
The Quest for Open Source Projects that use UML

Mining GitHub

Regina Hebig, Truong Ho Quang,
Michel R.V. Chaudron

Chalmers | Göteborg University
{hebig,truongh,michel.chaudron}@cse.gu.se

Gregorio Robles,
Miguel Angel Fernandez

GSyC/LibreSoft
Universidad Rey Juan Carlos, Madrid, Spain
grex@gsyc.urjc.es, mafesan.nsn@gmail.com

ABSTRACT
Context: While industrial use of UML was studied intensely,
little is known about UML use in Free/Open Source Soft-
ware (FOSS) projects. Goal: We aim at systematically
mining GitHub projects to answer the question when mod-
els, if used, are created and updated throughout the whole
project’s life-span. Method: We present a semi-automated
approach to collect UML stored in images, .xmi, and .uml
files and scanned ten percent of all GitHub projects (1.24
million). Our focus was on number and role of contribu-
tors that created/updated models and the time span dur-
ing which this happened. Results: We identified and stud-
ied 21 316 UML diagrams within 3 295 projects. Conclu-
sion: Creating/updating of UML happens most often dur-
ing a very short phase at the project start. For 12% of the
models duplicates were found, which are in average spread
across 1.88 projects. Finally, we contribute a list of GitHub
projects that include UML files.

Keywords
UML, open source, free software, GitHub, mining software
repositories

1. INTRODUCTION
The Unified modeling language (UML) provides the facil-

ity for software engineers to specify, construct, visualize and
document the artifacts of a software-intensive system and to
facilitate communication of ideas [2]. For commercial soft-
ware development, the use of UML has been introduced and
commonly accepted to be a prescribed part of a company-
wide software development process.

When it comes to Free/Open Source Software (FOSS)
development, characterized by dynamism and distributed
workplaces, code remains the key development artifact [1].
Little is known about the use of UML in open source. Re-
searchers in the area of modeling in software engineering
have performed some efforts to collect examples of models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’16, October 02-07, 2016, Saint-Malo, France
c© 2016 ACM. ISBN 978-1-4503-4321-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976767.2976778

and of projects that use modelling. However the results are
often limited [19]. For example, the Repository for Model
Driven Development (ReMoDD)[5] is an initiative driven
by an international consortium of leading researchers in the
field of modeling. Nevertheless its content is growing at a
low rate: after 9 years (summer 2016) it contains around 81
models. Industrial projects are very reluctant to share mod-
els because they believe these reflect key intellectual prop-
erty and/or insight into their state of IT-affairs.

Due to the so far limited success in identifying open source
projects with UML, many researchers (including the authors
themselves at the start of this study) are rather pessimistic
finding much use of UML in open source projects. Further-
more, since most open source platforms, such as GitHub, do
not provide facilities for model versioning, such as tools for
model merging, we were even more pessimistic about finding
examples of UML models that were updated over time.

The lack of available data is the reason why so far no
answers could be given to several basic questions on the
amount of UML files in open source projects that are static
or updated, the time span during which models are created
or updated during the open source project, or the question
which of the project’s contributors do create models. Thus it
seems that UML is not frequently present in FOSS projects.
However, there is no exact quantification of its presence.

GitHub hosts around 10 million of non-forked repositories,
which makes it a good starting point to obtain an estimation
of the use of UML in FOSS projects. GitHub’s web search is
limited for this type of endeavor as it targets mainly source
code searches by developers. While there are many other
ways to access GitHub data (GHTorrent or the GitHub API)
obtaining data on UML usage is not trivial (as we will show).

In this paper we present our efforts to mine GitHub in or-
der to gain a list of open source projects that include UML
models. Due to the required manual steps, it is not yet fea-
sible to investigate all 12 million GitHub projects. Instead
we focus on a random sample of 10% of all GitHub projects
(1.24 million of the 12 million repositories). It turned out
that for achieving this goal we required to join forces and
expertise from different fields. The first challenge is the
identification of non-forked repositories in GitHub with the
help of the GHTorrent [6] in order to retrieve candidates for
files that might include UML diagrams. Since these many of
these diagrams are stored in formats that can also include
other information than models, e.g. images or XML based
files, it is further necessary to perform an automated recog-
nition of those files that actually are UML. Therefore, it is
required to perform two different checks, one for XML based

http://dx.doi.org/10.1145/2976767.2976778

formats and one for images, which is a state of the research
technology that just became available in 2014 [8]. Finally,
with the retrieved list of UML models, the git repositories
of these projects were accessed in order to retrieve informa-
tion about the repositories and further information about
commit and update histories of these models. As a result
we gain out of over 1 240 000 repositories a first list of 3 295
projects containing UML models.

The contributions of this paper are: 1. A first list of 3 295
GitHub repositories including altogether including 21 316
models. This list can be used by other researchers in future
to find case studies and experimental data, e.g. for develop-
ing model versioning technologies or for studying how design
decisions in models transfer to the code. 2. Based on this
data we give for the first time answers descriptive questions
about the number of models that are subject to updates,
the number of model duplicates that can be found, and the
point in a projects life time where models are created and
updated. 3. Furthermore, this research provides the basis to
ask when UML models are introduced and updated. Surely
the approach has still limitations, for example we will not be
able to identify how often the models are read. However, we
believe that these first descriptive results are just a starting
point. They enable us and other researchers to formulated
and address more advanced questions about UML usage and
its impacts on a project in future work.

The remainder of our paper is structured as follows. In
Section 2, we formulate a number of research questions. Sec-
tion 3 shows our review on relevant works. We describe our
study approach in detail in Section 4. Our findings are pre-
sented and discussed in Section 5 and Section 6, respectively,
including the threats to validity. We conclude our paper in
Section 8.

2. RESEARCH QUESTIONS
The data set that we are assessing in this work would allow

for a multitude of analysis, e.g. for assessing the distribution
of different model types more precisely than it has been done
in related work so far. However, answering all questions at
once is not possible due to space limitations, but also due
to limitation of time. Therefore, we decided to focus in this
paper on a set of descriptive questions that had not been
addressed in related work so far and that provide a necessary
starting point and frame for future analysis:

RQ1: Are there GitHub projects that use UML? Which
are these projects?

RQ2: Are there GitHub projects in which the UML models
are also updated?

These first two questions are interesting for two reasons.
First, their answer represents a description of the state of
practice that was simply not available so far. Second, projects
with updates are ideal candidates for future investigations
on model usage. For example, they might be used to evalu-
ate facilities for model versioning.

RQ3: When in the project are new UML models intro-
duced?

Is it at the beginning of the project or later? What span
of the project life time is covered by the phase where UML
models are actively created or modified? Again the descrip-
tive character of this questions is important. Only with
the answer, we will be capable to formulate more precise
questions on the model usage in future work. For exam-
ple, whether these results are homogeneous amongst open

source projects or not, will imply directions for future in-
vestigations. In long term/ future work this might lead to
investigations what form of model usage is most efficient and
so on.

RQ4: What is the time span of “active” UML creation
and modification?

With this question we want to know how long is the time
span during which models are in active use during a project?
A limitation of our methodology is that we cannot investi-
gate how often and when models are read. However, we can
have a look at the time span of active UML creation and
modification, i.e., the time between the first introduction of
a UML file and the last introduction or update of UML files
within a project.

RQ5: Are UML files originals? Special model versioning
techniques such as model merging are not explicitly sup-
ported by GitHub. Therefore, we are interested in the ques-
tion how many of the found models are duplicates of other
models.

Despite the big interest in these questions, it was until
now not possible to answer them. The reason is that simply
no systematic knowledge exists about UML in open source
projects. Furthermore, even if projects are known, it re-
quires advanced mining of the repository in order to get
related information about changes and contributors.

3. RELATED RESEARCH
This paper builds on previous research done in two re-

search communities: the software modelling- and the mining
software repositories communities.

3.1 Use of UML in FOSS
Studies on the usage of UML are frequently done amongst

in industry (mostly through surveys) [16, 20]. However, only
few studies focus on freely available models, such as can be
found in open source projects. Reggio et al. [16] investigated
which UML diagrams are used based on diverse available re-
sources, such as online books, university courses, tutorials,
or modeling tools. While this work was done mainly man-
ually, Karasneh et al. [11] use a crawling approach to auto-
matically fill an online repository1 with so far more than 700
model images- Both works focus on the models only and do
not take their project context into account. Further, they
do not distinguish between models that stem from actual
software development projects and models that are created
for other reasons, e.g. teaching. An index of existing model
repositories can be found online [19]2. However, in addition
to their small size, these repositories seldom include other
artifacts than the models, making it impossible to study the
models in the environment of actual projects.

Further, there are some works addressing small numbers
of case studies of modeling in open source projects. Yatani
et al. [23] studied the models usage in Ubuntu development
by interviewing 9 developers. They found that models are
forward designs that are rarely updated. Osman et al. [15]
investigated 10 case studies of open source projects from
Google-code and SourceForge that use UML. They focused
on identifying the ratio of classes in the diagrams compared
to classes in the code. They find only seldom cases where

1http://models-db.com/
2Index of model repositories http://www2.compute.dtu.dk/
˜hsto/fmi/models.html

http://models-db.com/
http://www2.compute.dtu.dk/~hsto/fmi/models.html
http://www2.compute.dtu.dk/~hsto/fmi/models.html

models are updated.
Finally, there are three works that actually approach a

quantitative investigation of models in open source projects.
Chung et al. [3] questioned 230 contributors from 40 open
source projects for their use of sketches and found that
participants tend to not update these sketches. A study
that focuses on software architecture documentation in open
source projects was performed by Ding et al. [4] They man-
ually studied 2 000 projects from SourceForge, Google code,
GitHub, and Tigris. Amongst those projects that used such
documentations they identified 19 projects that actually use
UML.

The work that is probably closest to our study is the one
of Langer et al. [12] They searched for files conforming to
the enterprise architect file format (which is a format that
can be used to store UML files) within Google code and
GitHub. They identified 121 models. They further assessed
the model lifespan (between introduction and last update)
to be in average 1 247 days. However, studying a single file
format is a rather limited view on UML. Furthermore, the
project perspective is not considered and they rather put a
focus on the used UML concepts.

3.2 Mining
Mining software repositories has mainly focused on as-

pects related directly to (programming) source code. How-
ever, projects may include non-source-code sources such as
images, translation, documentation or user interface files,
that can be usually identified by their extension [18]. By do-
ing so, research has shed some light on the variation and spe-
cialization of workload that exist in FOSS communities [21].

The study of specific file formats that are non-source code
can be found as well in the research literature: McIntosh
et al. [13], [14] have investigated the build system for its
evolution and effort, or the analysis of infrastructure as code
that has become mainstream in the last years [9].

4. METHODOLOGY
In this section, we describe our study approach. The over-

all process is shown in Figure 1.

UML
File list

GitHub

1 Data	collection

Potential UML file list

3 Extract	Meta-data

2 Filter	UML	files
UML	Image	

Filter
Textual	
Filter

Validation

5 Analyse result

4 Query	database

CVSAnalY MySQL

GHTorrent

Figure 1: Overall process

First, we obtained a list of 10% of the GitHub repositories
from GHTorrent [6] that are not forks. This resulted in

a list of files of 1 240 000 repositories, those that had a
branch that could be downloaded. From this list, potential
UML files were collected using several heuristic filters based
on the creation and storage nature of UML files (Step 1).
Section 4.1 and Section 4.2 describe our approach and used
filters in detail.

An automated process was built to examine the existence
of UML notation in the obtained files (Step 2). A manual
validation step is taken in order to consolidate the classifi-
cation result. We describe the classification method in Sec-
tion 4.3.

We have then obtained the meta-data from those reposito-
ries where a UML file has been identified by means of using
the CVSAnalY tool [17] (step 3). Section 4.4 discusses tool’s
settings and the meta-data structure.

In step 4, we queried the metadata (taken in Step 3) with
respect to our research questions. We answer the research
questions by analyzing the result (Step 5). Note that during
the data analysis further files got lost for diverse reasons (see
discussion section 6). Thus, we were finally able to analyze
a set of 21 316 UML model files.

A replication package of our analysis is available online
[7].

4.1 Occurrence of UML
To understand how we searched for files containing UML,

it is important to understand how these files are created and
stored. Figure 2 illustrates the different sources of UML
files (at the bottom in green). UML models might be cre-
ated by manual drawing (sketching). Possibilities to create
models directly with a computer are the usage of tools that
have drawing functionality, such as Inkscape, or dedicated
modeling tools, such as Modelio or Argo UML. Some of the
modeling tools even provide the possibility to generate UML
models, e.g. based on source code. This differences in tool
support lead to a wide variety of ways in which UML mod-
els are represented by files. The different possibilities are
illustrated in blue at the top of Figure 2: Firstly, manual
sketches are sometimes digitized with the help of scanners
or digital cameras and thus lead to image files of diverse
formats. Secondly, tools with drawing capabilities can ei-
ther store the UML models as images, such as .jpeg and
.png or .bmp, or may have tool specific formats, e.g. ”pptx”.
Thirdly, dedicated modeling tools work with tool specific file
formats, e.g. the Enterprise Architect tool stores files with a
“.eap” extension. Also some tools work with ’standard’ for-
mats for storing and exchanging UML: “.uml” and “.xmi”.
Yet, modeling tools with specific formats often allow to ex-
port and import these standard formats and allow to export
the models as images. As a consequence, when searching for
UML many different file types need to be considered.

4.2 Data Collection
For all repositories from GHTorrent [6] that are not marked

as forks, we used the GitHub API: i) To obtain file list
for master branch; ii) If no master branch found, ask for
default branch; iii) To obtain the file list from default

branch. With up to three GitHub calls (i, ii and iii) for each
repository, given the GitHub API limitation of 5 000 re-
quests/hour, it took over two weeks to retrieve the complete
file list once the machinery was set up.

As explained in section 4.1, different file formats need to
be taken into account. However, as not every image file is

UML Models

Image Formats,
e.g.: .jpg, .png …

Tools with drawing
functionality, e.g. PowerPoint

Tool specific file
formats, e.g.

.eap, .pptx, .argo,
.ecore …

Standard formats for storing and
transferring UML models:
• .uml
• .xmi

Modeling tools, e.g.:
• Eclipse UML2 Tools,
• Enterprise Architect,
• Modelio,
• ArgoUML,
• Microsoft Visio,
• …

Manual sketches,
e.g. scans

«store as»
«store as»

«export/store as» «store as»«export»

«export/store as»

Figure 2: There is a large variety of tools for creating and
formats for storing UML models

UML, also not every xmi file or files with the endings of tool
specific format extensions are UML. Therefore, the filtering
process does not only consist of the collection of files with a
specific extension, but also of a check whether the collected
files are really UML files. It makes no sense to collect files
in the first step, for which we have no automated support
for the second step.

Image files as well as standard formats are more common
and are created by most modeling tools. For such common
tools, developing an approaches to identify UML has a good
cost-benefit ratio. The applied methods are explained below
in section 4.3. However, for tool specific formats this ratio
can be very low. Therefore, we searched only files of those
formats where we could exclude two cases:

• The format is used within the tool exclusively for UML
models.

• The file extension of the format is not used by other
tools. For example the extension of Enterprise archi-
tect files (“.eap”) is also used for Adobe Photoshop
exposure files.

To identify these formats we used as a starting point the list
of UML modeling tools collected on WikiPedia3, which we as
experts consider as one of the most complete lists available.
We checked whether the file formats used by these tools do
not fulfill the two obstacles mentioned above.

Thus, we search for following file types:

• Images: Common filenames for UML files (such as
”xmi”, ”uml”, ”diagram”, ”architecture”, ”design”) that
have following extensions (”xml”, ”bmp”, ”jpg”, ”jpeg”,
”gif”, ”png”, ”svg”)

• Standard formats: [”uml”, ”xmi”]

Hence we do not consider document formats such as word
(.doc(x)), .pdf and powerpoint (.ppt(x)). The main reason
is that currently technology is not yet capable of extracting
UML models out of such general documents.

4.3 UML filters
At this stage, the files obtained from Step 1 were checked

if they really contain UML notation.

3List of modeling tools https://en.wikipedia.org/wiki/List
of Unified Modeling Language tools, Last visited 9th De-
cember 2015

4.3.1 Identify UML images
Firstly, all images were automatically downloaded. Files

that could not downloaded or unreadable were eliminated
(Result: Successfully downloaded files downloads: 55 747;
errors: 1 819). In addition, observations on downloaded im-
ages showed a remarkable number of icons and duplicate im-
ages. While it’s mostly impossible to find reasonable UML
content in icon-size images, including duplicate images in
candidate set could definitively cause redundancies to clas-
sification phase. Therefore, we eliminated icon-size images.
Duplicate images were proceeded as: i) Duplicate images
were automatically detected; ii) Representative images were
added to classification candidate list; iii) After classification
phase, duplicate images of an image will be marked as the
same label as the image.

In particular, 15 726 images that have icon-dimension-size
no bigger than 128 x 128 were excluded. Subfigures 3a, 3b
and 3c show examples of such images.

(a) Dup 1a (b) Dup 1b (c) icon

Figure 3: Example of duplicates and icon-size images

In order to detect duplicate images, we created a simple
detection tool by using an open source .NET library ”Sim-
ilar images finder” 4. Given two images, the tool calculates
differences between their RGB projections to say how simi-
lar they are. In our case, we chose a similarity threshold at
95% since it gave the best detection rate through a number
of tests on a subset of our images. Downloading of images
took 27 hours.

The final image set of 19 506 images were classified as
UML or non-UML images by using a classifier from our
prior research [8]. The classifier was trained by a set of
1 300 images (650 UML-CD images and 650 non-UML-CD
images). The Random Forest algorithm was chosen since
it performed the best in term of minimizing the amount of
false-positive rate (expecting below 4%). The automated
classification too 26.5 hours. In order to eliminate false-
positive and false-negative cases, we manually checked the
whole image set. It took 6 working days of effort of an UML
expert to complete the checking. This manual check allowed
us to prove our classification method and to consolidate clas-
sification results. It turned out that the automated analysis
had a 98.6% precision and 86.6% recall. The false positives
and negatives could be identified due the the manual check.

Gradually, we manually picked up UML in other types
(i.e., Sequence Diagram - SD, Component Diagram - CPD,
Deployment Diagram - DLD, State Machines - SM and Use-
case - UC). UML files that are sketches (SKE) were counted,
too. The list of images was marked with a number of labels:
”UNREAD”, ”SVG”, ”SMALL”, ”DUP”, ”CD”, ”SD”, ”CPD”,
”DLD”, ”SM”, ”UC” and ”SKE”.

4https://similarimagesfinder.codeplex.com/

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://similarimagesfinder.codeplex.com/

4.3.2 Identify UML files among .xmi and .uml files
Both .xmi and .uml files are specific XML formats. The

later ones can include uml models, only and we found 10 171
of them. XMI is a standard format that should enable ex-
change of models between different tools. In theory it should
be simple to identify whether an XML file in general con-
tains a UML model: the schema reference in the XML file
defines the content’s format.

We performed the analysis in 3 steps:

1. In practice the schema reference are often generated
in different forms by tools. For example, we found fol-
lowing three schema references to the UML: “org.omg/
UML”,“omg.org/spec/UML”, and“http://schema.omg.
org/spec/UML”. Therefore we first of all searched
with a simple search function for the string “UML”
and “MOF” (the meta meta model of the UML lan-
guage) in a random subset of the models. This way
we could come up with a list of 7 strings representing
UML schema references.

2. In a second step we automatically downloaded the iden-
tified xmi files and parsed them for the schema refer-
ences. We could identify 876 files with UML schema
references.

3. In a last step we wanted to double check that the exis-
tence of such a schema reference is sufficient to assume
that the file includes UML. Therefore, we took a sam-
ple of four open source projects containing together 53
(between 1 and 33 respectively) links to xmi files. In
addition to the check for schema references, we went
manual through the content of the 53 files to assess
whether and what kind of models they include. A com-
parison of the results with the data from the step above
confirmed that the existence of an UML/MOF schema
is a reliable indicator for rating a file as UML: of the
53 xmi files, 30 had been rated by both approaches as
UML, while the other 23 were rated as non-UML.

Finally we run a duplicate detection on .xmi and .uml files
by comparing hash values of the file contents.

4.4 Metadata Extraction and Querying
We downloaded all repositories where at least one (real)

UML file was identified and extracted its metadata with the
help of CVSAnalY [17]. 100 repositories from the initial list
could not be retrieved, due to various reasons, e.g. changes
from public to private repositories.

In average, around 30 000 projects per day were down-
loaded for each GitHub account. Taking these results a
time span of 14 months ((12 847 555 projects / 30000) /
30) would be required for the analysis, when using one sin-
gle GitHub account. As this would have made this study
in feasible, we parallelized the retrieval of the JSON files
through many GitHub accounts, which were donated during
this process. This reduced the time span to approximately
one month. While the download is an automated process,
but the parallelization is not. It took around 1 h 30’ each
day to run and check each set of repositories, using up to 21
GitHub accounts. Altogether this process took 6 weeks.

After this process, we had 21 316 of the identified UML
files from 3 295 repositories and the corresponding meta-
data in a SQL database. A new SQL table was added to
the ones provided by CVSAnalY with just the UML files
for easy and efficient querying. A set of Python scripts were

used too query the database and aggregate the data required
to answer the RQs. This final step took 14 days.

5. RESULTS
This section presents the results of our investigation. In

this research an ample amount of data have been used, usu-
ally handled by scripts developed by the authors. Detailed
information of the former and the code of the latter can be
obtained in the replication package5.

5.1 RQ1: UML in GitHub projects
We downloaded 1 240 000 non-forked GitHub repositories

obtained from GHTorrent. After filtering the data for po-
tential UML files based on type, we retrieved a list of 100 702
links. Of those, 21 316 were classified as UML.

The further extraction of model related data, turned out
to be an additional filter, since details could not be ex-
tracted for all files. The reason for this is due to the fact
that our retrieval procedure takes so much time that con-
text changes. So, for instance, in the time that goes from
the retrieval of information of the files the are included in a
project (July/August 2015) to the time where the git reposi-
tories where downloaded (November/December 2015), some
of them were renamed, deleted or made private.

In consequence, 21 316 files could be retrieved for the
following analysis (as summarized in Table 1). These files
belong to 3 295 GitHub projects. Of these 1 947 include a
single UML file, only and 1 169 projects include between 2
and 9 UML files. Furthermore, we identified 158 projects
with 10 to 99 UML files and 4 projects with more than 100
UML files. In the following analysis, the later 21 projects
are taken separately, when statistics per model are shown.
The reason is that they show very different characteristics
and would, with their large number of models6, strongly bias
and hide trends that occur within the other projects. This
first list of identified GitHub projects that include UML can
be found online[7].

Table 1: Found distribution of model files by formats

xmi uml jpeg png gif svg bmp
Share 3.4% 44.9% 4.7% 29.6% 16.6% 0.6% 0.2%

Results for RQ1: The here identified repositories
with UML files represent already 0.28% of the
GitHub repositories. Of these, two thirds of the
projects contain a single UML file.

5.2 RQ2: Versions of UML models
The next important question was whether models are ’read-

only’ or also sometimes updated.
Table 2 summarizes the distribution of model files by num-

ber of updates per model. Our results show that the vast ma-
jority of the UML files (18 867) are never updated. Nonethe-
less, we found that more than 11% of the UML files in our
sample (2 449 models) were updated one or more times. Fur-
ther, the number of updates of models that are updated is

5Replication package http://oss.models-db.com
6One of the projects is “eclipse/emf.compare/”, which in-
cludes more than 6 000 models. We strongly assume that
many of these models are generated, e.g. for tests.

org.omg/UML
org.omg/UML
omg.org/spec/UML
http://schema.omg.org/spec/UML
http://schema.omg.org/spec/UML
http://oss.models-db.com

Table 2: Distribution of files / projects by number of updates

number
of up-
dates

models in
projects with
1 to 99 models

models in
projects with
≥ 100 models

projects

0 7 947 10 921 2416
1 946 466 332
2 336 42 157
3 151 19 78
4 107 7 64
5 82 2 51
6 67 4 34
7 38 1 18
8 24 3 17
9 24 1 12
10 11 2 8
<20 70 3 50
<30 24 0 25
<40 14 0 8
<50 1 0 6
<60 2 0 2
<70 0 0 0
<80 0 0 2
<90 1 0 3
<100 1 0 1
>100 0 0 11

on average 3,0 times (although the median, which is more
significant given the skewed distribution, is 1 time). Fur-
thermore, Table 2 summarize the distribution of projects by
sum of model updates or all models of a project.

26.67% of the projects in our sample include at least one
model update. Models are less often updated in projects
that have more than 100 models (38.09% in our sample), in
contrast to 26.60% of the models in projects with less than
100 models are updated. There are only 11 projects that
include more than 100 model updates.

Results for Q2: Only 26% of the investigated
projects updated their UML files at least once.

2286

965

3259

883

390
291 323

131 149 193
97 47

402

135 53 27 15 99 81
0

500

1000

1500

2000

2500

3000

3500

M
o

d
el

 f
ile

s

Project age in days at a models initial commit

Figure 4: Distribution of model files sorted by project’s age
in days when the diagram was introduced (models within
projects that have less than 100 models)

5.3 RQ3: Time of UML model introduction
Figure 4 shows the dates of the introduction models con-

sidering the amount of days since the start of the project,

while Figure 5 displays the same information by dividing
the duration of the project from the start to nowadays in
a normalized way (so, the 50% mark would be half of the
project duration since its start until today).

Projects with less than 100 UML models seem to have
a tendency to introduce models at the project start. In
contrast, the 21 projects with 100 or more models show a
different graph. We decided to show the numbers separately,
since these projects with partially more than 1 000 models
would easily bias the presented view.

7129

819
438 485

162
399

111 68 152 83
0

1000

2000

3000

4000

5000

6000

7000

8000

M
o

d
el

 f
ile

s

Percentage of days (relative to time between the respectives project's start and today) alreday passed,
when the model files was initially committed

Figure 5: Distribution of model files sorted by percentage of
project time that passed when the UML file was introduced
(for projects that have less than 100 models)

However, we found that calender time (days) may not
be the best way to consider a project’s progress, since the
amount of activities can highly vary during the lifetime of
open source projects. Figure 6 shows the distribution of
the models based on the time of their introduction when
measured by the percentage of the project’s commits.

2452

786 823
742 788

618
782

884 837

1134

0

500

1000

1500

2000

2500

3000

M
o

d
el

 f
ile

s

Amount of overall number of commits already done within the respective project, when the model file
was committed

Figure 6: Distribution of files sorted by number of overall
commits done when the diagram was introduced (For models
in projects that have less than 100 models)

An interesting difference between the two views is that the
consideration of time in terms of amount of commits shows a
much more balanced view. While this may not be the most
intuitive notion, it helps to place the modeling activities
relative to the active phases of the project. Thus we can
see whether model introduction happened before or after
a majority of other development activities (such as coding
or documenting). In addition, it helps to better represent
projects that had their main activity in the past and/or have
become inactive. From our results, it can be seen that new

models are introduced predominantly in the early phases
(above 25% of them in the first 10% of the commits), but
that new UML models are introduced in later phases too.

Finally, as mentioned above the results look very different
for the 21 projects that have 100 or more models. As Fig-
ure 7 illustrates there most models are introduce during the
last third of the project activities.

1618

870 795

27
181 107

794

3523

1127

2429

0

500

1000

1500

2000

2500

3000

3500

4000

M
o

d
el

 f
ile

s

Amount of overall number of commits already done within the respective project, when the model file
was committed

Figure 7: Distribution of files sorted by number of overall
commits done when the diagram was introduced (For models
of the 21 projects that have 100 or more models)

Results for Q3: UML models are introduced in all
active phases of a project with a tendency towards
the early phases.

5.4 RQ4: Time span of active UML
In this RQ, we have looked at the time span of active

UML creation and modification, i.e., the time between the
first introduction of a UML file and the last introduction or
update of a UML file within a project.

1898

348
242

196

73

195
87 60 82 114

0

200

400

600

800

1000

1200

1400

1600

1800

2000

P
ro

je
ct

s

Time between first and last model commit or modification in amount of project's commits

Figure 8: Projects by time between first model commit and
last model update-or-commit as percentage of project’s com-
mits

Figure 8 summarizes these time spans. The maximum
time span found is thereby 100% of the projects commits,
while the median of the time spans is 5.8%. We found that
by far most projects seem to introduce (and update) all mod-
els within a single day. Model creation and updating plays
only in a minority of the projects a role during more than
10% of the project’s commits.

As with RQ3, we use commits as an alternative measure of
the time where UML introductions/updates occur. Figure 9

presents the active UML phase for all 3 295 projects from
this perspective. The active UML phase of a project is given
horizontally in percentages of commits done, starting when
the first model is introduced and ending when the last model
is introduced or updated. The diagram illustrates the above
finding that a minority of projects (less than 10%) have UML
active phases that cover nearly the whole project life time.
For a majority of projects the active UML phase is very
short and often concentrated in the first commits.

Results for Q4: Few of the studied projects are
active with UML during their whole lifetime. In
general, the projects work very shortly on UML,
usually at the beginning.

5.5 RQ5: Duplicates
Our final question was whether the 21 316 found model

files are all distinct originals. To answer the question we
used automated duplicate detection, as indicated above.

As a result we identified that 16 576 of the 21 316 found
models where unique in our sample. The remaining 4 741
model files represent 2 300 models of which each occurs at
least twice. Thus, 21 316 found model files include together
18 876 distinct models. In Figure 10 we summarize how
often models with duplicates occurred in our sample. Inter-
estingly, one of the models was found 79 times. In average,
models (if duplicated) are duplicated 3.63 times.

Furthermore, we investigated, whether model duplicates
belong to the same project. To our surprise this is the case
only for the half of the models with duplicates. However,
the roughly the half of these models have occurrences in
multiple repositories (up to 43). In average the number of
projects over which duplicates of a model are spread is 1.88.
Figure 11 summarizes the results in form of a histogram.

While duplicates that occur in the same repository might
be result of attempts to model versions, we cannot explain
the high number of cases were models occur in multiple
projects. A possible explanation might be that models might
be stored as part of platforms or plug-ins that are reused
in multiple projects. Another explanation could be project
forks that are done manually by cloning repositories instead
of using GitHubs fork mechanism.

Results for Q5: While most models seem to be
unique, a large number of identified distinct mod-
els (12%) occur several times. In average dupli-
cates are spread over 1.88 projects.

6. DISCUSSION
Considering our initial expectations we were surprised to

find such a big number of projects with UML. Surely, 3 295
projects are still a small number compared to the overall
number of GitHub projects. Nonetheless, the identification
of 21 316 UML models exceeds by far the expectations that
we had based on the numbers of models found so far in open
source projects in related work, e.g. 121 models by Langer
et al.[12] or 19 projects with UML by Ding et al.[4].

Data consistency.
We want to shortly discuss the type of data that we can

get with the presented mining method. The method we
applied is not trivial and consist of several steps of data

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentages of commits before during and after active UML creation and modification phase

P
ro

je
ct

s
(s

o
rt

ed
 b

y
le

n
gt

h
 o

f
p

h
as

e
o

f
ac

ti
ve

 U
M

L
cr

ea
ti

o
n

 a
n

d
 m

o
d

if
ic

at
io

n
)

%commits during modeling

Figure 9: Plot of all 3 295 projects illustrating the placement of active UML creation and manipulation phase within the
overall project life span. Time is measured in percentages of commits done, when the first model is introduced and the last
model is introduced or updated. The projects are sorted by the relative amount of the active modeling phase (projects with
a relatively long active modeling phase are at the top, projects with a shorter phase are at the bottom).

1287

590

123
52 62

18 29 18 27 58 20 8 3 0 3 2 0
0

200

400

600

800

1000

1200

1400

N
u

m
b

er
 o

f
m

o
d

e
ls

Number of found occurences of a model

Figure 10: Histogram of models that were found at least
twice indicating how often models occur.

1149

548 533

22 18 9 10 2 0 0 7 0 1 1 0
0

200

400

600

800

1000

1200

1400

N
u

m
b

er
 o

f
m

o
d

el
s

Number of projects that include dublicates of the same model

Figure 11: Histogram of models that have duplicates in one
or more projects. The histogram shows the number of mod-
els by number of projects within which occurrences of a
model were identified.

collection. For example, we search for UML candidates using
a GHTorrent dump, but accessed the GitHub API to retrieve
further information about model contributors. Due to the
difference in time between the creation of the GHTorrent
dump and the request to the GitHub API, we had drop outs
of identified models/projects during the second step.

In addition, we performed this method for the first time,
which had an exploratory component in trying out what
kind of data we can (and need to) retrieve. This led to the
situation that we accessed the GitHub API several times,
leading to different drop-outs in models and projects for the
different types of information collected.

A lessons learned is that, for the next analysis, we have
to make a clear planning of all required data in advance, to
ensure that at least the second threat to data consistency can
be reduced. For this paper we addressed the problem with
a reduction of the finally analyzed data set to models and
projects for which we had the data points that are necessary
to answer the different research questions.

Static models.
A finding is that many projects use UML only in a very

static way. In such projects models are never updated and
often all models are introduced at the same point in time.
These results confirm findings from smaller studies such as
Yatani et al.’s [23] or our own (Osman et al.’s [15]), who
both found that updates of models are rare. This can have
different reasons. One optimistic interpretation would be
that models are just introduced as first architectural plans
that are followed and used as documentations, but never
changed. Another rather pessimistic interpretation would
be that modeling is just “tried-out” at some point in time
and then dropped. An observation that at least supports the
idea that the optimistic interpretation plays a role is that
in most projects the main activities of introducing models
happen during the first half of all commit activities.

Projects with regular model usage.
Another number that we consider surprisingly high is the

number of projects (or models) with more than 20 updates
as well as projects with more than 1 year of active UML
creation and modeling. Again, compared to the number of
overall GitHub projects the here found number seem small.
Nonetheless, it was unexpected to find several projects that
seem to use modeling on a regular basis.

It has to be noted that the results we found are in contrast
to the study of Langer et al. [12] who found an average
model lifespan of 1 247 days, while studying 121 enterprise
architecture models in open source. We found much lower
lifespans. The difference in the findings might be caused by
the fact that enterprise architect is a modeling tool that is
rather used in an industrial context. Thus, the probability
that the projects studied by Langer et al. [12] have industrial
support is very high.

Model genesis.
An aspect that we could not address in this study the

source of the models or the reason for model usage. Accord-
ingly, the data set was not filtered to exclude for example
student projects. We expect this to influence the the find-
ings in this paper, since student projects might show differ-
ent patterns of model updates, model introduction time, and
life span than non-student projects. Addressing this threat
will be subject to future work.

Different populations.
A finding that is supported by multiple of the figures

shown above is that there seem to be different populations
of model usage. A first hint that the data set covers different
populations can be seen in Table 2. There is a difference in
the number of model updates between projects with more
than 100 model files and projects with less than 100 model
files. One reason for different populations could be the ac-
tual form of model usage and creation. Models might be
created manually or automatically (e.g. through reverse en-
gineering). They might solve as plans for system design or as
description for an already existing system. Model updates
might be performed in order to make small corrections af-
ter an initial creation (leading to updates within in short
span of time) or in order to make a documentation up to
date after a longer phase of system change. At the current
state we do not know whether these populations can actually
be distinguished on their characteristic commit and update
pattern. However, a further hint that they might play a role
can be seen in the relatively constant distribution models
by the amount of commits that were already done within a
project (see Figure 6). We can see model introductions at
all project ages. The in average short time of active UML
creation and modification speaks against the idea that these
introductions at different points in time happen within the
same projects. Thus, it seems that we have to deal with
different groups of projects introducing their models at dif-
ferent points in time. In future work we plan to have a closer
look at the model usage in order to study whether we can
associate pattern to different populations of model use.

Duplicates.
The large number of identified duplicates leads to ques-

tions. What are the reasons for duplicates? Missing model
versioning techniques alone cannot explain the found results.

Furthermore, it is not clear yet whether these duplicates
represent a form of model use. E.g. if models are adopted
together with code from other projects, they might be used
to understand the alien code that is embedded in a new
project.

Paving the way for future research.
Finally, one of our main contributions is that we presented

a method to systematically mine for UML models in GitHub
and that this leads to an enormously promising set (much
larger than any existing set of projects) for future analysis.
On the one hand this will help us to address in future ques-
tion that arise from the findings of this paper. For example,
concerning the model updates, it would be interesting to
consider following questions:

• Are models updated by their original authors or by
other people?

• In how many projects are UML files obsolete?

Further considering the time of model introduction, we would
like to address the following question further: Has the time
of introduction an influence on the ”success” of an open
source project, i.e. the question how many developers join
a project? And of course we would like to address the ques-
tion whether different populations of model-usages can be
statistically distinguished.

Even more important, the hereby published list of open
source projects using UML can help other researchers to
progress in their studies. For example:

• What kind of UML diagrams are used most often?

• What coding languages are used most often in combi-
nation with UML?

• What files are changed together with changes in archi-
tectural models?

• Can UML help to attract and integrate inexperienced
developers?

Furthermore, the data can be used to find case studies for
other model or architecture related research, such as:

• Does a good architectural design in models help to
create a good architecture in the code?

• Tools for traceability management and model merging
can benefit from the real case studies.

• Research that integrates models into fault prediction
can be evaluated with the help of that data.

Thus, we believe that the identified initial list of open
source projects with UML will be of great help for other
researchers, too.

7. THREATS TO VALIDITY
We defined a number of threats to our research’s validity.

We categorized them by using the validity terminology in-
troduced by Wohlin et.al [22]. We identified three types of
threats to validity, they are: Construction Validity, External
validity and Conclusion Validity.

7.1 Threats to construct validity
There were a number of threats that might cause the loss

of UML files during data collection phase:

• With regards to the materials that were used to collect
data, we used a subset of GHTorrent SQL dump from
2015-06-18 which is out-dated at the current time. Ac-
cordingly, newer projects have a higher probability to
be dropped out. In addition, the limitation of 5 000
hits per hour of GitHub API made data collection last
long. Requests that were done at different points of
time during the period could give different outcomes,
and probably the loss of potential UML files.

• Our collection method, which made use of a number
of heuristic filters, might overlook potential UML files
which are not complying with searching terms and file-
type list. We noticed some cases where UML files had
been named differently such as act-cartesortir.jpg and
FrameworkInterface.png. Further, we restricted the
search to file formats for which we had techniques to
decided, whether the file includes UML. This excludes
a couple of other formats which might include mod-
els, such as some formats from modeling or graphic
tools (e.g. visio files or enterprise architect files), but
also documents that might include models as part of
documentations, e.g. pdf and word (docx) files or pow-
erpoint.

The loss of UML files might affect to our analysis in the
sense that it could make us underestimate the number of
projects with UML models and the number of UML models.
Being aware of the above consequences, in this research, we
don’t use our data to analyze the frequencies of model usage
as well as the evolution of model usage in general over *the
years*. We were focused on getting an overview of various
aspects of the use of UML in GitHub projects. We expect no
systematic bias concerning the aspects that we investigated!

The applied mechanisms for duplicate detection allow us
to identify duplicates within the same file type. However,
we cannot identify whether an image and an .xmi file are
duplicates. This might lead to an underestimation of the
amount of models in this paper. Despite this limitation,
our results are already interesting and we consider them a
valuable staring point, towards a better understanding of
model usage in FOSS.

Kalliamvakou et.al discuss a number of promises and po-
tential risks that researcher might be faced when mining
GitHub repository [10]. We found that the threat that many
active projects might not conduct all their software devel-
opment in GitHub could somehow mitigate our analysis.

7.2 Threats to external validity
During data collection phase, in order to minimize the

possibility of incorrectly collect non-UML files, we excluded
some tool-specific file types form the search for UML mod-
els. This might reduce the generalization of our results with
respect to these UML tools. However, most of these tools,
e.g. Enterprise Architect, are commercial. It is to be inves-
tigated in future work whether they are used in open source
projects to a similar degree as non-commercial formats.

Data in this research was only taken from GitHub, but
not other OSS hosts/platforms such as SourceForge, Google
Code, etc. As they differ to each other in terms of size,
functionality, users and user’s behaviors, the results of this
paper can hardly be generalized to the other platforms. It
is possible that UML is used in a different ration within
projects at other platforms. However, as GitHub is one of

the biggest player in the field, we strongly believe that our
investigation gives valuable insights to a majority of the OSS
community.

A manual glance at the retrieved list of UML models
shows that several project paths include names such as “As-
signment” or “master’s thesis”. While this is no direct threat
to our results, it limits the generalizability. For example, it is
possible that many of the projects that include single UML
files only, actually are result of university teaching.

Last but not least, outcomes of this research can not be
generalized to closed source community.

7.3 Threats to conclusion validity
As described above, the data has some limitations which

permit to do analysis of frequencies, since we expect to have
only discovered a part of the overall set of UML models
and respective projects. In particular we have not consid-
ered powerpoint, pdf, and word-formats of documentation in
which UML models may be embedded. For that reason we
do not do statistical analysis or even predictions, but stay
on a descriptive level in this paper. Nonetheless, we are
convinced that this descriptive analysis already represents a
valuable contribution to the research community.

8. CONCLUSIONS
In this paper we joined forces in repository mining and

model identification in order to identify open source projects
on GitHub that contain UML models.

As a result we can present a list of 3 295 open source
projects which include together 21 316 UML models. This is
the first time the modeling community can establish a corpus
comparable to collections already exist for source code only,
such as QualitasCorpus 7. Furthermore, the relatively low
amount of UML projects amongst the investigated GitHub
projects (0.28%) reconfirmed that our systematic mining ap-
proach was required in order to establish the corpus.

We analyzed the data to gain first descriptive results on
UML model usage in open source. One finding is that the
majority of models is never updates, but that projects ex-
ist that do update their models regularly. Furthermore, we
learned that models can be introduced during all possible
phases in the lifespan of an open source project. Nonethe-
less a peak of model introduction is during the first 10% of
the duration of projects.

A few projects are active with UML during their whole
lifetime. However, most projects work very shortly actively
on UML, usually at the beginning. We found that 12% of
the distinct models occurred several times. Duplicates are
in average spread across 1.88 projects.

In the future we plan to further explore the possibilities
that arise with the here presented new method to collect
data about UML usage in open source projects. For example
we plan to analyze the impact of model usage on project
dynamics, such as the number of people joining projects. We
are planning to proceed with mining GitHub in future work.
Based on the now investigated 10% of GitHub we expect
that GitHub includes around 34 000 projects with UML and
together around 200 000 UML models. Furthermore, we
will investigate possibilities to identify UML models that
are embedded in other files such as manuals stored in pdf.

7QualitasCorpus http://qualitascorpus.com/

http://qualitascorpus.com/

9. REFERENCES
[1] O. Badreddin, T. C. Lethbridge, and M. Elassar.

Modeling practices in open source software. In Open
Source Software: Quality Verification, pages 127–139.
Springer, 2013.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. Unified
Modeling Language User Guide, The (2Nd Edition)
(Addison-Wesley Object Technology Series).
Addison-Wesley Professional, 2005.

[3] E. Chung, C. Jensen, K. Yatani, V. Kuechler, and
K. N. Truong. Sketching and drawing in the design of
open source software. In Visual Languages and
Human-Centric Computing (VL/HCC), 2010 IEEE
Symposium on, pages 195–202. IEEE, 2010.

[4] W. Ding, P. Liang, A. Tang, H. Van Vliet, and
M. Shahin. How do open source communities
document software architecture: An exploratory
survey. In Engineering of Complex Computer Systems
(ICECCS), 2014 19th International Conference on,
pages 136–145. IEEE, 2014.

[5] R. France, J. Bieman, and B. H. Cheng. Repository
for model driven development (remodd). In Models in
Software Engineering, pages 311–317. Springer, 2007.

[6] G. Gousios and D. Spinellis. Ghtorrent: Github’s data
from a firehose. In Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on, pages
12–21. IEEE, 2012.

[7] R. Hebig, T. Ho Quang, G. Robles, and M. R.
Chaudron. List of identified projects with uml and
replication package. http://oss.models-db.com.

[8] T. Ho-Quang, M. R. V. Chaudron, I. Samúelsson,
J. Hjaltason, B. Karasneh, and H. Osman. Automatic
classification of uml class diagrams from images. In
Proceedings of the 2014 21st Asia-Pacific Software
Engineering Conference - Volume 01, APSEC ’14,
pages 399–406, Washington, DC, USA, 2014. IEEE
Computer Society.

[9] Y. Jiang and B. Adams. Co-evolution of infrastructure
and source code - an empirical study. In 12th
IEEE/ACM Working Conference on Mining Software
Repositories, MSR 2015, Florence, Italy, May 16-17,
2015, pages 45–55, 2015.

[10] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining github. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
MSR 2014, pages 92–101, New York, NY, USA, 2014.
ACM.

[11] B. Karasneh and M. R. Chaudron. Online img2uml
repository: An online repository for uml models. In
EESSMOD@ MoDELS, pages 61–66, 2013.

[12] P. Langer, T. Mayerhofer, M. Wimmer, and
G. Kappel. On the usage of uml: Initial results of
analyzing open uml models. In Modellierung,
volume 19, page 21, 2014.

[13] S. McIntosh, B. Adams, and A. E. Hassan. The
evolution of ant build systems. In Mining Software
Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 42–51. IEEE, 2010.

[14] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and
A. E. Hassan. An empirical study of build
maintenance effort. In Proceedings of the 33rd

international conference on software engineering,
pages 141–150. ACM, 2011.

[15] M. H. Osman and M. R. V. Chaudron. UML usage in
open source software development : A field study. In
Proceedings of the 3rd International Workshop on
Experiences and Empirical Studies in Software
Modeling co-located with 16th International
Conference on Model Driven Engineering Languages
and Systems (MoDELS 2013), Miami, USA, October
1, 2013., pages 23–32, 2013.

[16] G. Reggio, M. Leotta, and F. Ricca. Who knows/uses
what of the uml: A personal opinion survey. In
Model-Driven Engineering Languages and Systems,
pages 149–165. Springer, 2014.

[17] G. Robles, J. M. González-Barahona,
D. Izquierdo-Cortazar, and I. Herraiz. Tools for the
study of the usual data sources found in libre software
projects. International Journal of Open Source
Software and Processes, 1(1):24–45, 2009.

[18] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo.
Beyond source code: the importance of other artifacts
in software development (a case study). Journal of
Systems and Software, 79(9):1233–1248, 2006.

[19] H. Störrle, R. Hebig, and A. Knapp. An index for
software engineering models. In International
Conference on Model Driven Engineering Languages
and Systems (MoDELS) 2014, pages 36–40, 2014.

[20] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and
G. Reggio. Relevance, benefits, and problems of
software modelling and model driven techniques - A
survey in the italian industry. Journal of Systems and
Software, 86(8):2110–2126, 2013.

[21] B. Vasilescu, A. Serebrenik, M. Goeminne, and
T. Mens. On the variation and specialisation of
workload - a case study of the gnome ecosystem
community. Empirical Software Engineering,
19(4):955–1008, 2014.

[22] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering: An Introduction. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[23] K. Yatani, E. Chung, C. Jensen, and K. N. Truong.
Understanding how and why open source contributors
use diagrams in the development of ubuntu. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 995–1004. ACM,
2009.

http://oss.models-db.com

	Introduction
	Research questions
	Related research
	Use of UML in FOSS
	Mining

	Methodology
	Occurrence of UML
	Data Collection
	UML filters
	Identify UML images
	Identify UML files among .xmi and .uml files

	Metadata Extraction and Querying

	Results
	RQ1: UML in GitHub projects
	RQ2: Versions of UML models
	RQ3: Time of UML model introduction
	RQ4: Time span of active UML
	RQ5: Duplicates

	Discussion
	Threats to validity
	Threats to construct validity
	Threats to external validity
	Threats to conclusion validity

	Conclusions
	References

