]. In this study, we adopted the definition of our main data source, CVS
[28], so comments are included. For example, Godfrey and Tu [22] have found that the percentage
of comments stayed almost constant in the Linux kernel, thus, giving an extremely high correlation.
This would mean that both measures can be used interchangeably, but this would merit further
investigation and validation. In addition, all types of files have been included in this analysis, which
might possibly also constitute a threat to validity. Due to the fact, that for example, documentation
or similar files are included, the evolutionary behaviour might be affected. Robles et al. [25] have
studied the evolution of KDE, distinguishing between several file types like code, documentation,
images and others, and found that, with the exception of multimedia, the growth patterns are similar
to code files. This would lead to the conclusion that results regarding evolutionary behaviour are not
affected by including different file types, but these results need to be strengthened and validated.
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The next construct to be discussed is the notion of programmer, which, although nearly no results
on personal level are given in this study, is important as it forms the basis for H3, and indirectly
for H4. A programmer in these analyses is defined by counting those people committing source
code changes through their CVS account, thus only people with such accounts are measured. In
some projects, people could be contributing code without CVS account, which sometimes is only
granted to long-time participants, by sending it to one of those persons who then does the actual
commit. Therefore, the number of programmers might actually be higher than the number reported
here. This fact is very problematic to check. In general, there are several possibilities of attributing
authorship of source code to persons, which are to use the associated CVS account (as done here),
to mine the versioning system comments for any additional attributions, to infer from attributions in
the source code itself, or by questionnaires or intimate knowledge of a project and its participants.
Attributions in source code or commit comments are highly dependent on existence and form
of a project’s standards, and therefore are also difficult to implement for larger data sets. Ghosh
and Prakash [14] have implemented a solution based on source code attributions for a set of over
3000 projects, with about 8.4% of the code base remaining uncredited, and with the top authors
containing organizations like the Free Software Foundation or Sun Microsystems. Nevertheless,
they have found a similar distribution of participation as found in this study’s data set, as have most
other approaches like questionnaires [36] or case studies of larger projects [6–9]. In a case study
of the OpenACS project under participation of project insiders and using the strict standards for
CVS comments, Demetriou et al. [43] have found that only 1.6% of revisions pertained to code
committed for someone without CVS privilege. Lastly, the notion of inequality or concentration
is quite difficult, as there are numerous measures for this concept, including Gini, Atkinson, Theil
or Herfindahl measures, each of which has advantages and disadvantages, for example, the Gini
measure has a maximum lower than 1 depending on the number of individuals. In this study,
a very simple measure was used as described, computing for each programmer in the team the
squared difference between the percentage of revisions he contributed, and the percentage he should
contribute if everyone contributed the same amount (excluding single-person projects), and summing
up for all team members. Preliminary analyses have shown that this measure is highly correlated
with others like the Gini coefficient, but further studies should be undertaken to strengthen this.
Also, Howison and Crowston [44] give an overview of problems associated with mining data

from Sourceforge.net, but as these mostly concern published data from the website, which is a less
concern for this study as it mostly uses the CVS archives accessed directly, these points do not
apply.
Internal validity seems to be a comparably lesser problem in this study. All precautions have been

taken to avoid any possible errors in establishing relationships between the variables, including
rigorous testing using appropriate methods and employing strict significance limits with Bonferroni
correction where necessary.
Of more importance and relevance is a discussion of possible threats to external validity, i.e., to the

generalizability of the results. This mostly hinges on whether the selected data set is a good sample
of the overall population, i.e., whether Sourceforge.net is representative for the open source ecology.
Due to the de-centralized nature of open source, this population and its characteristics are largely
unknown. For example, the number of existing open source projects cannot be known, summing up
all projects in different repositories like Sourceforge.net and others, and known projects with their
own web presence could only give a lower bound for this. Naturally, the same is true for the structure
of this population, e.g., the distribution of project sizes, or even for a more elaborate concept as
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success of a project [30,45–47]. For the case of this study, the characteristics of the data set used
are in several key features, both on project level and within projects, similar to other data sets and
projects studied. As mentioned before, the inequality in participation within projects was already
reported in many other works, using different approaches. Also, the distribution of size and number
of participants between projects are similar to other studies [11,12,14]. We have also tried to counter
the problem, which on the other hand seems to be a feature of the overall population, of many small
projects in the data set by separately examining the subset of large projects. Nevertheless, more
research is necessary to be able to determine to what extent Sourceforge.net is representative for
the overall open source project population.
For further validation of the results of this study, we propose to perform similar analyses based on

richer, larger, and newer data set, i.e., also covering the time passed since data collection. Currently,
several efforts are under way to ease the collection of and access to this sort of data, which were not
available before. For example, the FLOSSMOLE project (http://ossmole.sourceforge.net) offers
access to data from Sourceforge.net, but also now Freshmeat, Rubyforge, and Objectweb, limited
to data published on the web pages, not the source code versioning system. The Libresoft web page
at Universidad Rey Juan Carlos (http://libresoft.urjc.es) offers data and analyses results on Source-
forge.net and many major and well-known projects mostly based on source code versioning systems.
Also, the newly founded and EC-funded FLOSSMETRICS project (http://www.flossmetrics.org)
aims at providing access to both raw data and analyses of a huge number of projects using diverse
approaches. Overall, the public availability of large and rich data sets from open source projects
will enable studies in the field of software engineering to be done with more confidence than ever
before, and to be validated, replicated, and enhanced much more easily and in a more open fashion.

5. CONCLUSIONS

In this paper, the evolution of a large sample of open source software systems has been analysed.
The evolution of commercial systems has been an issue that has long been a centre of research,
and therefore a coherent theoretical framework of software evolution has been developed and
empirically tested. The data collection methodology relying on a large software repository and the
respective source code control systems has been described, and an overview on the collected data on
several thousand projects was given. Several approaches including different subsets of the data were
employed to analyse aspects of growth behaviour, with a quadratic model being shown as better
suited to model the behaviour than a linear one. The most interesting fact is that while in the mean the
growth rate is linear or decreasing over time according to the laws of software evolution, a significant
percentage of projects is able to sustain super-linear growth. There is a positive relationship between
the size of a project, the number of participants, and the inequality in the distribution of work
within the development team with the presence of super-linear growth patterns. On the other hand,
there is evidence for a group of projects of moderate size which shows decreasing growth rates,
while small projects in general exhibit linear growth. A resulting hypothesis, therefore, is that
there are factors which during the growth of a project either allow to evade the laws of software
evolution and sustain super-linear growth, or lead to the project succumbing to them and following
a decreasing growth pattern. A possible explanation for this fact is that projects with a super-linear
growth rate are able to implement a certain organizational model, the chief programmer team. This
form, present in open source software development, through measures like strict modularization and
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self-selection for tasks seems to be able to at least delay the negative effects arising during evolution.
In addition, especially the fourth law of software evolution, ‘conservation of organizational stability’
[18], implying constant incremental effort, might be violated especially in very large and prominent
projects which attract an ever increasing number of participants.
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