
Android Passive MVC: a Novel Architecture Model
for Android Application Development

Karina Sokolova⇤†, Marc Lemercier⇤
⇤University of Technology of Troyes, France

{karina.sokolova, marc.lemercier}@utt.fr

Ludovic Garcia†
†EUTECH SSII, France

{k.sokolova, l.garcia}@eutech-ssii.com

Abstract—Nowadays the demand for mobile application de-
velopment is very high. To be competitive, a mobile application
should be cost-effective and be of good quality. The architecture
choice is important to ensure the quality of the application over
time and to reduce development time. Two main leaders are
very represented on the mobile market: Apple (iOS) and Google
(Android). The iOS development is based on the Model-View-
Controller design pattern and is well structured. The Android
system does not require any model: the architecture choice
and the application quality highly depends on the developer
experience. Heterogeneous solutions slow down the developer,
while the one known design pattern could not only boost
development time, but improve the maintainability, extensibility
and performance of the application. In this work, we investigate
some widely used architectural design patterns and propose a
unified architecture model adapted to Android development. We
provide the implementation example and test the efficiency of the
proposed architecture by implementing it on a real application.

Keywords—Smart mobile devices (smartphones, tablets); design

patterns; Model-View-Controller; Android architecture model; An-

droid passive MVC.

I. INTRODUCTION

The mobile market has grown rapidly in recent years.
Many enterprises feel the need to be present on mobile
markets and propose their services with mobile applications.
Compared to computer programs, mobile applications often
have limited functionalities, shorter shelf life and lower price.
New applications should be developed fast to be cost-effective
and updated often to keep users interested. The quality of
the application should not be neglected, as mobile users are
very pernickety and competition is stiff. Architecture choice
remains important for mobile applications to ensure quality:
mobile applications as well as other systems could be complex
and evolve over time.

The demand for smartphone application development is
very high especially for the two market leaders: Apple (iOS)
and Google (Android). Multi-platform solutions, such as
Phone-Gap, Rhodes Rhomobile and Titanium Appcelerator
reduce development time, as one application is developed for
several platforms [1], but have limited possibilities – often
requiring native plug-ins. Multi-platform solutions also add
complexity to the native code (e.g. web layer) that decreases
the performance of the application. The support of non-native
solutions could be abandoned. Native solutions enable use
of all the platform’s options with better performance and
lighter code, therefore developers often choose native software
development kits (SDK).

The iOS SDK imposes the Model-View-Controller (MVC)
design pattern for the iOS application development [2]. An-
droid requires no particular architecture [3] – developers
choose a suitable architecture for their applications that is
especially difficult for less experienced developers. Complex
applications that do not follow any architecture can end as a
big ball of mud code: incomprehensible and unmaintainable
[4]. Suitable architecture can improve three non-functional
requirements of software structural quality: extensibility, main-
tainability and performance. A defined architecture could ad-
ditionally reduce the complexity of the code, simplify the
documentation and facilitate collaboration work [5].

Android development books and tutorials are mostly fo-
cused on Android SDK technical details and user interface
design. Only a few works have been dedicated to the Android
application architecture, while the Android community identify
an architecture as an important part of successful system design
and development. Developers open many discussions about
suitable Android architecture on forums, blogs and groups.

In this work, we provide an overview of some widely used
architectural patterns and propose an MVC-based architecture
particularly adapted to the Android system. Android Passive
MVC simplifies the development work giving the guidelines
and solutions for common Android tasks enabling the creation
of less complex, high-performance, extendable and maintain-
able applications.

The remainder of the paper is organized as follows: the
second section presents several architectural patterns used in
software development. Section 3 presents briefly the Android
SDK and existing difficulties in adapting one known architec-
ture to Android. In Section 4, we propose an adaptation of the
MVC design pattern to the Android environment and provide
an implementation example. Section 5 evaluates the Android
Passive MVC model and Section 6 concludes this work and
presents some perspectives.

II. FUNDAMENTAL DESIGN PATTERNS

We present four popular MVx-based design patterns in
historical sequence. These patterns are widely used in desktop
and web applications development. If mobile development as-
similates similar design, developers moving from other systems
could take advantage of their knowledge. Different components
and existing variants of models are included in the description.

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Fig. 1. Classic MVC and Application Model MVC

A. Model-View-Controller (MVC)

Presented in 1978 [6], Model-View-Controller is the oldest
design pattern and has been successfully applied for many
systems since it’s creation [7], [8]. The goal of this model is to
separate business logic from presentation logic. The business
logic modifications should not affect the presentation logic
and vice versa [6]. MVC consists of three main components:
Model, View and Controller. The Model represents a data to be
displayed on the screen. More generally, Model is a Domain
model that contains the business logic, data to be manipulated
and data access objects. The View is a visual component on
the screen, such as a button. The Controller handles events
from user actions and communicates with the Model. The
View and the Controller depend on the Model, but the Model
is completely independent. The design pattern states that all
Views should have a single Controller, but one Controller can
be shared by several Views.

MVC model have three varieties: Classic MVC, Passive
Model MVC and Application Model MVC (AM-MVC). The
scheme of two MVC model varieties is shown in Figure 1.
The Classic MVC is shown on the left and the AM-MVC is
shown on the right.

In all variants, Controller handles events and communicates
directly with a Model that is indicated by a black arrow. On the
Classic MVC the Model processes data and notifies the View.
The View handles messages from the Model and updates the
screen using the data received from the Model. This behaviour
is implemented using the Observer pattern (grey arrow in
Figure 1). Conversely, the communication between the Model
and the View in Passive Model MVC is done exclusively via the
Controller. The Model notifies Controller which then notifies
View and finally the View makes changes on the screen [9].
The AM-MVC is an improved Classic MVC with an additional
component. The Application Model component was added for
the presentation logic (e.g. change the screen colour if the
value is greater than 4) that was often added to View or
Controller previously and makes a bridge between the Model
and the View-Controller couples.

B. Model-View-Presenter (MVP)

The Model-View-Presenter was introduced in 1996 as an
MVC adaptation for the modern needs of event-driven systems
[10]. The model consists of three components: Model, View
and Presenter. In this model, the View represents a full screen
and it handles events from the user actions. The Presenter is

Fig. 2. Supervising controller and Passive view

responsible of the presentation logic. The Model is a Domain
model.

There are two types of MVP: Supervising controller and
Passive view. Both models are shown in Figure 2. The Super-
vising controller uses the Observer pattern for the communica-
tion between Model and View. The View can interact directly
with the Model to save the data if there is no change to be
made on the screen. Otherwise, the communication between
the View and the Model is made via the Presenter. Interaction
between View and Model of the Passive View MVP is done
exclusively via Presenter [10].

C. Hierarchical-Model-View-Controller (HMVC)

The Hierarchical-Model-View-Controller was first intro-
duced in 2000 as an Classic MVC adaptation for Java pro-
gramming [11]. This model takes into account the hierarchi-
cal nature of Java graphical interface components: the main
window frame contains panes that contain components. The
authors propose to create layered architecture for the screen
with Classic MVC triads for each layer communicating with
each other by controllers. The HMVC model is shown in
Figure 3.

Thereby the child controller intercepts methods from its
view. If a view of the upper hierarchy (parent view) needs to
be changed, the child component informs the parent controller,
which makes the changes. The communication between layers
is made exclusively via controllers.

D. Model-View-ViewModel (MVVM)

Model-View-ViewModel is another model to separate the
presentation and business logic. The ViewModel is a linking
component between View and Model. This design pattern is
mainly used in Microsoft systems [12]. The realization of this
model is done with binding between components [13]. The
binding is not supported in Android by default but could be im-
plemented using the very recent Android-binding framework.

Fig. 3. Hierarchical-Model-View-Controller

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

As stated in [14], a good basic model should not use any
additional framework and should be easily implemented with
original components, therefore this model is not dealt with in
the paper.

III. ANDROID APPLICATION
DEVELOPMENT EXPERIENCE

Android is a Linux-based open source operation system
designed for mobile devices. Android was first presented by
Google in 2007 and in spite of huge competition from Apple
has been the leading smartphone platform since 2010. Google
continues to work on the system systematically integrating
new features and correcting bugs. Many manufacturers of
smartphones and tablets adopted this open-source solution; the
National Security Agency and NASA also choose Android for
their projects.

Android applications are mainly written in Java using the
Android SDK [15]. The code is compiled to be executed on
the Dalvic virtual machine on a smartphone. Additionally,
developers can use the Native Development Kit (NDK) to add
a C or C++ written code referred to as native. NDK allows
more advanced features and better performance, however, the
complexity of the code increases with the quantity of native
code [16] – Google suggested minimizing the use of this kit.

Four principal components of Android SDK are used in
Android Application development: Activity, Service, Content
provider and Broadcast receiver. Activity is a main component
of Android applications created while the application that
is also the entry point to the application is open. Many
Activities can exist in the application but only one is active at
a time. The service works on the background of an application
permitting an execution of long tasks (e.g. file download).
When the application is closed, unlike Activity, the work of the
Service is not interrupted. The Content provider component
gives access to the local data stored in SQLite databases.
The Broadcast receiver is a messaging system that enables
communication inside the application and between multiple
Android applications installed on the phone.

Activity causes major difficulties in implementing the
known architecture: is it a View, a Controller, a Presenter or
none of them? Some developers say Android actually imposes
the MVC model where the layout.xml (file, defining the layout
of the screen) is a View, Activity component is a Controller
and the rest is a Model. This proposition is not really the
MVC: layout.xml only defines what the screen looks like, but
button actions, text information and other presentation logic
are usually placed in Activity. Therefore, Activity handles
events as Controller and manages the visualization as View,
replacing the View-Controller. It leads to the creation of a
heavy and complex Activity class [17]. Huge classes that have
many responsibilities (event handler, presentation logic, etc.)
violate the Single Responsibility Principle of Object Oriented
Programming and could be hard to understand, test and extend
[18].

Other developers place Activity as a View of MVC creating
Controller apart. This solution works for simple applications
where one Activity represents one visual block, while Activity
usually manages several Views: main screen, menu, dialogue
box, etc. In complex visual applications Activity becomes

heavy; View components are strongly linked to each other
and are not reusable. Controller will be either complex or
divided into parts by a number of embedded Activity Views
that go against the MVC statement of one Controller, one
View. Replacing MVP View with Activity can cause similar
problems.

Some developers observed that Android have predefined
Views as ViewFlipper. It brings another solution where the
Activity became a Controller and Views are created apart.
Solution seems more adaptable to Android as event inter-
ception in Activity can be defined in layout.xml but actually
creates problems similar to previous implementation: many
Views make the only Controller (Activity) complex. Views
are reusable but the corresponding Controller should always
be added to the new Activity using the View. To delete or
modify the View developer should modify the full Activity.
Final application is complex and hard to maintain.

Even if MVC and MVP architectures seem suitable for
Android developments they are not intuitive to implement. A
new architecture should be easily implemented with Android-
specific components, such as Activity. The implementation of
the model should improve the application and code quality.
More precisely, the model should reduce the complexity of
an application, clarify the code and improve extensibility.
The coupling between components should be weak to avoid
the modification of other components if one is modified.
Modules should be reusable [14], [18]. A mobile phone has a
limited memory and a garbage collector could have unexpected
behaviour therefore the creation of unnecessary objects should
be avoided. Finally, objects remaining in the memory should
be lightweight [16].

IV. NOVEL DESIGN PATTERN FOR
ANDROID PLATFORM

The first part of the section explains the novel architec-
ture for Android application development we named Android
Passive MVC. The second part of the section presents a
simple example implementing the Android Passive MVC.
The third part of the section recommends an architecture of
the business logic of the application – the Model. Android
applications have similar needs: internal database management
and access, web service access and reusable components use.
Clear main architecture of business logic could also simplify
the development process.

A. Android Passive MVC Presentation

We have decided to base our architecture on the MVC
model, as MVC is well-known and widely used in desktop and
web systems as well as in iOS mobile development. Developers
coming from other systems would be able to easily appropriate
the Android development architecture.

Activity is an inevitable component of the Android appli-
cation. Previous experience of the Android community shows
Activity does not fit well on the MVC model, while it seems
to be well adapted to developers’ needs. We decided to create
MVC model around Activity making the Activity the fourth
component. We can also think of Activity as a main screen
(parent) controller in HMVC model.

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Observer-observable pattern is relevant for multi-screen
systems but only one screen is active at a time in Android
application. This pattern supposes keeping in memory Views
and Models that appear heavy for the mobile environment,
therefore we chose the Passive Model MVC as a base for our
architecture.

In our model, Activity becomes an intermediate component
between the Views and the Controllers, thereby Controllers
take the event handling responsibility and the Views take
the presentation logic making the Activity lightweight. The
scheme of the Android Passive MVC model is shown in Figure
4. The grey dashed arrows show the interaction via Android
native methods. Black arrows indicate direct calls and grey
arrows represent listener events.

The Activity is like a screen controller. The starting Ac-
tivity creates a link between a View and a corresponding
Controller to make them communicate directly. The commu-
nication between Controllers is made via Activity.

The Views are the interface components, such as a form, a
menu or a list of elements. View components contain methods
that allow the setting or obtaining of data from the user
interface on Controller demand, the setting of event listeners on
visual components and the modification of visual components
(set errors, change colours, etc.). Views are independent and
do not communicate.

The Controller handles events from the user action (e.g.
button click), calls necessary methods from the Model and
then notifies the View to be updated on Model response.
The Controllers are independent from one another and do not
communicate directly.

This solution makes Activity lightweight by moving all
event handlers to Controllers and interface management to
Views. Views and Controllers created on demand avoid unnec-
essary objects, saving memory. Developers can easily modify
or remove application components by only modifying or
deleting the corresponding view-controller couple. Application
can be extended with view-controller couples. The Model is
independent from the View, the Controller and the Activity.
The user interface could be replaced without any impact on
Model thereby the maintainability of the application is high.

We perform the communication between Activity, Con-
troller and Model via message listeners implemented via
interfaces as proposed by [19]. Figure 5 shows the Android
Passive MVC implementation diagram. Listeners increase the
performance of the application and create a weak coupling
between components that improve maintainability.

Fig. 4. Android Passive MVC

Fig. 5. Android Passive MVC implementation

B. Android Passive MVC Implementation

This section presents an implementation example of com-
munication between Android Passive MVC components. This
implementation is suitable for the new manually created Ac-
tivities. Some predefined Activities, especially from third-party
libraries, will possibly not fit the implementation. We created
a login screen with a classic login form to enter the login
and password; if the login is successful the user goes to the
welcome page, otherwise the error message appears.

The example contains two Activities: Login Activity
managing the login page and Welcome Activity for the wel-
come page. The login form is managed by Login View and
Login Controller. Login Activity implements the LoginCon-
trollerListener interface to be able to receive calls from the
Login Controller. The schema is shown in Figure 6.

Login View contains methods for obtaining login and
password (getters), methods to set button listener and methods
to set errors. Login Controller handles event from the login
form implementing the onClickListener; while the button is
pressed Controller launches simple verifications and calls the
model. If login is successful, the answer goes back to the
Login Activity, which opens a welcome screen. To simplify the
example we do not include the model, but the communication
between the Controller and the Model can be implemented
similarly. A full code example can be found on [20].

C. Android Domain Model

The Model of Android Passive MVC is a Domain Model con-
taining business methods, web service call methods, database
access objects, reusable methods and data model objects.

A Domain Model architecture should include components
usually used in Android applications, such as Database man-
ager, Web services manager and Business logic. Those com-
ponents should be independent, as the architecture should be
adaptable. Reusable components should be also separated. The
basic model architecture is shown in Figure 7.

Fig. 6. Login implementation example

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Fig. 7. Domain Model Architecture

The architecture of Domain Model proposed in this doc-
ument is inspired by 3-tier architecture that separates the
presentation, the business and the data access layers [21].

The business layer of our model regroups objects and meth-
ods that use web services, business services and reusable tools.
Business services contain business logic. If an application
works via Internet as well as locally, all necessary verifications
are done in Business services, which calls corresponding
methods. The communication between a presentation and a
domain model layer are made via Business services.

The data layer contains Models, Data Access Objects
(DAO) and Database Manager. DAO and Model are the
implementation of the Data Access Object pattern. Model
contains data being persisted in the database or retrieved by
web services calls. Model is a simple Plain Old Java Object
(POJO) that contains only variables and their getter and setter
methods. Data is manipulated and transferred through the
application using those lightweight objects that are often called
Data Transfer Object (DTO).

Persistence methods are organized in DAOs. DAO contains
methods that enable the data in a database to be saved, deleted,
updated and retrieved. Even if Android proposes an abstraction
on the data access level with Content Provider, DAO simplifies
the code of the application. The DAO design pattern creates
a weak coupling between components and use a lightweight
Model object instead of an Android cursor object in the
application. DAO can also be used for the data stored in XML
or text files. Good practice is to make DAO accessible via
interfaces. It allows DAO modification (for example the change
of SQLite to XML storage) without any change in Business
services, which increases maintainability.

Database manager is in charge of the database creation.
Database manager exists only if SQlite database is used by
the application. It stores the name of the database, and of its
tables and methods to be able to create, drop, open and close
the database.

This architecture regroups logically similar methods to-
gether, increases cohesion. High cohesion facilitates the main-
tainability of the software. The final code of the application
could be organized in packages by architectural components:
Activities, Views, Controllers, Business Services, Tools, Web
Services, Model, DAOs and Database. It gives the clear
structure of an application and limits the package number.
Additional packages could be created for interfaces, parsers
(e.g. XML, JSON) and constants.

V. ARCHITECTURE EVALUATION

We evaluated the architecture in two steps. First, we
ensured that the architecture fit the lists of code quality criteria
proposed by [14], [16]. Second, we ask an Android developer
to rewrite one of his latest applications using Android Passive
MVC, compare results and give feedback regarding the model.

A. Code quality

The evaluation of our architecture is based on the following
code quality evaluation criteria: techniques used, maintainabil-
ity, extensibility, reusability and performance.

The use of standard platform techniques is important for
the model: the support of third-party functionalities could be
interrupted making implementation of the model impossible.
The Android Passive MVC could be implemented using An-
droid SDK without any additional libraries.

A high-quality application has high maintainability and
extensibility: codes have weak coupling between components,
easy code suppression possibility and high testability. The
Passive MVC architecture ensures high maintainability. Clear
separation between presentation and business logic simplifies
testability of components. Weak coupling between all layers is
carried out via listeners. One component (ex. interface, DAO,
web service) could be replaced or modified without changes
in others. The extension or modification of the user interface
itself is done by simply adding, deleting or modifying the view-
controller couples.

The reusability of components make the code clearer
and boost development time. The view-controller components
of the Android MVC model could be reused through the
application and could be easily embedded in other Android
applications made with Android Passive MVC.

Good performance is especially important in mobile en-
vironments: resource utilization should be limited as mobile
devices have little memory. Short response time is essential
for modern users. The Android MVC architecture makes a
very lightweight Activity component. Controllers, View and
Model objects are also small and kept in memory only if used,
which minimizes resource utilization. The use of listeners also
slightly increases response speed.

B. Architecture implementation

We asked an Android developer with three years’ experi-
ence to test the Android Passive MVC. He chose to redevelop
one of his latest applications which had become complex,
hard to maintain, extend and test. The application is called
‘TaskProjectManager’ and it enables tasks to be assigned to
different employees and to view the full calendar of tasks
on the screen by day, week and month. The application also
generates reports by given parameters.

Measurements of both versions of the application are made
with javancss, a source measurement suite for Java, and the
results are shown in Table I. Android Passive MVC reduces
all code parameters.

The Android Passive MVC helps with organizing classes
in packages. The original version of the application had many

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

packages created partly using the MVP model, partly the
application logic, and partly the Android components named.
The limited number of packages of the Android Passive MVC
version gives the application a clear structure.

The full code became smaller: both the number of classes
and the number of functions were reduced. The Android
Passive MVC enables high reusability of components.

The code complexity is evaluated using Cyclomatic Com-
plexity Number (CCN). ‘Cyclomatic complexity measures
the number of linearly independent paths through a program
module.’ [5]. Normal method complexity without any risks is
1-10 CCN, with 11-20 CCN the complexity is moderate, with
21-50 CCN the complexity is very high and and with CCNs
greater than 50 the program is untestable. Table I shows that
the average complexity of the application of the application has
decreased slightly. The maximum CCN dropped significantly:
an original version has methods with CCNs of 40, 50 and even
100 and 110, while the new version has the only JSON parser
with a CCN of 30 and several methods with a CCN of 10 to
15.

The developer’s feedback was that the Android Passive
MVC model is easy to understand and to follow. The fi-
nal application was visibly more reactive: the response time
became almost nil, while the users of the original version
complained about a very long response time for each screen.
The Android Passive MVC version is open to extensions
and easily modifiable. Application components are not only
reusable in the application, but could also be reused in future
Android development.

VI. CONCLUSION AND FUTURE WORK

We have analysed some well-known architectural design
patterns and proposed an Android architecture solution based
on an MVC design pattern and the Domain Model orga-
nization. The architecture defined can simplify the work of
novice and experienced developer alike and enable creation
of less complex and well-structured applications. The existing
Android application was reimplemented using the Android
Passive MVC, resulting in better maintainability, extensibility
and performance. The complexity of the new implementation
was lower.

We consider a wider evaluation by the Android community.
We are currently working on a user-friendly model description
and several well-commented implementation examples. We are
also drawing up on a questionnaire for the developers who
have tested the model. We plan to spread the documentation,
examples and a survey over the important websites and blogs
to reach a larger audience.

TABLE I
TASKPROJECTMANAGER STATISTICS

Original Android MVC % Gain
Packages 25 17 32
Classes 393 275 30

Functions 2186 1683 23
Avg CCN 2,30 1,87 19
Max CCN 110 30 73

This work can be continued by testing the observer-
observable design pattern integrated in the Android Passive
MVC. The adaptation of the MVP model can be envisaged.
The same testing software could be redeveloped to compare
the results. Finally, the same test using the Android-binding
MVVC framework could be implemented to choose the most
effective solution for different types of applications.

REFERENCES

[1] S. Allen, V. Graupera, and L. Lundrigan, Pro Smartphone Cross-
Platform Development: IPhone, Blackberry, Windows Mobile and An-
droid Development and Distribution, 1st ed. Berkely: Apress, Sep.
2010.

[2] D. Mark and J. LaMarche, More IPhone 3 Development, ser. Tackling
Iphone Sdk 3. Berkely: Apress, Jan. 2010.

[3] J. Steele, N. To, S. Conder, and L. Darcey, The Android Developer’s
Collection. Addison-Wesley Professional, Dec. 2011.

[4] B. Foote and J. Yoder, Big Ball of Mud. Addison-Wesley, 1997.
[5] T. Ihme and P. Abrahamsson, “The Use of Architectural Patterns in the

Agile Software Development of Mobile Applications,” ICAM 2005, pp.
155–162, Aug. 2005.

[6] G. Krasner and S. Pope, “A description of the model-view-controller
user interface paradigm in the smalltalk-80 system,” Journal of object
oriented programming, vol. 1, pp. 26–49, 1988.

[7] P. Sauter, G. Vögler, G. Specht, and T. Flor, “A Model-View-Controller
extension for pervasive multi-client user interfaces,” Personal and
Ubiquitous Computing, vol. 9, no. 2, pp. 100–107, Mar. 2005.

[8] M. Veit and S. Herrmann, “Model-view-controller and object teams:
a perfect match of paradigms,” in AOSD ’03: Proceedings of the
2nd international conference on Aspect-oriented software development.
ACM Press, Mar. 2003, pp. 140–149.

[9] S. Burbeck. (1997, Mar.) Applications Programming in Smalltalk-
80TM: How to use Model-View-Controller MVC. [Online]. Available:
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html [retrieved:
March 2013]

[10] M. Potel, “MVP: Model-View-Presenter the taligent programming
model for C++ and Java,” Taligent Inc., Tech. Rep., 1996.

[11] J. Cai, R. Kapila, and G. Pal, “HMVC: The layered pattern for
developing strong client tiers,” Java World, pp. 07–2000, 2000.

[12] J. Smith. (2009, Feb.) Wpf apps with the model-view-viewmodel
design pattern. [Online]. Available: http://msdn.microsoft.com/en-
us/magazine/dd419663.aspx [retrieved: March 2013]

[13] R. Garofalo, Building Enterprise Applications with Windows Presenta-
tion Foundation and the Model View ViewModel Pattern. Microsoft
Press, Mar. 2011.

[14] S. McConnell, Tout sur le code : Pour concevoir du logiciel de qualité,
2nd ed. Dunod, Feb. 2005.

[15] R. Meier, Professional Android 4 Application Development (Wrox
Professional Guides), 3rd ed. Birmingham: Wrox Press Ltd., May
2012.

[16] I. Salmre, Writing Mobile Code: Essential Software Engineering for
Building Mobile Applications. Addison-Wesley Professional, Feb.
2005.

[17] F. Garin, Android - Concevoir et développer des applications mobiles
et tactiles, 2nd ed. Dunod, Mar. 2011.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley Professional, Nov. 1994.

[19] W.-Y. Kim and S.-G. Park, “The 4-tier design pattern for the de-
velopment of an android application,” in Proceedings of the Third
international conference on Future Generation Information Technology,
ser. FGIT’11. Springer-Verlag, Dec. 2011, pp. 196–203.

[20] K. Sokolova. Android passive mvc implementation example.
[Online]. Available: https://github.com/KarinaSokolova/android-mvc-
example [retrieved: March 2013]

[21] P. D. Sheriff, Fundamentals of N-Tier Architecture. PDSA Inc., May
2006.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

